首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome c heme lyase (CCHL) catalyses the covalent attachment of the heme group to apocytochrome c during its import into mitochondria. The enzyme is membrane-associated and is located within the intermembrane space. The precursor of CCHL synthesized in vitro was efficiently translocated into isolated mitochondria from Neurospora crassa. The imported CCHL, like the native protein, was correctly localized to the intermembrane space, where it was membrane-bound. As with the majority of mitochondrial precursor proteins, CCHL uses the MOM19-GIP receptor complex in the outer membrane for import. In contrast to proteins taking the general import route, CCHL was imported independently of both ATP-hydrolysis and an electrochemical potential as external energy sources. CCHL which lacks a cleavable signal sequence apparently does not traverse the inner membrane to reach the intermembrane space; rather, it translocates through the outer membrane only. Thus, CCHL represents an example of a novel, 'non-conservative' import pathway into the intermembrane space, thereby also showing that the import apparatus in the outer membrane acts separately from the import machinery in the inner membrane.  相似文献   

2.
Most mitochondrial proteins are synthesized in the cytosol as preproteins with a cleavable presequence and are delivered to the import receptors on the mitochondria by cytoplasmic import factors. The proteins are then imported to the intramitochondrial compartments by the import systems of the outer and inner membranes, TOM and TIM. Mitochondrial outer membrane proteins are synthesized without a cleavable presequence and most of them contain hydrophobic transmembrane domains, which, in conjunction with the flanking segments, function as the mitochondria import signals. Some of the proteins are inserted into the outer membrane by the TOM machinery; the import signal probably arrests further translocation and is released from the translocation channel to the lipid bilayer. The other proteins are inserted into the membrane by a novel pathway independent of the TOM machinery. This article reviews recent developments in the biogenesis of mitochondrial outer membrane proteins.  相似文献   

3.
蛋白质跨线粒体膜运送的研究进展   总被引:1,自引:0,他引:1  
杨福愉 《生命科学》2008,20(4):514-518
线粒体拥有约1000种蛋白质,其中98%以上系由细胞核编码,在细胞质核糖体上以前体形式合成,之后再运至线粒体,经跨膜运送并分选定位于各部分。现对定位于外膜、基质和内膜的蛋白质的运送途径的研究进展作一扼要介绍。脱血红素细胞色素c是细胞色素c的前体,它不含导肽,对其转运的研究概况也作了评述。  相似文献   

4.
S Furuya  K Mihara  S Aimoto    T Omura 《The EMBO journal》1991,10(7):1759-1766
We chemically synthesized a peptide, 11 beta-45, which was composed of 45 amino acid residues including the whole extension peptide and some of the mature portion of bovine cytochrome P-450(11 beta) precursor. 11 beta-45 was imported into mitochondria in vitro depending on the mitochondrial membrane potential, but its import did not require extramitochondrial ATP. Although cytosolic protein factors in the high speed supernatant of reticulocyte lysate are known to stimulate the import of various precursor proteins into mitochondria, the import of 11 beta-45 was not stimulated by cytosolic factors in reticulocyte lysate. The import of the peptide did not require mitochondrial surface protein components because its import was not affected by trypsin treatment of mitochondria. On the other hand, trypsin treatment of mitoplasts resulted in a great reduction in the import of the peptide, indicating that 11 beta-45 interacts during the import process with some protein components located inside mitochondria. These observations indicated that the peptide 11 beta-45 was imported via the potential-dependent pathway as in the case of precursor proteins, but skipped the interactions with cytosolic factors and mitochondrial surface components normally required for the import of precursor proteins.  相似文献   

