首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vivo radioprotection by alpha-TMG: preliminary studies   总被引:2,自引:0,他引:2  
alpha-TMG is a novel water-soluble derivative of Vitamin E that has shown excellent antioxidant activity. The parent compound has demonstrated protection against radiation induced chromosomal damage in vivo. Hence, the preliminary experiments to determine the radioprotective activity of alpha-TMG were carried out in adult Swiss albino mice. Acute toxicity of the drug was studied taking 24h, 72 h and 30 day mortality after a single intraperitoneal injection of 500-2000 mg/kg body weight of the drug. The drug LD(50) for 24h and 72 h/30 day survival were found to be 1120 and 1000 mg/kg body weight, respectively. The optimum time of drug administration and drug dose-dependent effect on in vivo radiation protection of bone marrow chromosomes was studied in mice. Injection of 600 mg/kg of the drug 15 min before or within 5, 15 or 30min after 3Gy whole body gamma radiation resulted in a significant decrease in the aberrant metaphases percent at 24h post-irradiation; the maximum effect was seen when the drug was given immediately after irradiation. Injection of 200-800 mg/kg TMG within 5 min of irradiation with 3 Gy produced a significant dose-dependent reduction in the radiation induced percent aberrant metaphases and in the frequency of micronucleated erythrocytes at 24h after exposure, with a corresponding decrease in the different types of aberrations. The optimum dose for protection without drug toxicity was 600 mg/kg body weight. At this dose, TMG produced 70 and >60% reduction in the radiation induced percent aberrant metaphases and micronucleated erythrocytes, respectively. The high water solubility and effectiveness when administered post-irradiation favor TMG as a likely candidate for protection in case of accidental exposures.  相似文献   

2.
The radioprotective effect of 5-aminosalicylic acid (5ASA) was investigated in mouse bone marrow. The present study was aimed at investigating the radioprotective effect of pre-irradiation treatment with 5ASA against a range of whole-body lethal (8-11 Gy) and sublethal (1-4 Gy) doses of gamma-radiation (RT) in adult Swiss albino mice. Protection against lethal irradiation was evaluated from 30-day mouse survival and against sublethal doses was assessed from chromosomal aberrations in the bone marrow 24 h after irradiation. An intraperitoneal injection of 5ASA at a dose of 25mg/kg body weight (b. wt.) 30 min before lethal RT increased survival, giving a dose modification factor (DMF) of 1.08. Injection of 5ASA (25 mg/kg b. wt.) 60 or 30 min before or within 15 min after 3 Gy whole body RT resulted in a significant decrease in the radiation-induced aberrant metaphases, at 24 h post-irradiation. Maximum effect was seen when the drug was administered 30 min before irradiation. 5ASA (25 mg/kg b. wt.) significantly reduced the number of aberrant metaphases and the different types of aberrations at all the radiation doses (1-4 Gy) tested, giving a DMFs of 1.43 for number of aberrant metaphases. 5ASA pretreatment also significantly enhanced the endogenous spleen colonies in mouse exposed to 11 Gy RT. Pretreatment with 5ASA, protected plasmid DNA (pGEM-7Zf) against breakage induced by RT and Fenton reactants. Using nanosecond pulse radiolysis technique, the bimolecular rate constant of the reaction of 5ASA with hydroxyl radical was found to be 6.7x10(9)M(-1)s(-1). The p53 and p21 protein levels of bone marrow and spleen were evaluated to identify the specific molecular mechanisms. Both p53 and p21 increased 24h after 6 Gy irradiation, while treatment with 5ASA inhibited this RT-induced increase. Therefore, the present data suggest that 5ASA pretreatment decreases death caused by RT-induced gastrointestinal and hemopoeitic syndromes. The proposed mechanism of radioprotection by 5ASA is through the inhibition of damage to DNA, lipids, and proteins; and prevention of RT-induced increased expression of p53 and p21.  相似文献   

