首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kinetics of binding and hydrolysis of ATP by bovine cardiac myosin subfragment 1 has been reinvestigated. More than 90% of the total fluorescence amplitude associated with ATP hydrolysis occurs with an apparent second-order rate constant of 8.1 X 10(5) M-1 S-1 and a limiting rate constant of approximately 140 S-1 (100 mM KCl, 50 mM 1,3-bis-[tris(hydroxymethyl)methylamino]-propane, 10 mM MgCl2, pH 7.0, 20 degrees C); the remaining 10% occurs more slowly (approximately 1 S-1). The observed rate constants are independent of subfragment 1 concentration under pseudo first-order conditions for ATP with respect to protein. The fraction of protein which hydrolyzes ATP rapidly is not a function of the nucleotide or protein concentration and appears to be constant irrespective of ionic strength or temperature within the range studied (50-100 mM KCl, pH 7.0, 15-20 degrees C). These data are compared to that obtained previously using subfragment 1 prepared by a different method which showed ATP-dependent aggregation of two protein species.  相似文献   

2.
H-Meromyosin (HMM) was digested with insoluble papain [EC 3.4.22.2]. Neither the size of the initial burst of Pi liberation (0.5 mole/mole of myosin head) nor the Mg2+-ATPase [EC 3.6.1.3] activity of HMM in the steady state was affected by this treatment. Acto-S-1 was obtained by mixing F-actin with HMM digested with insoluble papain (HMM-S-1). The size of the initial burst of Pi liberation of acto-S-1 was 0.35 mole/mole of S-l at an ATP concentration of 0.5 mole/mole of S-1, and 0.5 mole/moleof S-1 at ATP concentrations above 1 mole/mole of S-1...  相似文献   

3.
The mechanism of ATP hydrolysis in myofibrils can be studied by following the time course of tryptophan fluorescence. Stoichiometric quantities of ATP produce an enhancement of the tryptophan fluorescence in stirred suspensions of rabbit psoas myofibrils at pCa greater than 7. Approximately 1 mol of ATP/myosin head is required to obtain the maximum fluorescence enhancement of 4-6%. Upon the addition of quantities of ATP greater than 1 mol/mol of myosin head, the fluorescence rapidly increases to a steady state, which lasts for a period that is proportional to the amount of ATP added. The fluorescence then decays to the initial level with a half-time of approximately 40 s at 20 degrees C. Hydrolysis of [gamma-32P]ATP at pCa greater than 7 in myofibrils has an initial burst of approximately 0.7 mol/mol of myosin head that is followed by a constant rate of hydrolysis. The duration of the steady state hydrolysis is identical to the duration of the enhancement of tryptophan fluorescence. A lower limit of 5 X 10(5) M-1 S-1 was obtained for the second order rate constant of the fluorescence enhancement by ATP. At pCa of 4, the duration of the fluorescence enhancement is one-tenth to one-twentieth as long as at pCa greater than 7; this is consistent with the increased steady state rate of ATP hydrolysis at higher calcium concentrations. The time course of the fluorescence enhancement observed in myofibrils during ATP hydrolysis is qualitatively and quantitatively similar to that observed with actomyosin-S1 in solution. These results suggest that the kinetic mechanism of ATP hydrolysis that has been well established by studies of actomyosin-S1 in solution also occurs in myofibrils.  相似文献   