5.
H M Li  T Moore    K Keegstra 《The Plant cell》1991,3(7):709-717
The chloroplastic envelope is composed of two membranes, inner and outer, each with a distinct set of polypeptides. Like proteins in other chloroplastic compartments, most envelope proteins are synthesized in the cytosol and post-translationally imported into chloroplasts. Considerable knowledge has been obtained concerning protein import proteins. We isolated a cDNA clone from pea that encodes a 14-kilodalton outer envelope membrane protein. The precursor form of this protein does not possess a cleavable transit peptide and its import into isolated chloroplasts does not require either ATP or a thermolysin-sensitive component on the chloroplastic surface. These findings, together with similar observations made with a spinach chloroplastic outer membrane protein, led us to propose that proteins destined for the outer membrane of the chloroplastic envelope follow an import pathway distinct from that followed by proteins destined for other chloroplastic compartments.  相似文献   

6.
:线粒体的大多数蛋白质是由核基因编码、细胞质合成,而最终运输到线粒体。在此过程中,需要线粒体外膜和内膜的蛋白质运输机器(至少三种主要的移位酶复合物)来保证前体蛋白质的正确运输。  相似文献   

7.
Mitochondrial protein import   总被引:60,自引:0,他引:60  
Most mitochondrial proteins are synthesized as precursor proteins on cytosolic polysomes and are subsequently imported into mitochondria. Many precursors carry amino-terminal presequences which contain information for their targeting to mitochondria. In several cases, targeting and sorting information is also contained in non-amino-terminal portions of the precursor protein. Nucleoside triphosphates are required to keep precursors in an import-competent (unfolded) conformation. The precursors bind to specific receptor proteins on the mitochondrial surface and interact with a general insertion protein (GIP) in the outer membrane. The initial interaction of the precursor with the inner membrane requires the mitochondrial membrane potential (delta psi) and occurs at contact sites between outer and inner membranes. Completion of translocation into the inner membrane or matrix is independent of delta psi. The presequences are cleaved off by the processing peptidase in the mitochondrial matrix. In several cases, a second proteolytic processing event is performed in either the matrix or in the intermembrane space. Other modifications can occur such as the addition of prosthetic groups (e.g., heme or Fe/S clusters). Some precursors of proteins of the intermembrane space or the outer surface of the inner membrane are retranslocated from the matrix space across the inner membrane to their functional destination ('conservative sorting'). Finally, many proteins are assembled in multi-subunit complexes. Exceptions to this general import pathway are known. Precursors of outer membrane proteins are transported directly into the outer membrane in a receptor-dependent manner. The precursor of cytochrome c is directly translocated across the outer membrane and thereby reaches the intermembrane space. In addition to the general sequence of events which occurs during mitochondrial protein import, current research focuses on the molecules themselves that are involved in these processes.  相似文献   

8.
Mitochondria are surrounded by two distinct membranes: the outer and the inner membrane. The mitochondrial outer membrane mediates numerous interactions between the mitochondrial metabolic and genetic systems and the rest of the eukaryotic cell. Proteins of this membrane are nuclear-encoded and synthesized as precursor proteins in the cytosol. They are targeted to the mitochondria and inserted into their target membrane via various pathways. This review summarizes our current knowledge of the sorting signals for this specific targeting and describes the mechanisms by which the mitochondrial import machineries recognize precursor proteins, mediate their membrane integration and facilitate assembly into functional complexes.  相似文献   

9.
The translocase of the inner membrane 17 (AtTIM17-2) protein from Arabidopsis has been shown to link the outer and inner mitochondrial membranes. This was demonstrated by several approaches: (i) In vitro organelle import assays indicated the imported AtTIM17-2 protein remained protease accessible in the outer membrane when inserted into the inner membrane. (ii) N-terminal and C-terminal tagging indicated that it was the C-terminal region that was located in the outer membrane. (iii) Antibodies raised to the C-terminal 100 amino acids recognize a 31-kDa protein from purified mitochondria, but cross-reactivity was abolished when mitochondria were protease-treated to remove outer membrane-exposed proteins. Antibodies to AtTIM17-2 inhibited import of proteins via the general import pathway into outer membrane-ruptured mitochondria, but did not inhibit protein import via the carrier import pathway. Together these results indicate that the C-terminal region of AtTIM17-2 is exposed on the outer surface of the outer membrane, and the C-terminal region is essential for protein import into mitochondria.  相似文献   