3.
The radioprotective and toxic effects of low to moderate doses of S-2-(3-aminopropylamino)ethyl phosphorothioic acid (WR-2721) and its combination with mercaptopropionylglycine (MPG, 20 mg/kg body wt) on the chromosomes of the bone marrow cells of Swiss albino mice were studied at 24 h and 14 days postirradiation. Significant protection against radiation-induced chromosome aberrations was observed with 50 mg/kg WR-2721. The protection increased with the dose of the drug administered, and the degree of protection per unit dose increment was more pronounced at lower than at higher doses. A combination of WR-2721 and MPG given before exposure resulted in a significantly greater number of normal metaphases at 24 h postirradiation compared to the respective single-drug treatment groups. On Day 14 postirradiation, when the presence of WR-2721 resulted in an increase in the frequency of aberrant cells, combination with MPG helped to reduce this value markedly, especially at WR-2721 doses below 200 mg/kg. On the basis of these results it is suggested that 150 mg/kg WR-2721 may be considered an optimum dose for combination with MPG for protection of chromosomes of bone marrow cells when repeated drug administrations are not needed. Changes in the level of glutathione (GSH) in the blood were studied at different times following the administration of 150 mg/kg WR-2721 and its combination with MPG (20 mg/kg) before sham irradiation or exposure to 4.5 Gy 60Co gamma rays. The results showed that WR-2721 elevated blood GSH levels significantly above normal values by the time radiation was delivered, while MPG did not. Glutathione appears to have an important role in the action of WR-2721, while protection by MPG may not be mediated through GSH. Injection of MPG after WR-2721 helps to maintain the higher GSH level for a longer duration compared to treatment with WR-2721 alone. It is possible that MPG delays the metabolism of GSH.  相似文献   

4.
Nayak V  Devi PU 《Radiation research》2005,163(2):165-171
In a previous study, orientin and vicenin, the water-soluble plant flavonoids, protected mice against radiation lethality (Uma Devi et al., Radiat. Res. 151, 74-78, 1999). To study bone marrow protection, adult Swiss mice were exposed to 0-6 Gy 60Co gamma rays 30 min after an intraperitoneal injection of 50 microg/ kg body weight of orientin/vicenin. Chromosomal aberrations in bone marrow were studied at 24 h postirradiation. Stem cell survival was studied using the exogenous spleen colony (CFU-S) assay. Radiation produced a dose-dependent increase in aberrant cells as well as in the yield of the different types of aberrations (breaks, fragments, rings and dicentrics) and a decrease in CFU-S. Pretreatment with either flavonoid significantly reduced the aberrant cells and different aberrations and increased the number of CFU-S compared to the respective radiation-alone groups. The dose modification factors for 50% reductions in the number of CFU-S were 1.6 for orientin and 1.7 for vicenin. The present finding that very low nontoxic doses of orientin and vicenin provide efficient protection against bone marrow damage at clinically relevant radiation doses suggests their potential for protection of normal tissues in radiotherapy.  相似文献   

5.
Resveratrol, a polyphenol compound with reported antioxidant and anticarcinogenic effects, a wide range of molecular targets, and toxicity only at extreme doses, has received considerable attention. We evaluated the radioprotective effect of orally administered resveratrol on the frequencies of chromosome aberrations in irradiated mouse bone marrow cells. CBA/CaJ mice were divided into four groups: (1) no treatment, (2) resveratrol only, (3) radiation only, and (4) resveratrol and radiation. Resveratrol treatment (100 mg/kg daily) was initiated 2 days prior to irradiation. Bone marrow was then harvested at 1 and 30 days after a single dose of 3 Gy whole-body gamma radiation. A statistically significant (P < 0.05) reduction in the mean total chromosome aberration frequency per metaphase at both times postirradiation in the resveratrol and radiation group compared to the radiation-only group was observed. This study is the first to demonstrate that resveratrol has radioprotective effects in vivo. These results support the use of resveratrol as a radioprotector with the potential for widespread application.  相似文献   