4.
The ATP-induced enhancement of the intrinsic fluorescence of myosin and heavy meromyosin (HMM) that persists during the steady state of hydrolysis has been investigated. To compare the substrate-induced changes in fluorescence with those in the electron spin resonance spectrum of the spin-labeled enzyme, we studied the influence of temperature, pH, and ionic strength, as well as the effect of chemical modification (spin labeling) of the SH-1 sulfhydryl groups. Changing the pH between 6 and 9 does not affect the enhancement of fluorescence of myosin or HMM; changing the ionic strength, which could be studied only with HMM, also has no effect; and decreasing the temperature from 20 to 5 degrees slightly diminishes the enhancement with both myosin and HMM. Chemical modification with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl) iodoacetamide, which blocks the SH-1 thiol groups, reduces the enhancement of fluorescence, induces a strong dependence on ionic strength and pH, and substantially increases the dependence on temperature. The enhancement with labeled myosin or labeled HMM increases with increasing pH, ionic strength, and temperature, closely paralleling the effects of these parameters on the electron spin resonance spectrum of spin-labeled myosin (SEIDEL, J.C. and GERGELY, J. (1973) Arch. Biochem. Biophys. 158, 853), suggesting that the same molecular change, induced by ATP and associated with formation of the MADP-P1 complex, underlies both the change in fluorescence and the change in ESR spectrum. Those analogues of ATP that produce the maximal enhancement of fluorescence (WERBER, M., SZENT-GYORGYL, A.G., and FASMAN, G. (1972) Biochemistry 11, 2872) also produce the maximal change in the ESR spectra. Both an amino group at position 6 of the substrate and an unmodified triphosphate chain are required for maximal change in either fluorescence or ESR spectra. The smaller enhancement of fluorescence produced by spin labeling the SH-1 groups persists after the nitroxide has been chemically changed to a diamagnetic species. Thus the small enhancement cannot be attributed to paramagnetic quenching of tryptophan fluorescence by the spin label. An initial burst of phosphate liberation accompanies the hydrolysis of ATP, cytidine 5'-triphosphate, uridine 5'-triphosphate, guanosine 5'-tryphosphate, iosine 5'-triphosphate, 2'-deoxyadenosine 5'-tryphosphate, adenosine 5'-tetraphosphate, and tripolyphosphate. The presence or absence of the burst does not correlate with the extent of the spectral change.  相似文献   

5.
The time course of oxygen-18 exchange between [18O]Pi and normal water, catalyzed by myosin subfragment 1 in the presence of MgADP, was followed using the shift in 31P NMR caused by the presence of oxygen-18 bound to the phosphorus. Essentially all molecules of [18O]Pi that bind to the enzyme undergo complete exchange and are released as [16O4]Pi. Exchange probably occurs by formation of myosin.ATP from a myosin.ADP.Pi complex and is rapid relative to release of Pi from this complex. The kinetics of exchange give a value for the rate constant for binding Pi to myosin.ADP of 0.23 M-1 S-1 (pH 8.0, 22 degrees C). This value is consistent with exchange occurring by reversal of the ATP-ase reaction back to the myosin.ATP complex.  相似文献   

6.
T Chen  E Reisler 《Biochemistry》1984,23(11):2400-2407
Tryptic digestion of rabbit skeletal myofibrils under physiological ionic strength and pH conditions was used as a probe of cross-bridge interaction with actin in the presence of nucleotides and pyrophosphate. Under rigor conditions, digestion of myofibrils at 24 degrees C results in the formation of 25K, 110K [heavy meromyosin (HMM)], and light meromyosin (LMM) fragments as the main reaction products. Very little if any 50K peptide is generated in such digestions. In the presence of magnesium pyrophosphate, magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP), and MgATP, the main cleavage proceeds at two positions, 25K and 75K from the N-terminal portion of myosin, yielding the 25K, 50K, and 150K species. The relative amounts of the 50K, 110K, and 150K peptides and the rates of myosin heavy-chain digestion in the presence of pyrophosphate and AMPPNP indicate partial dissociation of myosin from actin. Direct centrifugation measurements of the binding of HMM and subfragment 1 (S-1) to actin in myofibrils confirm that cross-bridges partition between attached and detached states in the presence of these ligands. In the presence of MgADP, HMM and S-1 remain attached to actin at 24 degrees C. However, tryptic digestion of myofibrils containing MgADP is consistent with the existence of a mixed population of attached and detached cross-bridges, suggesting that only one head on each myosin molecule is attached to actin. As shown by tryptic digestion of myofibrils and the measurements of HMM and S-1 binding to actin, nucleotide- and pyrophosphate-induced dissociation of cross-bridges is more pronounced at 4 than at 24 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In the rapid “quench” kientics of myosin, the “initial phosphate burst” is the excess inorganic phosphate that is produced during the early time-course of ATP hydrolysis by myosin subfragment-1 (S-1) or HMM. In general, the existence of a Pi burst implies a rapid (i.e., generally an order of magnitude faster than the steady-state hydrolysis rate) lysis of the phospho-anhydride bond within the ATP molecule, followed by one or more slower steps that are rate limiting for the process. Thus, the presence of a Pi burst can provide an important clue to the mechanism of the reaction. However, in the case of actomyosin, this clue as long been the subject of controversy and misunderstanding. To measure the (initial) Pi burst, myosin S-1 (or HMM) is rapidly mixed with ATP and then the mixture is acid quenched after a specific time period. The medium produced contains free Pi generated from hydrolysis of the ATP. The quantitative measure of the phosphate generated in this way has always been significantly greater than that expected by steady-state “release” of Pi alone, and it is that very difference between this measured Pi after the quench and that amount of Pi expected to be released by steady-state considerations in that same time period that has been referred to as the “initial Pi burst”. Recent investigations of the kinetics of Pi release have used an entirely new method that directly measures the release of Pi from the enzyme-product complex. These studies have made reference to the properties of the “initial Pi burst” in the presence of actin, as well as to a new kinetic entity: the “burst of Pi release”, and have been often vague concerning the true nature of the initial Pi burst, as well as the properties of Pi release as predicted by the current models of the actin activation of the myosin ATPase activity. The purpose of the current article is to correct this oversight, to discuss the “burst” in some detail, and to display the kinetics predicted by the current models for the actin activation of myosin. Furthermore, predictions for the kinetics of the new “burst of Pi release” are discussed in terms of its ability to discriminate between the two current competing models for actin activation of the myosin ATPase activity.  相似文献   