10.
The mechanism of import of proteins into mitochondria was studied by using the peptide of the presequence of ornithine aminotransferase (the extrapeptide), which was chemically synthesized and is composed of 34 amino acids. When the extrapeptide was incubated with isolated mitochondria in the presence of a rabbit reticulocyte lysate at 25 degrees C, it was imported into the mitochondrial matrix, and the import depended on the inner membrane potential, but not added ATP. The import of several precursors of mitochondrial proteins was competitively inhibited by the presence of excess extrapeptide in the reaction system, indicating that the extrapeptide and mitochondrial proteins were imported by the same machinery. Import of the extrapeptide was significantly stimulated by addition of a rabbit reticulocyte lysate, and a component of the lysate (the cytosolic factor) stimulating import of the extrapeptide was purified about 20,000 times by successive column chromatography on DEAE-cellulose and aminopentyl-Sepharose 4B. The binding of the extrapeptide to liposomes composed of egg lecithin and partially purified receptor of the precursor of mitochondrial protein (Ono, H., and Tuboi, S., (1985) Biochem. Int. 10, 351-357) required the cytosolic factor when the concentration of the peptide was less than 1.5 X 10(-8) M, suggesting that the physiological binding of the precursors of mitochondrial proteins to the receptor is dependent on the cytosolic factor. The extrapeptide and the cytosolic factor were shown to form a complex. From these results, the mechanism of binding of the extrapeptide to the receptor of the mitochondrial outer membrane is suggested to be as follows: the peptide (the precursor of mitochondrial protein) and the cytosolic factor form a complex, and then the complex is recognized by and bound to the receptor.  相似文献   

11.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.  相似文献   

12.
《The Journal of cell biology》1989,109(4):1421-1428
Passage of precursor proteins through translocation contact sites of mitochondria was investigated by studying the import of a fusion protein consisting of the NH2-terminal 167 amino acids of yeast cytochrome b2 precursor and the complete mouse dihydrofolate reductase. Isolated mitochondria of Neurospora crassa readily imported the fusion protein. In the presence of methotrexate import was halted and a stable intermediate spanning both mitochondrial membranes at translocation contact sites accumulated. The complete dihydrofolate reductase moiety in this intermediate was external to the outer membrane, and the 136 amino acid residues of the cytochrome b2 moiety remaining after cleavage by the matrix processing peptidase spanned both outer and inner membranes. Removal of methotrexate led to import of the intermediate retained at the contact site into the matrix. Thus unfolding at the surface of the outer mitochondrial membrane is a prerequisite for passage through translocation contact sites. The membrane-spanning intermediate was used to estimate the number of translocation sites. Saturation was reached at 70 pmol intermediate per milligram of mitochondrial protein. This amount of translocation intermediates was calculated to occupy approximately 1% of the total surface of the outer membrane. The morphometrically determined area of close contact between outer and inner membranes corresponded to approximately 7% of the total outer membrane surface. Accumulation of the intermediate inhibited the import of other precursor proteins suggesting that different precursor proteins are using common translocation contact sites. We conclude that the machinery for protein translocation into mitochondria is present at contact sites in limited number.  相似文献   