6.
Effect of pre-irradiation administration of different doses of RH-3, the herbal preparation of an Indian medicinal plant Hippophae rhamnoides, 30 min before 10 Gy whole body gamma irradiation was studied. Doses between 25 to 35 mg/kg body wt. were found to render > 80 % survival in mice. In order to investigate whether RH-3 protected against radiation induced genotoxicity, mice were administered different doses of RH-3, 30 min before 2 Gy dose and compared with untreated, RH-3 treated and irradiated controls. The bone marrow cells were collected at different time intervals following various treatments and processed for scoring micronuclei (MN). Administration of RH-3 alone did not enhance the MN frequency as compared to the control, and radiation dose of 2 Gy significantly enhanced the MN frequency (3.1 %, P < 0.01). Pre-irradiation treatment with RH-3, however, reduced the radiation induced MN frequency in a drug dose dependent manner suggesting its radioprotective efficacy. The protective effect of RH-3 on radiation induced perturbations in cell cycle progression was studied flowcytometrically in mouse bone marrow cells. RH-3 treatment (30 mg/kg body wt.) enhanced DNA synthesis (S-phase) in unirradiated controls and also countered radiation induced depression of S-phase to facilitate replenishment of cells lost due to radiation injury.  相似文献   

7.
This study was taken to evaluate the radioprotective effects of melatonin. Male adult albino mice were treated (intraperitoneal, i.p.) with 10 mg/kg melatonin either 1 h before or 1/2 h after exposure to 1.5 Gy of gamma-irradiation. Control, melatonin, irradiated and melatonin plus irradiation groups were sacrificed 24 h following treatment. The incidence of micronuclei (MN) in bone marrow cells was determined in all groups. The results show that melatonin caused a significant reduction in micronuclei polychromatic erythrocytes (MNPCE) when animals were treated with melatonin before and not after exposure to radiation. Mitotic and meiotic metaphases were prepared from spermatogonial and primary spermatocytes, respectively. Examination and analysis of metaphases showed no mutagenic effect of melatonin on chromosomal aberration (CA) frequency in spermatogonial chromosomes. Administration of one single dose of melatonin to animals before irradiation lowered total CA from 46 to 32%. However, no significant effect was observed when melatonin was given after irradiation. Similarly, the frequency of CA in meiotic metaphases decreased from 43.5% in the irradiated group to 31.5% in the irradiated group treated with melatonin 1 h before irradiation, but no change was observed when melatonin was administered after irradiation. The data obtained in this study suggest that melatonin administration confers protection against damage inflicted by radiation when given prior to exposure to irradiation and not after, and support the contention that melatonin radioprotection is achieved by its ability as a scavenger for free radicals generated by ionizing radiation.  相似文献   

8.
The incidence of chromosome aberrations in bone marrow cells of femur did not exceed the spontaneous one in CBA mice exposed, during 70 days, to gamma-radiation at dose--rates of 33.7-35.8 nA/kg and cumulative dose of 2.75 Gy. A single acute exposure of intact animals to a dose of 2.98 Gy increased significantly the mutation level. Preirradiation with small doses increased the resistance of hereditary structures to sublethal radiation doses. Exogenous alpha-tocopherol (0.06 mg/20 g mass) protected the genetic apparatus of cells from total-body irradiation and was an additional factor decreasing the mutation level after acute exposure of mice at the background of long-term irradiation with small doses.  相似文献   

9.
Mouse spermatogonial germ cells are highly sensitive to ionizing radiation. Lithium salts are reported to stimulate the postirradiation recovery of hematopoietic marrow cells. We have, therefore, examined whether administered lithium chloride (LiCl) would also be able to protect the mouse germinal cells against radiation injury. Taking DNA synthesis as an endpoint, our results show that the testicular DNA-specific activity in irradiated mice was higher by 61% on average when they had been pretreated with LiCl both 24 h and 1 h prior to γ-irradiation (2.0 Gy). It was also observed that the DNA synthetic activity in the germinal cells fully recovered after LiCl pretreatment at doses of 40 mg per kg body weight prior to total body irradiation of 0.05–0.25 Gy, whereas at doses of 0.5–6.0 Gy, following the same procedure of LiCl pretreatment, only an incomplete recovery was observed. The dose reduction factor for LiCl is 1.84. The current findings indicate that pretreatment with LiCl provides considerable protection against radiation damage in mouse spermatogonia. Received: 18 October 1996 / Accepted in revised form: 3 April 1997  相似文献   