8.
A calorimetric titration method was used to study the ADP binding to the chymotryptic subfragments of myosin, heavy meromyosin (HMM) and myosin subfragment 1 (S-1), and to myosin aggregated into filaments at low ionic strength. The binding constant (K) and heat of reaction (deltaH, kiloJoules (moles of ADP bound)-1) were determined. For HMM in 0.5 M KCl, 0.01 M MgCl2, 0.02 M Tris (pH 7.8) at 12 degrees, log K = 5.92 +/- 0.13 and deltaH = -70.9 +/- 3.6 kJ mol-1. These results agree with our previous findings for myosin in 0.5 M KCl at 12 degrees. When the KCl concentration was reduced to 0.1 M, the binding constant did not change significantly (log K = 6.09 +/- 0.06) but the binding was more exothermic (deltaH = -90.1 +/- 3.3 kJ mol-1). Similar results were obtained for myosin filaments in 0.1 M KCl and also for both the isoenzymes of S-1(S-1(A1) and S-1(A2) in 0.1 M KCl. In 0.5 M KCl, the binding curves suggest that about one ADP is bound per active site, but as 0.1 M KCl, the apparent stoichiometry drops from 0.7 to 0.75. The most probable explanation is that there is some site heterogeneity which is more evident at lower ionic strength.  相似文献   

9.
The effect of Ca2+ on the interaction of bovine cardiac myosin subfragment 1 (S-1) with actin regulated by cardiac troponin-tropomyosin was evaluated. The ratios of actin to troponin and to tropomyosin were adjusted to optimize the Ca2+-dependent regulation of the steady-state actin-activated magnesium adenosinetriphosphatase (MgATPase) rate of myosin S-1. At 25 degrees C, pH 6.9, 16 mM ionic strength, the extrapolated values for maximal adenosine 5'-triphosphate (ATP) turnover rate at saturating actin, Vmax, were 6.5 s-1 in the presence of Ca2+ and 0.24 s-1 in the absence of Ca2+. In contrast to this 27-fold regulation of ATP hydrolysis, there was negligible Ca2+-dependent regulation of cardiac myosin S-1 binding to actin. In the presence of ATP, the dissociation constant of regulated actin and cardiac myosin S-1 was 32 microM in the presence of Ca2+ and 40 microM in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. These dissociation constants are indistinguishable from the concentrations of actin needed to reach half-saturation of the myosin S-1 MgATPase rates, 37 microM actin in the presence of Ca2+ and 53 microM in its absence. Although there may be Ca2+-dependent regulation of cross-bridge binding in the intact heart, the present biochemical studies suggest that cardiac regulation critically involves other parts of the cross-bridge cycle, evidenced here by almost complete Ca2+-mediated control of the myosin S-1 MgATPase rate even when the myosin S-1 is actin-bound.  相似文献   

