首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decreased degradation of the glomerular extracellular matrix (ECM) is thought to contribute to the accumulation of glomerular ECM that occurs in diabetic nephropathy and other chronic renal diseases. Several lines of evidence indicate a key role for the plasminogen activator/plasminogen/plasmin system in glomerular ECM degradation. However, which of the two plasminogen activators (PAs) present in renal tissue, tissue plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA), is responsible for plasmin generation and those factors that modulate the activity of this system remain unclear. This study utilized mesangial cells isolated from mice with gene deletions for tPA, uPA, and plasminogen activator inhibitor 1 (PAI-1) to further delineate the role of the PA/plasminogen/plasmin system in ECM accumulation. ECM degradation by uPA-null mesangial cells was not significantly different from controls (92% +/- 1%, n = 12). In contrast, ECM degradation by tPA-null mesangial cells was markedly reduced (-78 +/- 1%, n = 12, P < 0.05) compared with controls, whereas tPA/uPA double-null mesangial cells degraded virtually no ECM. Previous studies from this laboratory have established that transforming growth factor-beta1 (TGFbeta1) inhibits ECM degradation by cultured mesangial cells by increasing the production of PAI-1, the major physiological PA inhibitor. In keeping with this observation, TGFbeta1 (1 ng/ml) had no effect on ECM degradation by PAI-1-null MC. High glucose levels (30 mM) in the presence or absence of insulin (0.1 mM) caused a moderate increase in ECM degradation by normal human mesangial cells. In contrast, glycated albumin, whose concentration is known to increase in diabetes, produced a dose-dependent (0.2-0.5 mg/ml) inhibition of ECM degradation by normal human mesangial cells. Taken together, these results document the importance of tPA versus uPA in renal plasmin production and indicate that in contrast to elevated glucose, glycated albumin may contribute to ECM accumulation in diabetic nephropathy.  相似文献   

2.
Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice than in Plg-deficient mice. Skin wounds in uPA;tPA-deficient mice treated with the broad-spectrum matrix metalloproteinase (MMP) inhibitor galardin (N-[(2R)-2-(hydroxamido-carbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide) eventually heal, whereas skin wounds in galardin-treated Plg-deficient mice do not heal. Furthermore, plasmin is biochemically detectable in wound extracts from uPA;tPA double-deficient mice. In vivo administration of a plasma kallikrein (pKal)-selective form of the serine protease inhibitor ecotin exacerbates the healing impairment of uPA;tPA double-deficient wounds to a degree indistinguishable from that observed in Plg-deficient mice, and completely blocks the activity of pKal, but not uPA and tPA in wound extracts. These findings demonstrate that an additional plasminogen activator provides sufficient plasmin activity to sustain the healing process albeit at decreased speed in the absence of uPA, tPA and galardin-sensitive MMPs and suggest that pKal plays a role in plasmin generation.  相似文献   

3.
Using immunocytochemical and biochemical techniques, we have demonstrated that cultured human epidermal keratinocytes contain both urokinase and tissue type plasminogen activators. In subconfluent colonies the distribution of the two enzymes differed. Tissue type plasminogen activator (tPA) was distributed evenly throughout the colony, while, as we have demonstrated previously, urokinase type plasminogen activator (uPA) was preferentially localized at the migrating edges of the colony. Using zymographic analyses, both tPA and uPA activities were detected in cell extracts. Depending on the procedure used to prepare cell extracts, tPA was detected either as free enzyme or in complex with PA inhibitor type 1. PA inhibitor type 1 was deposited onto the extracellular matrix of the keratinocyte cultures and formed a complex with cell-associated tPA when cells and matrix were extracted together. The most differentiated keratinocytes in the culture, which were spontaneously shed from the culture surface, also contained both tPA and uPA. However, these spontaneously shed cells had a higher ratio of tPA:uPA than did the less differentiated cells from the same culture. In conjunction with our previous studies, these results demonstrate the complex nature of the plasminogen activator system, including enzymes and inhibitors, that is present in human keratinocytes. In addition, our data suggest that the relative amounts of uPA and tPA in epidermal cells vary with differentiation state.  相似文献   