10.
Acrylonitrile (VCN), a suspect human carcinogen, does not produce significant increases in cytogenetic aberrations in the mouse-bone marrow when given orally for 4, 15 or 30 days at doses equal to 7, 14 and 21 mg/kg/day resp. or by i.p. for the same time periods at doses of 10, 15 and 20 mg/kg/day. Rats treated orally with 16 daily doses of VCN (40 mg/kg/day) or potassium cyanide (KCN) (5 mg/kg/day) showed no increase of aberrant metaphases in the bone marrow over controls.  相似文献   

11.
The effect of troxerutin on γ-radiation-induced DNA strand breaks in different tissues of mice in vivo and formations of the micronuclei were studied in human peripheral blood lymphocytes ex vivo and mice blood reticulocytes in vivo. Treatments with 1 mM troxerutin significantly inhibited the micronuclei induction in the human lymphocytes. Troxerutin protected the human peripheral blood leucocytes from radiation-induced DNA strand breaks in a concentration dependent manner under ex vivo condition of irradiation (2 Gy). Intraperitoneal administration of troxerutin (175 mg/kg body weight) to mice before and after whole body radiation exposure inhibited micronuclei formation in blood reticulocytes significantly. The administration of different doses (75, 125 and 175 mg/kg body weight) of troxerutin 1 h prior to 4 Gy γ-radiation exposure showed dose-dependent decrease in the yield of DNA strand breaks in murine blood leucocytes and bone marrow cells. The dose-dependent protection was more pronounced in bone marrow cells than in blood leucocytes. Administration of 175 mg/kg body weight of the drug (i.p.) 1 h prior or immediately after whole body irradiation of mice showed that the decrease in strand breaks depended on the post-irradiation interval at which the analysis was done. The observed time-dependent decrease in the DNA strand breaks could be attributed to enhanced DNA repair in troxerutin administered animals. Thus in addition to anti-erythrocytic, anti-thrombic, fibrinolytic and oedema-protective rheological activity, troxerutin offers protection against γ-radiation-induced micronuclei formation and DNA strand breaks and enhances repair of radiation-induced DNA strand breaks. (Mol Cell Biochem xxx: 57–68, 2005)  相似文献   

12.
Multi-endpoint biological monitoring of phosphine workers   总被引:1,自引:0,他引:1  
5-Aminosalicylic acid (5ASA), a prescribed drug for ulcerative colitis, is a potent scavenger of oxygen-derived free radicals. The present study was undertaken to ascertain its ability to protect against radiation-induced damage. The drug dose-dependent effect, optimum time of drug administration and radiation dose-dependent effect (0-4 Gy) on in vivo radiation protection against micronuclei induction in polychromatic erythrocytes (PCE) and normochromatic erythrocytes (NCE) were studied in the bone marrow of mice. Intraperitoneal injection of 10-125 mg/kg of the drug 30 min before whole body irradiation with 3 Gy produced a significant reduction in the frequency of micronucleated erythrocytes at 24 h after exposure. The optimum dose for protection without drug toxicity was 25 mg/kg body weight. Injection of 25 mg/kg of the drug 60 or 30 min before or within 15 min after 3 Gy whole body gamma-irradiation resulted in a significant decrease in the radiation-induced PCE and NCE with micronuclei (MPCE and MNCE) and an increase in the ratio of PCE to NCE (P/N), at 24 h post-irradiation. Maximum effect was seen when the drug was administered 30 min before irradiation. Therefore, to study the radiation dose-response, mice were pre-treated with 25 mg/kg of 5ASA 30 min before 1-4 Gy of gamma-irradiation. Radiation increased the MN frequency linearly (r(2)=0.99) with dose. Pre-treatment with 5ASA significantly reduced the MN counts to 40-50% of the radiation (RT) alone values, giving a dose modification factor (DMF) of 2.02 (MPCE) and 2.53 (MNCE). Irradiation resulted in a dose-dependent decline in the P/N ratio at all the doses of radiation studied. 5ASA produced a significant increase in the P/N ratio from that of irradiated controls, at all doses of radiations tested. These results show that 5ASA protect mice against radiation-induced MN formation and mitotic arrest.  相似文献   

