首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic relationships among the Notharctinae of North America   总被引:1,自引:0,他引:1  
Study of over 1,000 specimens representing all notharctine genera and species leads to the conclusion that current concepts about the relationships of genera within the Notharctinae are incorrect. The following describes the more probable relationships among these genera. 1) Smilodectes and Notharctus are more closely related to each other than either is to any known early Eocene notharctine. Synapomorphies linking these genera include relatively narrow upper and lower molars, a relatively low-crowned P4, and paraconid size reduction on M1-3. 2) Among known Wasatchian notharctines, a clade consisting of Copelemur tutus and Cop. praetutus shares several lower molar synapomorphies with the Notharctus-Smilodectes clade, and therefore appears to form the Wasatchian sister group of Bridgerian notharctines. Synapomorphies documenting this relationship include well-developed entoconid notches on P4-M2, an anteriorly placed paraconid on M2, and a long premetacristid on M2. 3) Copelemur and Pelycodus are independently derived from early North American Cantius. Recent suggestions that the European adapine taxa Leptadapis priscus and Microadapis sciureus share special phylogenetic relationships with Smilodectes are rejected. The reduced (or lack of a) paraconid and morphology of the paracristid and other features identified as synapomorphies linking these adapines with Smilodectes are also characteristic of most other adapines as well (e.g., other species of Leptadapis, Adapis, Europolemur, and Anchomomys). Such traits developed independently in Smilodectes, which is clearly a notharctine on the basis of many synapomorphies and thus are not evidence of a close phylogenetic relationship between Smilodectes and L. priscus or M. sciureus.  相似文献   

2.
Previously undescribed notharctine primate fossils are reported from the early Eocene San Jose Formation, San Juan Basin, New Mexico, and the early Eocene Wasatch Formation, southern Wyoming. These collections include the most complete specimens yet discovered of the poorly known species Copelemur tutus and Copelemur praetutus; the first upper dentitions of Cantius angulatus and Cantius frugivorus from the type area of these taxa; and fossils attributable to two new notharctine species, Copelemur australotutus and Smilodectes gingerichi. These new fossils reveal that current ideas concerning notharctine phylogeny are incorrect. Two major, monophyletic clades are apparent within the subfamily: the tribe Copelemurini, consisting of the genera Copelemur and Smilodectes, and the tribe Notharctini, comprising the genera Cantius, Pelycodus, and Notharctus. Analysis of the paleobiogeographic distribution of the Copelemurini indicates that this clade was limited to more southerly regions of western North America during early Eocene time. Northward migration of more tropical habitats during the late Wasatchian and early Bridgerian in western North America, associated with an overall climatic warming trend through the early and middle Eocene, appears to have allowed several mammalian taxa, including Smilodectes, to extend their ranges northward during this time interval. Such taxa thus possess diachronous distributions and have been partly responsible for the long-standing confusion regarding the biostratigraphic correlation of early Eocene faunas from New Mexico with those from Wyoming. Based on several taxa which are also known from the Wasatchian of Wyoming, the age of the San Jose Formation appears to be middle Wasatchian.  相似文献   