10.
The enzymic activity of several single-headed subfragments of myosin (HMM S-1 and single-headed HMM) has been compared to the double-headed derivative of myosin (HMM) both in the presence and absence of aetin. Under the assay conditions of our experiments, we find that HMM hydrolyses ATP at approximately twice the rate of any single-headed species. These results suggest a relatively independent functional role for each of the two heads of the myosin molecule.An attempt has been made to determine the stoichiometry of association between subfragments and actin, either in the absence of nucleotide or during the hydrolysis of ATP. It was originally thought that a comparison of the maximum turnover rate of HMM at infinite concentrations of actin with the maximum rate at infinite concentrations of enzyme (but with a fixed amount of actin) would yield the combining ratio of actin to HMM. However, the considerable variation of ATP turnover rates with the conditions of the experiment has made it impossible to reach any firm conclusions regarding stoichiometry. A more direct approach to the question of stoichiometry is possible in the absence of ATP. By reacting varying amounts of F-actin with a given concentration of subfragment and centrifuging the resulting complex, it is possible to determine the unbound concentration of subfragment in the supernatant. These data provide sufficient information to construct a Scatchard plot and show that twice as many moles of actin are bound by HMM as by HMM S-1. Furthermore, the association constant of actin for HMM is several orders of magnitude higher than that for the single-headed species.In connection with the question of why myosin has two “heads”, we have examined the ability of single-headed molecules to undergo the phenomenon of “superprecipitation”. We find that single-headed myosin (the preparation of which was discussed in the preceding paper) is able to superprecipitate in much the same manner as native myosin.We conclude from these studies that each head of the myosin molecule is able to function in a relatively independent fashion. These studies do not, of course, exclude the possibility of more subtle interactions between the heads of myosin which our techniques are not able to detect.  相似文献   

11.
The Malachite Green method for determination of inorganic phosphate (Pi) (Itaya K. & Ui, M. (1966) Clin. Chim. Acta 14, 361-366) was modified to measure Pi in the range of 0.2-15 nmol per ml of ATPase reaction mixture. An ATPase reaction mixture is quenched with an equal volume of 0.6 M PCA; the supernatant after centrifugation is mixed with an equal volume of the Malachite Green/molybdate reagent containing 2 g of sodium molybdate, 0.3 g of Malachite Green and 0.5 g of Triton X-100 or Sterox SE in 1 liter of 0.7 M HCl, and the absorbance at 650 nm is then measured after a 35-40 min incubation at 25 degrees C. Owing to the high sensitivity and simplicity of the modified method, the slow time course of myosin ATP hydrolysis in the presence of Mg2+ and the size of initial phosphate burst can be determined accurately using relatively low concentrations of native myosin and its subfragment-1. The phosphate burst size varied with changes in pH, ionic strength, and temperature. A typical value was 0.8-0.9 mol per site in 0.1 M KCl, 10 mM MgCl2, pH 8.0 at 25 degrees C for fresh enzyme preparations.  相似文献   

12.
Characterization of caldesmon binding to myosin   总被引:3,自引:0,他引:3  
Caldesmon inhibits the binding of skeletal muscle subfragment-1 (S-1).ATP to actin but enhances the binding of smooth muscle heavy meromyosin (HMM).ATP to actin. This effect results from the direct binding of caldesmon to myosin in the order of affinity: smooth muscle HMM greater than skeletal muscle HMM greater than smooth muscle S-1 greater than skeletal muscle S-1 (Hemric, M. E., and Chalovich, J. M. (1988) J. Biol. Chem. 263, 1878-1885). We now show that the difference between skeletal muscle HMM and S-1 is due to the presence of the S-2 region in HMM and is unrelated to light chain composition or to two-headed versus single-headed binding. Differences between the binding of smooth and skeletal muscle myosin subfragments to actin do not result from the lack of light chain 2 in skeletal muscle S-1. In the presence of ATP, caldesmon binds to smooth muscle myosin filaments with a stoichiometry of 1:1 (K = 1 x 10(6) M-1). Similar results were obtained for the binding of caldesmon to smooth muscle rod as well as the binding of the purified myosin-binding fragment of caldesmon to smooth muscle myosin. The binding of caldesmon to intact myosin is ATP sensitive. The interaction of caldesmon with myosin is apparently specific and sensitive to the structure of both proteins.  相似文献   