13.
In vivo and in vitro cytogenetic damage induced by sodium nitrite   总被引:3,自引:0,他引:3  
The mutagenicity of sodium nitrite was assayed by in vivo and in vitro experiments. The in vivo experiments were carried out in male rats and mice intragastrically treated twice, with an interval of 24 h, with nitrite in doses of 1.72, 5.18, 15.55 and 46.66 mg/kg body weight and in male rabbits treated with the same doses of nitrite administered daily in drinking water for 3 months. Chromosomal aberration analysis was conducted in all 3 species of animals and micronucleus induction was only evaluated in mice. Nitrite induced increases in aberrant metaphases in all 3 species of animals. Likewise, in mice it induced increases of the numbers of micronucleated polychromatic erythrocytes and a light bone marrow depression. Neither in the increases of the numbers of chromosomal aberrations nor in that of micronuclei, were dose-related responses observed. The in vitro experiments were carried out on BSC-1 and HeLa cells grown in cultures with nitrite in doses of 0.265 and 0.530 mg/ml for 24 h. Both doses produced significant increases of the percentage of chromosomal aberrations but also without demonstration of positive dose-effect relationships.  相似文献   

14.
Cytogenetic effects of Cuman L, a dithiocarbamate fungicide   总被引:1,自引:0,他引:1  
Cuman L, a dithiocarbamate fungicide, was assessed for its effects in the germ cells and the bone marrow erythrocytes of Swiss Albino male mice. The 3 sublethal doses of 350, 700 and 1050 mg/kg b.w. of Cuman L induced a significant (P less than 0.01) increase in the number of chromosomal aberrations in the germ cells. A significant increase (P less than 0.01) in the percentage of micronuclei in the erythrocytes was also induced by the three doses.  相似文献   

15.
Possible mutagenic activity of captan was investigated by in vitro and in vivo cytogenetic studies and by the dominant lethal study in mice. In vitro cytogenetic study with cultured human diploid cells revealed a significant increase in the frequency of cells showing stickiness and a severe mitotic inhibition at concentrations of 3.0 and 4.0 microgram of captan per ml. although no chromosomal aberrations were observed. In in vivo cytogenetic study, no chromosomal aberrations were induced in the bone marrow cells of rats treated orally with captan at a single dose of 500, 1000 or 2000 mg/kg or at five consecutive doses of 200, 400 or 800 mg/kg/day. Dominant lethal study also failed to show any mutation induction after treatment of male mice with daily oral dose of 200 or 600 mg of captan per kg bw for five days.  相似文献   

16.
Cytogenetic studies were done on bone marrow cells and peripheral lymphocytes of four patients (three with acute nonlymphocytic leukemia, one with aplastic anemia) at various intervals up to 861 days after total-body X irradiation (TBI) at doses between 4.5 and 10 Gy (450-1000 rad) followed by syngeneic or allogeneic bone marrow transplantation. Whereas no radiation-induced aberrations could be found in the bone marrow, apart from a transient finding in the patient with the lowest radiation dose, aberrant metaphases were seen in the peripheral lymphocytes of three patients in the range from 2.5 to 46% even at 861 days after the exposure. There were no demonstrable aberrations related to TBI in the only patient developing graft-versus-host disease. The dicentric yield as determined in the aberrant metaphases with 46 centromeres ranged between 3.4 +/- 1.3 and 4.9 +/- 0.4. In one patient it was demonstrated by BUdR-labeling that after 10 Gy (1000 rad) TBI the surviving and heavily damaged lymphocytes can go into cell cycle and reach at least the third mitosis. The percentage of aberrant cells diminished by about 25% at each mitotic division.  相似文献   

17.
The radioprotective effect of the hydroalcoholic extract of ginger rhizome, Zingiber officinale (ZOE), was studied. Mice were given 10 mg/kg ZOE intraperitoneally once daily for five consecutive days before exposure to 6-12 Gy of gamma radiation and were monitored daily up to 30 days postirradiation for the development of symptoms of radiation sickness and mortality. Pretreatment of mice with ZOE reduced the severity of radiation sickness and the mortality at all doses. The ZOE treatment protected mice from GI syndrome as well as bone marrow syndrome. The dose reduction factor for ZOE was found to be 1.15. The optimum protective dose of 10 mg/kg ZOE was 1/50 of the LD50 (500 mg/kg). Irradiation of the animals resulted in a dose-dependent elevation in the lipid peroxidation and depletion of GSH on day 31 postirradiation; both effects were lessened by pretreatment with ZOE. ZOE also had a dose-dependent antimicrobial activity against Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli and Candida albicans.  相似文献   