3.
Recent fieldwork in the Gardnerbuttean (earliest Bridgerian) sediments along the northeastern edge of the Green River Basin at South Pass, Wyoming, has yielded a large and diverse sample of omomyid (tarsiiform) primates. This assemblage includes two species each of Artimonius gen. nov., Washakius, and Omomys, one species of Anaptomorphus, Trogolemur and Uintanius, and a new, primitive species of the rare omomyine genus,Utahia. Utahia is known elsewhere only from its type locality in the Uinta Basin and its phylogenetic position is poorly understood. Utahia carina sp. nov. allows for re-evaluation of the affinities of this genus relative to other omomyines. In most characters, such as a lesser degree of molar trigonid compression, more widely open talonid notches, and a lack of molar talonid crenulation, the new species is more primitive than U. kayi. The dental anatomy of U. carina also indicates that Utahia is morphologically intermediate between washakiins and omomyins, although the balance of anatomical features places Utahia as the sister taxon to a broadly defined "Ourayini" clade. Morphological similarity between U. carina, Loveina zephyri, and primitive Washakius suggests that while the omomyin and washakiin clades may have diverged by the middle Wasatchian, substantial morphological distinctions are first evidenced only in the early Bridgerian. This may be due either to a lack of appropriate faunal samples from older sediments, or, more likely, because ecological circumstances in the early Bridgerian favored omomyine diversification and subsequent replacement of previously occurring taxa. This hypothesis is further supported by the stratigraphic co-occurrence of U. carina, W. izetti, and a primitive variant of W. insignis at South Pass, a marginal area. Basin margins have been hypothesized to provide heterogeneous habitats conducive to the production of evolutionary innovation. Basin margin samples have also been cited as evidence that anaptomorphines were relegated to upland refugia as omomyine taxa began to appear in the later part of the early Eocene. Another possible explanation for the unusual co-occurrence of species at South Pass relates to fluctuating lake levels in the Green River Basin, which intermittently would have made lowland environments inhospitable for arboreal fauna. This would have created a situation whereby species which would normally be allopatric become sympatric at South Pass.  相似文献   

4.
Most adapiform primates from North America are members of an endemic radiation of notharctines. North American notharctines flourished during the Early and early Middle Eocene, with only two genera persisting into the late Middle Eocene. Here we describe a new genus of adapiform primate from the Devil’s Graveyard Formation of Texas. Mescalerolemur horneri, gen. et sp. nov., is known only from the late Middle Eocene (Uintan) Purple Bench locality. Phylogenetic analyses reveal that Mescalerolemur is more closely related to Eurasian and African adapiforms than to North American notharctines. In this respect, M. horneri is similar to its sister taxon Mahgarita stevensi from the late Duchesnean of the Devil’s Graveyard Formation. The presence of both genera in the Big Bend region of Texas after notharctines had become locally extinct provides further evidence of faunal interchange between North America and East Asia during the middle Eocene. The fact that Mescalerolemur and Mahgarita are both unknown outside of Texas also supports prior hypotheses that low-latitude faunal assemblages in North America demonstrate increased endemism by the late middle Eocene.  相似文献   

5.
The earliest euprimates to arrive in North America were larger‐bodied notharctids and smaller‐bodied omomyids. Through the Eocene, notharctids generally continued to increase in body size, whereas omomyids generally radiated within small‐ and increasingly mid‐sized niches in the middle Eocene. This study examines the influence of changing body size and diet on the evolution of the lower fourth premolar in Eocene euprimates. The P4 displays considerable morphological variability in these taxa. Despite the fact that most studies of primate dental morphology have focused on the molars, P4 can also provide important paleoecological insights. We analyzed the P4 from 177 euprimate specimens, representing 35 species (11 notharctids and 24 omomyids), in three time bins of approximately equal duration: early Wasatchian, late Wasatchian, and Bridgerian. Two‐dimensional surface landmarks were collected from lingual photographs, capturing important variation in cusp position and tooth shape. Disparity metrics were calculated and compared for the three time bins. In the early Eocene, notharctids have a more molarized P4 than omomyids. During the Bridgerian, expanding body size range of omomyids was accompanied by a significant increase in P4 disparity and convergent evolution of the semimolariform condition in the largest omomyines. P4 morphology relates to diet in early euprimates, although patterns vary between families. Am J Phys Anthropol 153:15–28, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
A recently discovered partial skeleton of the adapid Cantius trigonodus from the early Eocene Willwood Formation of the Bighorn Basin, Wyoming, documents substantial new information about the anatomy of the oldest lemuriform primates. It is very similar in all features to its descendant, middle Eocene Notharctus, and both exhibit numerous resemblances to certain extant Malagasy lemurs, particularly Lepilemur, Propithecus, Lemur, and Hapalemur griseus. Like these forms, Cantius had relatively long hind limbs and short forelimbs. Forelimb traits (prominent brachialis flange of the humerus, well-developed olecranon process of the ulna, and strong shafts of the ulna and radius) suggest active use of the forelimbs in progression. Specializations in the hind limb (e.g., expanded articular surface of the femoral head, narrow and elevated patellar trochlea and prominent lateral trochlear ridge, posteriorly oriented femoral and tibial condyles, narrow and elongate talus, and hallucal metatarsal with prominent peroneal tubercle) indicate capabilities for leaping and for powerful grasping with an opposable hallux. Cantius was presumably primitive in having a relatively long ischium and much more distal inferior tibial tuberosity than most extant lemurs--traits suggesting that powerful extension of the thigh and flexion at the knee were important in its locomotion and posture. We interpret Cantius as an active arboreal quadruped with a propensity for leaping. The existence of this skeletal structure in one of the oldest primates of modern aspect suggests that it represents the primitive lemuriform morphology.  相似文献   