13.
Subfragment-1 of HMM was prepared by tryptic [EC 3.4.21.4] digestion of HMM, which had been modified with 1 mole of CMB per mole of HMM at a specific SH group, SHr. S-1(T) obtained from CMB-HMM retained almost all the CMB, and the amount of bound CMB was about 0.8-0.9 mole per 2 moles of S-1(T). S-2 of CMB-HMM contained no bound CMB. The ATPase [EC 3.6.1.3] activity of HMM increased gradually with increase in the concentration of FA, and the acto-HMM ATPase was inhibited by excess substrate or removal of Ca2+ ions in the presence of RP. The ATPase activity of CMB-HMM increased to a maximum level on adding a small amount of FA, and the acto-CMB-HMM ATPase showed neither substrate inhibition nor Ca2+ sensitivity in the presence of RP. On the other hand, the dependence on the concentration of FA of the ATPase activity of acto-S-1(T) was unaffected by modification of S-1 with CMB. The Ca2+ sensitivity of the ATPase activity of acto-S-1(T) in the presence of RP was also unaffected by the modification. Acto-S-1(T) dissociated almost completely, while acto-CMB-S-1(T) was only 50% dissociated on adding ATP. More than 80% of the bound CMB was contained in S-1(T) undissociated from FA. Furthermore, superprecipitation of actomyosin induced by ATP was completely inhibited by adding about 2 moles of CMB-S-1(T) per mole of actin monomer. On the other hand, about 90% of the burst size of Pi liberation was retained in S-1(T) dissociated from FA. It was concluded that the two heads of the myosin molecule are different: one shows the initial burst of Pi liberation, and does not contain the SHr group which binds CMB (head B), and the other does not show the initial burst and contains the SHr group (head A). It was also concluded that modification of head A of HMM or myosin with CMB increases its binding strength to FA, and consequently the substrate inhibition and Ca2+ sensitivity of acto-HMM or actomyosin ATPase at head B are lost on modification of head A with CMB. CMB-S-1(CT) was prepared by chymotryptic [EC 3.4.21.1] digestion of CMB-myosin, and separated into two fractions by ultracentrifugation of acto-CMB-S-1(CT) in the presence of ATP. Three components of CMB-S-1(CT) with molecular weights of 9, 2.4, and 1.2 X 10(4) were separated by SDS-polyacrylamide gel electrophoresis. The ratios of the peak areas of the three components in electrophoretograms were the same in CMB-S-1(CT) and in the two fractions (1 : 0.18 : 0.09), indicating that heads A and B have the same subunit structure.  相似文献   

14.
Phosphorylation of the 20,000-dalton light chains of smooth muscle heavy meromyosin (HMM) from turkey gizzards results in a large increase in the actin-activated MgATPase activity over that observed with unphosphorylated HMM. In an attempt to define which step in the kinetic cycle is affected by phosphorylation, we have measured the binding of both unphosphorylated and phosphorylated HMM to actin in the presence of ATP using sedimentation. There was only a 4-fold difference in the actin binding constants of unphosphorylated HMM (5.35 x 10(3) M-1) and fully phosphorylated HMM (2.35 x 10(4) M-1). In contrast, the maximum rate of the actin-activated MgATPase activity (Vmax) of phosphorylated HMM was 25 times greater than that for unphosphorylated HMM. These data rule out a mechanism whereby the unphosphorylated light chain of myosin regulates actin-myosin interaction by directly or indirectly blocking the binding of HMM to actin. This implies that some step in the kinetic cycle other than the binding of HMM to actin must be regulated. We have also measured the rate constant for ATP hydrolysis (the initial phosphate burst) under the same conditions and found that this step was very fast compared to the steady state ATPase rate and was unaffected by phosphorylation. This suggests that the step which is regulated by phosphorylation is either phosphate release or a step preceding phosphate release but following ATP hydrolysis.  相似文献   