13.
In order to establish the role of the extension peptide of the precursor of P-450(SCC), a mitochondrial inner membrane protein, in the import into the organella, three deletion mutants of the precursor, in which the deletions were in the mature portion, were constructed. These mutant precursors were imported into mitochondria in vitro as efficiently as the original precursor, indicating that the extension peptide contains sufficient information for the import of the precursor into mitochondria. To investigate which portion of the extension peptide contains the mitochondrial targeting signal, various lengths of the amino-terminal portion of the extension peptide of P-450(SCC) precursor were fused to the mature portion of adrenodoxin. The fusion proteins consisting of 44 and 19 amino-terminal amino acids and mature adrenodoxin were imported into mitochondria, whereas those containing 14, 7, and 2 amino-terminal amino acid residues were not. The importance of the amino-terminal portion of the extension peptide was confirmed by the deletion from the amino-terminal end of a fusion protein consisting of the amino-terminal 44 amino acid residues of P-450(SCC) precursor and mature adrenodoxin, SCC44RAd. The amino-terminal deletions abolished the import of the fusion proteins into mitochondria. Substitution of all of the three basic amino acids, Arg(4), Arg(9), and Lys(14) in the extension peptide of SCC44RAd to Ser or Thr inhibited the binding of the fusion protein to mitochondria as well as its import.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Functions of outer membrane receptors in mitochondrial protein import   总被引:10,自引:0,他引:10  
Most mitochondrial proteins are synthesized in the cytosol as precursor proteins and are imported into mitochondria. The targeting signals for mitochondria are encoded in the presequences or in the mature parts of the precursor proteins, and are decoded by the receptor sites in the translocator complex in the mitochondrial outer membrane. The recently determined NMR structure of the general import receptor Tom20 in a complex with a presequence peptide reveals that, although the amphiphilicity and positive charges of the presequence is essential for the import ability of the presequence, Tom20 recognizes only the amphiphilicity, but not the positive charges. This leads to a new model that different features associated with the mitochondrial targeting sequence of the precursor protein can be recognized by the mitochondrial protein import system in different steps during the import.  相似文献   

15.
Yeast Mas70p and NADH cytochrome b5 reductase are bitopic integral proteins of the mitochondrial outer membrane and are inserted into the lipid-bilayer in an Nin-Ccyto orientation via an NH2-terminal signal- anchor sequence. The signal anchor of both proteins is comprised of a short, positively charged domain followed by the predicted transmembrane segment. The positively charged domain is capable of functioning independently as a matrix-targeting signal in yeast mitochondria in vitro but does not support import into mammalian mitochondria (rat or human). Rather, this domain represents a cryptic signal that can direct import into mammalian mitochondria only if proximal components of the outer membrane import machinery are removed. This can be accomplished either by treating the surface of the intact mitochondria with trypsin or by generating mitoplasts. The import receptor Tom20p (Mas20p/MOM19) is responsible for excluding the cryptic matrix-targeting signal from mammalian mitochondria since replacement of yeast Tom20p with the human receptor confers this property to the yeast organelle while at the same time maintaining import of other proteins. In addition to contributing to positive recognition of precursor proteins, therefore, the results suggest that hTom20p may also have the ability to screen potential matrix-targeting sequences and exclude certain proteins that would otherwise be recognized and imported by distal components of the outer and inner membrane protein- translocation machinery. These findings also indicate, however, that cryptic signals, if they exist within otherwise native precursor proteins, may remain topogenically silent until the precursor successfully clears hTom20p, at which time the activity of the cryptic signal is manifested and can contribute to subsequent translocation and sorting of the polypeptide.  相似文献   

16.
《The Journal of cell biology》1989,109(6):2603-2616
To identify the membrane regions through which yeast mitochondria import proteins from the cytoplasm, we have tagged these regions with two different partly translocated precursor proteins. One of these was bound to the mitochondrial surface of ATP-depleted mitochondria and could subsequently be chased into mitochondria upon addition of ATP. The other intermediate was irreversibly stuck across both mitochondrial membranes at protein import sites. Upon subfraction of the mitochondria, both intermediates cofractionated with membrane vesicles whose buoyant density was between that of inner and outer membranes. When these vesicles were prepared from mitochondria containing the chaseable intermediate, they internalized it upon addition of ATP. A non-hydrolyzable ATP analogue was inactive. This vesicle fraction contained closed, right-side-out inner membrane vesicles attached to leaky outer membrane vesicles. The vesicles contained the mitochondrial binding sites for cytoplasmic ribosomes and contained several mitochondrial proteins that were enriched relative to markers of inner or outer membranes. By immunoelectron microscopy, two of these proteins were concentrated at sites where mitochondrial inner and outer membranes are closely apposed. We conclude that these vesicles contain contact sites between the two mitochondrial membranes, that these sites are the entry point for proteins into mitochondria, and that the isolated vesicles are still translocation competent.  相似文献   