7.
A new genus and species of notharctine primate, Hesperolemur actius, is described from Uintan (middle Eocene) aged rocks of San Diego County, California. Hesperolemur differs from all previously described adapiforms in having the anterior third of the ectotympanic anulus fused to the internal lateral wall of the auditory bulla. In this feature Hesperolemur superficially resembles extant cheirogaleids. Hesperolemur also differs from previously known adapiforms in lacking bony canals that transmit the internal carotid artery through the tympanic cavity. Hesperolemur, like the later occurring North American cercamoniine Mahgarita stevensi, appears to have lacked a stapedial artery. Evidence from newly discovered skulls of Notharctus and Smilodectes, along with Hesperolemur, Mahgarita, and Adapis, indicates that the tympanic arterial circulatory pattern of these adapiforms is characterized by stapedial arteries that are smaller than promontory arteries, a feature shared with extant tarsiers and anthropoids and one of the characteristics often used to support the existence of a haplorhine-strepsirhine dichotomy among extant primates. The existence of such a dichotomy among Eocene primates is not supported by any compelling evidence. Hesperolemur is the latest occurring notharctine primate known from North America and is the only notharctine represented among a relatively diverse primate fauna from southern California. The coastal lowlands of southern California presumably served as a refuge area for primates during the middle and later Eocene as climates deteriorated in the continental interior. Hesperolemur probably was an immigrant taxon that entered California from either the northern (Wyoming/Utah) or southern (New Mexico) western interior during the middle Eocene © 1995 Wiley-Liss, Inc.  相似文献   

8.
Recently collected omomyid primate fossils from the early Eocene Regina Member, San Jose Formation, San Juan Basin, New Mexico, add significant new information to our knowledge of the family in the southern part of the Rocky Mountain region during Wasatchian time. A total of seven specimens represent at least two omomyid species on the basis of size alone, but only the larger of these species, here described as Jemezius szalayi, gen. et sp. nov., is currently known from sufficient material to permit an adequate taxonomic assignment. Jemezius possesses several traits in common with Uintanius that clearly reflect a close phylogenetic relationship between these genera, but lacks the specialized premolar hypertrophy characteristic of that genus. The presence of uintaniinin omomyids in New Mexico during the middle Wasatchian, well before their first appearance in Wyoming during Bridgerian time, supports the hypothesis that several of the exotic mammals that first appear in Wyoming near the Wasatchian-Bridgerian boundary may be immigrant taxa from the south.  相似文献   

9.
Abstract

The deciduous premolars of early Eocene Equidae from North America, conventionally attributed to ‘Hyracotherium’, are described and compared, based primarily on a sample of >60 specimens from the early Eocene Willwood Formation of the Bighorn Basin, Wyoming. The sample represents six to nine species assigned to multiple genera by some other authors, but in the absence of diagnostic characters of the deciduous dentition, species assignments remain ambiguous for most specimens. Consequently it is not clear which generic names should be applied, and we employ the widespread name ‘Hyracotherium’ (acknowledging that the type species may not be an equid). We observed considerable variation in our sample, but most differences are minor and are largely inconsistent with respect to time or taxa, hindering attempts to characterise deciduous premolar anatomy of particular species. Comparisons were also made to Bridgerian Orohippus and Uintan Epihippus, to other early perissodactyls, and to non-perissodactyls that have been considered close to the origin of Perissodactyla (phenacodontid condylarths and Cambaytherium). Based on these comparisons, we confirm Butler’s observation that the deciduous premolars of equids show increasing molarization and lophodonty through the Eocene. However, our evidence suggests that there was little directed change through most of the Wasatchian until Wa-7.  相似文献   