15.
We have investigated the steps in the actomyosin ATPase cycle that determine the maximum ATPase rate (Vmax) and the binding between myosin subfragment one (S-1) and actin which occurs when the ATPase activity is close to Vmax. We find that the forward rate constant of the initial ATP hydrolysis (initial Pi burst) is about 5 times faster than the maximum turnover rate of the actin S-1 ATPase. Thus, another step in the cycle must be considerably slower than the forward rate of the initial Pi burst. If this slower step occurs only when S-1 is complexed with actin, as originally predicted by the Lymn-Taylor model, the ATPase activity and the fraction of S-1 bound to actin in the steady state should increase almost in parallel as the actin concentration is increased. As measured by turbidity determined in the stopped-flow apparatus, the fraction of S-1 bound to actin, like the ATPase activity, shows a hyperbolic dependence on actin concentration, approaching 100% asymptotically. However, the actin concentration required so that 50% of the S-1 is bound to actin is about 4 times greater than the actin concentration required for half-maximal ATPase activity. Thus, as previously found at 0 degrees C, at 15 degrees C much of the S-1 is dissociated from actin when the ATPase is close to Vmax, showing that a slow first-order transition which follows the initial Pi burst (the transition from the refractory to the nonrefractory state) must be the slowest step in the ATPase cycle. Stopped-flow studies also reveal that the steady-state turbidity level is reached almost instantaneously after the S-1, actin, and ATP are mixed, regardless of the order of mixing. Thus, the binding between S-1 and actin which is observed in the steady state is due to a rapid equilibrium between S-1--ATP and acto--S-1--ATP which is shifted toward acto-S-1--ATP at high actin concentration. Furthermore, both S-1--ATP and S-1--ADP.Pi (the state occurring immediately after the initial Pi burst) appear to have the same binding constant to actin. Thus, at high actin concentration both S-1--ATP and S-1--ADP.Pi are in rapid equilibrium with their respective actin complexes. Although at very high actin concentration almost complete binding of S-1--ATP and S-1--ADP.Pi to actin occurs, there is no inhibition of the ATPase activity at high actin concentration. This strongly suggests that both the initial Pi burst and the slow rate-limiting transition which follows (the transition from the refractory to the nonrefractory state) occur at about the same rates whether the S-1 is bound to or dissociated from actin. We, therefore, conclude that S-1 does not have to dissociate from actin each time an ATP molecule is hydrolyzed.  相似文献   

16.
The interaction of actin with myosin was studied in the presence of ATP at low ionic strength by means of measurements of the actin-activated ATPase activity of myosin and superprecipitation of actomyosin. At high ATP concentrations the ATPase activities of myosin, heavy meromyosin (HMM) and myosin subfragment 1 (S-1) were activated by actin in the same extent. At low ATP concentrations the myosin ATPase activity was activated about 30-fold by actin, whereas those of HMM and S-1 were stimulated only several-fold. This high actin activation of myosin ATPase was coupled with the occurrence of superprecipitation. The activation of HMM or S-1 ATPase by actin shows a simple hyperbolic dependence on actin concentration, but the myosin ATPase was maximally activated by actin at a 2:1 molar ratio of actin to myosin, and a further increase in the actin concentration had no effect on the activation. These results suggest the presence of a unit for actin-myosin interaction, composed of two actin monomers and one myosin molecule in the filaments.  相似文献   

17.
We have previously shown that inhibition of the ATPase activity of skeletal muscle myosin subfragment 1 (S1) by caldesmon is correlated with the inhibition of S1 binding in the presence of ATP or pyrophosphate (Chalovich, J., Cornelius, P., and Benson, C. (1987) J. Biol Chem. 262, 5711-5716). In contrast, Lash et al. (Lash, J., Sellers, J., and Hathaway, D. (1986) J. Biol. Chem. 261, 16155-16160) have shown that the inhibition of ATPase activity of smooth muscle heavy meromyosin (HMM) by caldesmon is correlated with an increase in the binding of HMM to actin in the presence of ATP. We now show, in agreement, that caldesmon does increase the binding of smooth muscle HMM to actin-tropomyosin while decreasing the ATPase activity. The effect of caldesmon on the binding of smooth HMM is reversed by Ca2+-calmodulin. Caldesmon strengthens the binding of smooth S1.ATP and skeletal HMM.ATP to actin-tropomyosin but to a lesser extent than smooth HMM.ATP. Furthermore, this increase in binding of smooth S1.ATP and skeletal HMM.ATP does not parallel the inhibition of ATPase activity. In contrast, in the absence of ATP, all smooth and skeletal myosin subfragments compete with caldesmon for binding to actin. Thus, the effect that caldesmon has on the binding of myosin subfragments to actin-tropomyosin depends on the source of myosin, the type of subfragment, and the nucleotide present. The inhibition of actin-activated ATP hydrolysis by caldesmon, however, is not greatly different for different smooth and skeletal myosin subfragments. Evidence is presented that caldesmon inhibits actin-activated ATP hydrolysis by attenuating the productive interaction between myosin and actin that normally accelerates ATP hydrolysis. The increased binding seen by some myosin subfragments, in the presence of ATP, may be due to binding of these subfragments to a nonproductive site on actin-caldesmon. The subfragments which show an increase in binding in the presence of ATP and caldesmon appear to bind directly to caldesmon as demonstrated by affinity chromatography.  相似文献   