18.
Radioprotective property of Moringa oleifera leaves was investigated in healthy adult Swiss albino mice. Animals were injected (ip) with 150 mg/kg body weight of 50% methanolic extract (ME) of M. oleifera leaves, as a single dose, or in 5 daily fractions of 30 mg/kg each, and exposed to whole body gamma irradiation (RT, 4 Gy) 1 hr later. Five animals from each group were sacrificed at 1, 2 and 7 days after treatment. Bone marrow protection was studied by scoring aberrations in metaphase chromosomes and micronucleus induction in polychromatic erythrocytes and normochromatic erythrocytes. Pretreatment with a single dose of 150 mg/kg ME significantly reduced the percent aberrant cells to 2/3rd that of RT alone group on day 1 and brought the values to normal range by day 7 post-irradiation. A similar effect was also seen for the micronucleated cells. Fractionated administration of ME (30 mg/kg x 5) gave a higher protection than that given by the same dose administered as a single treatment. ME also inhibited the Fenton reaction-generated free radical activity in vitro in a concentration dependent manner. These results demonstrate that pretreatment with the methanolic leaf extract of M. oleifera confers significant radiation protection to the bone marrow chromosomes in mice and this may lead to the higher 30 day survival after lethal whole body irradiation.  相似文献   

19.
Chronological changes of chromosome aberration rates related to accumulated doses in chronically exposed humans and animals at a low-dose-rate have not been well studied. C3H female specific pathogen-free mice (8 weeks of age) were chronically irradiated. Chromosome aberration rate in mouse splenocytes after long-term exposure to low-dose-rate (LDR) gamma-rays was serially determined by conventional Giemsa method. Incidence of dicentrics and centric rings increased almost linearly up to 8000 mGy following irradiation for about 400 days at a LDR of 20 mGy/day. Clear dose-rate effects were observed in the chromosome aberration frequencies between dose rates of 20 mGy/day and 200 Gy/day. Furthermore, the frequencies of complex aberrations increased as accumulated doses increased in LDR irradiation. This trend was also observed for the incidences of micronuclei and trisomies of chromosomes 5, 13 and 18 in splenocytes, detected by micronucleus assay and metaphase fluorescence in situ hybridization (FISH) method, respectively. Incidences of 2-4 micronuclei and trisomy increased in mouse splenocytes after irradiation of 8000 mGy at a LDR of 20 mGy/day. These complex chromosome aberrations and numerical chromosome aberrations seem to be induced indirectly after radiation exposure and thus the results indicate that continuous gamma-ray irradiation for 400 days at LDR of 20 mGy/day induced chromosomal instability in mice. These results are important to evaluate the biological effects of long-term exposure to LDR radiation in humans.  相似文献   

20.
The extrapolation of experimental results to man was studied by cytogenetic bone marrow analysis and micronucleus test in mice, rats and Chinese hamsters. Furthermore, the frequency of chromosomal aberrations was compared with the frequencies of polychromatic erythrocytes containing micronuclei. Cyclophosphamide (CY) was given intraperitoneally at the doses of 5, 10, 20, 40 and 80 mg/kg b.w. to ICR mice and Wistar rats and at the doses of 10, 20, 40, 80, 120 and 160 mg/kg b.w. to Chinese hamsters. Five patients with various types of malignancies until then medically untreated, were i.v. administered 40 mg CY/kg b.w. Bone marrow cells were examined 24 h after the administration. CY induced in all rodents a clear-cut dose-effect relationship in the frequency of breaks, abnormal metaphases as well as in the frequency of micronuclei in polychromatic erythrocytes. When comparing the results in rodents and man at the dose of 40 mg CY/kg b.w., the sensitivity pattern of species was mice greater than rats greater than Chinese hamsters greater than man. From this aspect the possible differences in the metabolism of CY in analysed species are discussed. The presented results tend to a conclusion that micronucleus testing may be a very suitable method used for screening purpose, however, the method of classical cytogenetic analysis, especially the evaluation of breaks, still remains the most exact and reliable technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号