10.
Extant snake faunas have their origins in the mid-Cenozoic, when colubroids replaced booid-grade snakes as the dominant species. The timing of this faunal changeover in North America and Europe based on fossils is thought to have occurred in the early Neogene, after a period of global cooling opened environments and made them suitable for more active predators. However, new fossils from the late Oligocene of Tanzania have revealed an early colubroid-dominated fauna in Africa suggesting a different pattern of faunal turnover there. Additionally, molecular divergence times suggest colubroid diversification began sometime in the Paleogene, although the exact timing and driving forces behind the diversification are not clear. Here we present the first fossil snake referred to the African clade Lamprophiinae, and the oldest fossil known of Lamprophiidae. As such, this specimen provides the only potential fossil calibration point for the African snake radiation represented by Lamprophiidae, and is the oldest snake referred to Elapoidea. A molecular clock analysis using this and other previously reported fossils as calibration points reveals colubroid diversification minimally occurred in the earliest Paleogene, although a Cretaceous origin cannot be excluded. The elapoid and colubrid lineages diverged during the period of global warming near the Paleocene-Eocene boundary, with both clades diversifying beginning in the early Eocene (proximate to the Early Eocene Climate Optimum) and continuing into the cooler Miocene. The majority of subclades diverge well before the appearance of colubroid dominance in the fossil record. These results suggest an earlier diversification of colubroids than generally previously thought, with hypothesized origins of these clades in Asia and Africa where the fossil record is relatively poorly known. Further work in these regions may provide new insights into the timing of, and environmental influences contributing to, the rise of colubroid snakes.  相似文献   

11.
Recent paleontological collecting in the Washakie Basin, southcentral Wyoming, has resulted in the recovery of over 100 specimens of omomyid primates from the lower Eocene Wasatch Formation. Much of what is known about anaptomorphine omomyids is based upon work in the Bighorn and Wind River Basins of Wyoming. This new sample documents greater taxonomic diversity of omomyids during the early Eocene and contributes to our understanding of the phylogeny and adaptations of some of these earliest North American primates. A new middle Wasatchian (Lysitean) anaptomorphine, Anemorhysis savagei, n. sp., is structurally intermediate between Teilhardina americana and other species of Anemorhysis and may be a sister group of other Anemorhysis and Trogolemur. Body size estimates for Anemorhysis, Tetonoides, Trogolemur, and Teilhardina americana indicate that these animals were extremely small, probably less than 50 grams. Analysis of relative shearing potential of lower molars of these taxa indicates that some were primarily insectivorous, some primarily frugivorous, and some may have been more mixed feeders. Anaptomorphines did not develop the extremes of molar specialization for frugivory or insectivory seen in extant prosimians. Incisor enlargement does not appear to be associated with specialization in either fruits or insects but may have been an adaptation for specialized grooming or food manipulation. © 1994 Wiley-Liss, Inc.  相似文献   

12.
In this paper, we describe a new species of Hemiacodon known only from University of Colorado Museum Loc. 92189 (Donna's Locality) in the Turtle Bluff Member of the Bridger Formation, Green River Basin, southwestern Wyoming. Donna's locality has yielded a diverse mostly small-bodied mammalian assemblage of Bridgerian and first appearance Uintan mammalian taxa, as well as range-through taxa. Together with H. engardae sp. nov., the faunal assemblage from Donna's Locality and more recently discovered localities in the same stratigraphic interval provides the first conclusive paleontological evidence of an earliest Uintan age (Ui1A biochron) for the Turtle Bluff Member of the Bridger Formation.The new species is represented by a sample of 11 specimens consisting of well-preserved upper and lower premolars and lower molars. H. engardae is distinct from H. gracilis on the basis of overall larger size as well as a combination of features of the premolars and molars related to a greater development of shearing crests. This suggests that H. engardae may have incorporated more foliage into its diet than the Bridgerian species, H. gracilis.  相似文献   