18.
The initial burst of Pi liberation during the hydrolysis of Mn(II)-ATP by heavy meromyosin from rabbit psoas muscle was investigated. Below 10 degrees, the initial burst of Pi liberation was inhibited by the pre-addition of ADP without any change in the steady-state activity, but it was not inhibited above 10 degrees. The burst size was about one mole per mole of heavy meromyosin. The initial burst of Pi liberation in Mg-ATP hydrolysis at 8 degrees, however, was not inhibited by the pre-addition of ADP. These results, obtained with psoas muscle heavy meromyosin, were almost the same as those obtained with heavy meromyosin from rabbit leg and back muscles (Hozumi and Tawada (1975) Biochim. Biophys. Acta 376, 1-12) and, therefore, indicate that in Mn-ATP above 10 degrees there is at the burst site a predominant myosin -product complex generated by ATP hydrolysis. Similarly, below 10 degrees there is a myosin-product complex identical with the one generated by adding ADP (and Pi) to myosin.  相似文献   

19.
The Mg2+-dependent ATPase (adenosine 5'-triphosphatase) mechanism of myosin and subfragment 1 prepared from frog leg muscle was investigated by transient kinetic technique. The results show that in general terms the mechanism is similar to that of the rabbit skeletal-muscle myosin ATPase. During subfragment-1 ATPase activity at 0-5 degrees C pH 7.0 and I0.15, the predominant component of the steady-state intermediate is a subfragment-1-products complex (E.ADP.Pi). Binary subfragment-1-ATP (E.ATP) and subfragment-1-ADP (E.ADP) complexes are the other main components of the steady-state intermediate, the relative concentrations of the three components E.ATP, E.ADP.Pi and E.ADP being 5.5:92.5:2.0 respectively. The frog myosin ATPase mechanism is distinguished from that of the rabbit at 0-5 degrees C by the low steady-state concentrations of E.ATP and E.ADP relative to that of E.ADP.Pi and can be described by: E + ATP k' + 1 in equilibrium k' - 1 E.ATP k' + 2 in equilibrium k' - 2 E.ADP.Pi k' + 3 in equilibrium k' - 3 E.ADP + Pi k' + 4 in equilibrium k' - 4 E + ADP. In the above conditions successive forward rate constants have values: k' + 1, 1.1 X 10(5)M-1.S-1; k' + 2 greater than 5s-1; k' + 3, 0.011 s-1; k' + 4, 0.5 s-1; k'-1 is probably less than 0.006s-1. The observed second-order rate constants of the association of actin to subfragment 1 and of ATP-induced dissociation of the actin-subfragment-1 complex are 5.5 X 10(4) M-1.S-1 and 7.4 X 10(5) M-1.S-1 respectively at 2-5 degrees C and pH 7.0. The physiological implications of these results are discussed.  相似文献   

20.
The isometric tension of single fibers isolated from glycerinated rabbit psoas muscle was measured at various temperatures using Mg-ITP as a substrate. The tension developed in Mg-ITP decreased linearly as the temperature was reduced from 24 degrees C to 4 degrees C. Myosin formed the myosin--product complex predominantly via ATP hydrolysis at the burst site during Mg-ATP hydrolysis, irrespective of temperature, and the tension developed in Mg-ATP decreased linearly as the temperature decreased (Yoshida and Tawada (1976) J. Biochem. 80, 861). During Mg-ITP hydrolysis, myosin forms the myosin*-product complex predominantly at the burst site above 20 degrees C, while myosin forms the myosin*-substrate complex below 8 degrees C (Hozumi (1976) Eur. J. Biochem. 63, 241). However, the temperature dependence of tension development in Mg-ITP is linear, as with Mg-ATP, as mentioned above. This temperature dependence is not compatible with some muscle models which assume the formation of the myosin*-product complex by cross-bridges prior to combination with actin during contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号