17.
A peptide corresponding to amino acids 1-27 of preornithine carbamyltransferase (pOCT) has been chemically synthesized. When added to energized mitochondria in vitro, 20 microM of the peptide, designated pO(1-27), resulted in a collapse of the electrochemical potential across the mitochondrial inner membrane. This effect on transmembrane potential was not observed, however, when pO(1-27) was added to energized mitochondria under conditions that support in vitro import of precursor proteins (i.e. in the presence of reticulocyte lysate). The latter finding, therefore, made possible an examination of the ability of pO(1-27) to block import of homologous and heterologous proteins into the organelle. At 5-10 microM, pO(1-27) prevented import of pOCT in vitro; inhibition was overcome by increasing the concentration of pOCT. In contrast, pO(16-27), a peptide corresponding to amino acids 16-27 of pOCT and exhibiting a charge:mass ratio similar to pO(1-27) had no such inhibitory effect. pO(1-27) blocked import of other unrelated precursor proteins destined either for the mitochondrial matrix (pre-malate dehydrogenase and a hybrid protein containing the signal sequence of pre-carbamyl phosphate synthetase) or for the mitochondrial inner membrane (pre-thermogenin).  相似文献   

18.
This review is focused on the import of processable precursor proteins into the mitochondrial matrix; the import of carrier proteins into the inner mitochondrial membrane is also briefly discussed. Post- and cotranslational theories of the import, specific features of the presequence structures, and effects of some cytosolic factors on the import of precursor proteins are reviewed. The data on the structure of the protein translocases of the outer (TOM complex) and the inner (TIM complex) membranes of mitochondria and the current models of the precursor protein import by these translocases are also summarized.  相似文献   

19.
In the accompanying paper (Glaser, S. M., and Cumsky, M. G. (1990) J. Biol. Chem. 265, 8808-8816) we demonstrated that pL4-(1-22), a synthetic peptide corresponding to the N-terminal 22 residues of the cytochrome c oxidase subunit IV presequence, blocked protein import into mitochondria. Import inhibition was reversible and occurred at a step subsequent to the initial recognition and binding of precursor proteins to the mitochondrial surface. In the present work we have studied the nature of the association between the peptide and mitochondria, as well as determined its intramitochondrial location. We found that pL4-(1-22) was imported into mitochondria in a manner that was dependent upon the delta psi and that the majority of the mitochondrially associated peptide was in the membrane fraction. Density gradient analysis of total membranes indicated that pL4-(1-22) cofractionated with the inner membrane, although the possibility that it was present in both membranes could not be ruled out. It appeared to be inserted within the bilayer since it could not be extracted with salts, chaotropic agents, or high pH. We observed a steady decrease in the amount of pL4-(1-22) found within peptide-treated mitochondria over time. Coincident with this decrease was an increase in the ability of those mitochondria to import and process precursor proteins, suggesting that the peptide was ultimately turned over. The results presented here correlate well with those of the accompanying paper. Together they suggest that pL4-(1-22) blocks import at the level of the mitochondrial membranes, although the exact nature of the import block is not yet clear.  相似文献   

20.
The precursor of the mitochondrial inner membrane protein ADP/ATP carrier is cytoplasmically synthesized without an amino-terminal peptide extension. We constructed a truncated precursor lacking the 103 amino acids from the amino terminus (about a third of the protein). Import of the truncated precursor into mitochondria showed the import characteristics of the authentic precursor, including nucleoside triphosphate dependence, requirement for a protease-sensitive component on the mitochondrial surface, two-step specific binding to the outer membrane, and membrane potential-dependent translocation into the inner membrane. We conclude that, in contrast to all other mitochondrial precursor proteins studied so far, domains of the ADP/ATP carrier distant from the amino terminus can carry specific targeting information for transport into mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号