13.
A new non-marine ostracod fauna from the Paleogene “hamadian deposits” outcropping west of Bechar (southwestern Algeria) has been recovered from lacustrine to fluvial deposits of the Oued Méridja section and fluvial deposits on the southern edge of the Hamada de Méridja section. Recently, these sections have been dated as late Thanetian – early Ypresian (latest Paleocene to earliest Eocene) and Ypresian – earliest Lutetian (early to earliest middle Eocene), respectively, based on charophytes. The associated ostracod fauna recovered consists of relatively mostly moderately to badly preserved specimens and comprises 14 taxa, none of which could be identified to species level in view of its poor state of preservation; we have nevertheless been able to identify and describe the following taxa: Herpetocypris sp., Cyprinotus? sp., Heterocypris? sp. 1 and sp. 2, Cypris? sp., Ilyocypris sp., Cytheroidea indet. sp. 1 and sp. 2, Limnocytheridae indet. sp. 1, Cypridoidea indet. sp. 1, Cyprididae indet. sp. 1, and Ostracoda indet. sp. 1, 2 and 3. Only Heterocypris sp. 1 occurs in both sections. Although the fauna can as yet not be related to the few other contemporaneous faunas reported from the wider palaeogeographic area, it adds important new information to our poor knowledge on Eocene non-marine ostracods in North Africa and southern Europe. The Méridja sections and area are promising regarding the discovery of more, better preserved material and further studies, and one main limitation to the correlation of the fauna is the hitherto insufficient taxonomic knowledge on many faunal elements of Eocene non-marine ostracods to which our section contributes considerably.  相似文献   

14.
Middle Eocene–early Oligocene ostracode faunal changes in northwestern Kyushu of southwestern Japan are identified in this study. Ostracodes occur from shelf deposits of five formations: the middle Eocene Okinoshima, the upper Eocene Funazu, the uppermost Eocene–lowermost Oligocene Kishima, the lowermost Oligocene Itanoura, and the lower Oligocene Waita Formations. The middle Eocene–earliest Oligocene ostracodes were characterized by warm-water genera, indicating tropical, subtropical and Tethyan genera, whereas the late early Oligocene ostracodes do not include warm-water taxa, consisting of temperate realm genera. The middle Eocene–earliest Oligocene ostracodes do not include remarkable changes of species composition, in contract with equatorial Pacific radiolarians and West Coast USA molluscs. Ostracodes suggest that distinct climatic cooling did not occur in the southwestern Japan during the middle Eocene–earliest Oligocene.  相似文献   

15.
Foraminiferal and clay mineral records were studied in the upper Paleocene to lower Eocene Dababiya section (Egypt). This section hosts the GSSP for the Paleocene/Eocene boundary and as such provides an expanded and relatively continuous record across the Paleocene/Eocene Thermal Maximum (PETM). Deposition of illite–smectite clay minerals is interpreted as a result of warm and arid conditions in the southern Tethys during the latest Paleocene. Benthic foraminiferal assemblages are indicative of seasonal variation of oxygen and food levels at the seafloor. A sea-level fall occurred in the latest Paleocene, followed by a rise in the earliest Eocene. Foraminiferal diversity and densities decreased strongly at the P/E boundary, coinciding with the level of global extinction of benthic foraminifera (BEE) and start of the Carbon Isotope Excursion (CIE) and PETM. In the lower CIE, the seafloor of the stratified basin remained (nearly) permanently anoxic and azoic. A sudden increase in mixed clay minerals (kaolinite and others) suggests that warm and perennial humid conditions prevailed on the continent. High levels of TOC and phosphathic concretions in the middle CIE are evidence for increased organic fluxes to the sea floor, related to upwelling and to augmented continental runoff. Low densities of opportunistic taxa appeared, indicating occasional ephemeral oxygenation and repopulation of the benthic environment. The planktic community diversified, although conditions remained poor for deep-dwelling taxa. An increase in illite–smectite dominated clay association is considered to mark the return of a seasonal signature on climatic conditions. During the late CIE environmental conditions changed to seasonally fluctuating mesotrophic conditions and diverse and rich benthic and planktic foraminiferal communities developed. Post-CIE planktic faunas consisted of both deep and shallow-dwelling taxa and buliminid-dominated benthic assemblages reflect fluctuating mesotrophic conditions.The frequent environmental perturbations during the CIE/PETM at Dababiya provided a rather specialized group of foraminiferal taxa (i.e., Anomalinoides aegyptiacus) the opportunity to repopulate, survive and subsequently dominate by a hypothesized capacity to switch to an alternative life strategy (population dynamics, habitat shift) or different metabolic pathway. The faunal record of Dababiya provides insight into the cause and development of the BEE: various severe global changes during the PETM (e.g., ocean circulation, CaCO3-dissolution, productivity and temperature changes) disturbed a wide range of environments on a geologically brief timescale, explaining together the geographically and temporally variable character of the BEE. This allowed a number of specific but different foraminiferal assemblages composed of stress-tolerant and opportunistic taxa to be successful during and after the periods of environmental perturbations associated with the PETM.  相似文献   

16.
The first Sinopa species, S. jilinia sp. nov., from outside of North America is described. It comes from the Huadian Formation, locality Gonglangtou, Jilin Province, north‐east China. The new species represents the northernmost and one of the latest and most complete Asian Prototomus‐like hyaenodontidans known. It also represents one of the youngest specimens of Sinopa, because the age of the Huadian Formation is correlated to the later Uintan and only one doubtful citation of North American Sinopa younger than the early Uintan exists. S. jilinia sp. nov. is characterized by having m3 clearly smaller than m1, very strong and extended labial molar cingulids, backward leaning protoconids in all molars and its m3 cristid obliquum joining the postvallid very labially. With S. jilina, Sinopa is the first hyaenodontidan genus known to be present on two continents during the time interval between the earliest Eocene (c. 55.0 Ma) and latest middle Eocene (40 Ma). Its occurrence in the Huadian Formation supports the idea of a faunal exchange between North America and Asia in the early middle Eocene, a hypothesis formerly based mainly on the presence of the omomyid primate Asiomomys in the Huadian Formation, on a small radiation of East Asian trogosine tillodonts and on a couple of perissodactyl genera shared between the middle Eocene of North America and the Irdinmanhan of East Asia. As with the new Sinopa species, these Asian taxa had their closest relatives in North America.  相似文献   

17.
In Europe, faunas of squamates (lizards and snakes) from the middle Eocene are very poorly known, with the exception of those from the level MP 16 (latest middle Eocene). From the MP 11-MP 15 interval, squamates were previously reported only from Messel (MP 11, earliest middle Eocene) and from the untere and obere Mittelkohle of Geiseltal (MP 12 and MP 13 respectively) in Germany. The present report describes the middle Eocene assemblage of squamates from Lissieu (France), the first fauna reported from the level MP 14. Whereas fossils from Messel and Geiseltal are mostly articulated skeletons, fossils from Lissieu are represented by disarticulated bones; such fossils may be more easily compared to those from other Cenozoic localities, in which bones are almost always disarticulated. The fauna from Lissieu is more diverse than those from the Geiseltal sites and approximately as diverse as that from Messel as they are presently known; it is comprised of 17 distinct taxa. These taxa cannot be all identified to the species or genus level. They belong to iguanids, gekkonids, lacertids, anguids, thecoglossan platynotans, ophidians incertaesedis, boids, ?tropidophiines, “tropidophiids” incertaesedis, booids incertaesedis, and perhaps russellophiids. The fauna includes several new taxa but only a presumed tropidophiine snake may be named on the basis of the available material. The fauna from Lissieu is a mixture of taxa restricted to the middle Eocene and taxa known from older or younger levels. Taxa shared by Lissieu and the few other localities from the middle Eocene of Europe are rare. This fauna from Lissieu represents a stratigraphical landmark for the middle Eocene.  相似文献   

18.
Sediments at the Red Hot Truck Stop (RHTS), Mississippi, USA are important because they contain the lowest latitude record of both the earliest known Eocene plant and mammal fossils in North America. The RHTS contains the uppermost Tuscahoma Formation and the lowermost part of the basal Bashi and Hatchetigbee formations. The Tuscahoma Formation is composed of glauconitic sands and silts that represent estuarine to shallow marine sediments. Faunal remains indicate that the RHTS section belongs to the Wasatchian North American land mammal age and specifically to the lower Graybullian subdivision. Pollen and spore floras from the RHTS are moderately diverse (113 taxa) and contain families that today are associated with warm‐adapted vegetation types such as Annonaceae, Bombacaceae, Burseraceae and palms. Eocene first occurrences are represented by Brosipollis sp., Celtispollenites sp., Interpollis microsupplingensis, cf. Nuxpollenites psilatus, Platycarya spp., Retistephanocolporites sp. and Symplocos? contracta and by one genus of pteridophyte spore (Granulatisporites sp.). The overall composition and within‐sample diversity of the sporomorph flora is more similar to the Hatchetigbee Formation (early Eocene) than to the middle Tuscahoma Formation (late Palaeocene) but among‐sample diversity remains unchanged across the Palaeocene/Eocene boundary. The distinct composition of the RHTS demonstrates that floral change across the Palaeocene/Eocene boundary is complex and composed of several phases of floral change.  相似文献   

19.
The effects of faunal turnover on mammalian community structure are evaluated for 17 faunal zones of the North American Paleocene through early Eocene land mammal ages (Puercan through early Wasatchian). Generic disappearances were significantly high at the end of the Puercan, Torrejonian, and Tiffanian land mammal ages, but appearances were significantly high only during the early Puercan. Generic richness rose rapidly in the early Puercan, remained stable throughout most of the Paleocene, and increased from the late Paleocene into the early Eocene. The null hypothesis that generic turnover clustered preferentially according to dentally defined trophic or body size categories could be rejected or attributed to sampling problems for all but the early (Pu0) and late Paleocene (Ti5‐Cf2). Early Paleocene change in community structure most probably represented endemic radiation of mammals into previously unoccupied niches. Community restructuring in the late Paleocene reflected a complex of causes, including climatic wanning, intercontinental dispersal, and competition.  相似文献   

20.
An abundant fossil record of the snake clade Scolecophidia exists in Europe; however, the minute snake is noticeably absent in reports about the North American Paleogene and Neogene. Presented here are four localities from Florida, USA, that contain scolecophidian remains older than the Pleistocene: Thomas Farm (late Early Miocene, Hemingfordian Land Mammal Age, LMA), Live Oak (Oligocene-Miocene transition, latest Arikareean LMA), White Springs 3B (late Arikareean LMA), and Brooksville 2 (Late Oligocene, middle Arikareean LMA). These remains extend their known existence by about 26 m.y. and are now the oldest reported scolecophidian remains in North America. Molecular evidence on extant scolecophidians concludes that these tiny snakes have a Gondwanan origin. Interestingly, the oldest record of a scolecophidian is from Europe (Belgium) and dates back to the middle Paleocene (MP 1–5). The earliest African record of the snake clade comes from the Paleocene-Eocene boundary in Morocco. The clade is apparently absent from Europe and Middle East deposits dating from the latest Eocene through to the latest Oligocene (MP 19–30) and to the Early Miocene (MN 4). A portion of this time is known as the booid ‘Dark Period’ which represents an apparent response to global aridization and cooling. Scolecophidians appear to re-emerge into the southern Eurasian record in the Early Miocene (MN 4) and become widely dispersed throughout Europe and Middle East. The fossil record of these minute snakes is largely absent in southern Asia and South America. It is possible that the current lack of a decent fossil scolecophidian record outside of Europe and Middle East is due mainly to a bias in the methodology to recover fossils; wet sieving sediments through < 1.0 mm mesh is needed to recover the minuscule vertebrae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号