4.
We compared two methods that measure plasminogen activator inhibitor (PAI) activity in plasma based on the ability of PAI to inhibit tissue plasminogen activator (tPA) or urokinase (uPA) in order to determine which method most accurately measures plasma PAI activity after stressors, like hemorrhage. Plasma PAI activity was significantly elevated after hemorrhage in both assays. Using standard curves derived from rhPAI-1, we found that the tPA-PAI assay was more sensitive than the uPA-PAI assay. However, we measured a 10-fold difference in PAI activity as measured between assays, suggesting that some endogenous plasma constituents (tPA, uPA, plasminogen or plasmin) may interfere with the accurate determination of PAI activity. Increasing the amount of plasma in each assay led to a progressive increase in PAI activity. However, removing either tPA or plasminogen from the tPA-PAI assay unmasked the presence of some endogenous tPA and plasminogen. Furthermore, increasing plasma volume in either assay increases measured plasma tPA, but not uPA. Finally, plasma tPA is elevated after hemorrhage, whereas plasma uPA is not. These results suggest that endogenous tPA and plasminogen may interfere with the measurement of plasma PAI activity in the tPA-PAI assay after hemorrhage or other stresses. The uPA-PAI assay does not have this confounding problem because endogenous uPA does not interfere with the assay, nor does it rise during hemorrhage.  相似文献   

5.
The urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA) are very similar serine proteases with the same physiological function, the activation of plasminogen. An increased amount or activity of uPA but not tPA has been detected in human cancers. The PAs are weak proteolytic enzymes, but they activate plasminogen to plasmin, a strong proteolytic enzyme largely responsible for the malignant properties of cancers. It has been shown recently that the administration of uPA inhibitors can reduce tumor size. Inhibitors of uPA could therefore be used as anti-cancer and anti-angiogenesis agents. It has been found that amiloride competitively inhibits the catalytic activity of uPA but not tPA. Modification of this chemical could therefore produce a new class of uPA specific inhibitors and a new class of anti-cancer agents. The X-ray structure of the uPA complex with amiloride is not known. There are structural differences in the specificity pocket of uPA and tPA. However, the potential energy of binding amiloride is lower outside this cavity in the case of tPA. A region responsible for binding amiloride to tPA has been proposed as the loop B93-B101, reached in negatively charged amino acids present in tPA but not uPA.  相似文献   

6.
The influence of angiostatin K1-4.5--a fragment of the heavy chain of plasmin and a powerful inhibitor of angiogenesis--on kinetic parameters (k(Pg) and K(Pg)) of human Glu-plasminogen activation under the action of urokinase (uPA) not having affinity for fibrin and fibrin-specific tissue plasminogen activator (tPA) was investigated. Angiostatin does not affect the k(Pg) value, but increases the value K(Pg) urokinase plasminogen activation. A decrease in the k(Pg) value and an increase in the K(Pg) value were found for fibrin-stimulated plasminogen activation by tPA with increasing concentrations of angiostatin. The obtained results show that angiostatin is competitive inhibitor of the uPA activator activity, while it inhibits the activator activity of tPA by mixed type. Such an influence ofangiostatin on the kinetic constants ofthe urokinase plasminogen activation suggests that angiostatin dose dependent manner replaces plasminogen in the binary enzyme-substrate complex uPA-Pg. In case of fibrin-stimulated plasminogen activation by tPA, both zymogen and tPA are bound to fibrin with formation of the effective triple tPA-Pg-fibrin complex. Angiostatin replaces plasminogen both from the fibrin surface and from the enzyme-substrate tPA-Pg complex that leads to a decrease in k(Pg) and an increase in K(Pg) of plasminogen activation. Inhibition constants by angioststin (Ki) of plasminogen-activator activities of uPA and tPA determined by Dixon method were found to be 0.59 +/- 0.04 and 0.12 +/- 0.05 microM, respectively.  相似文献   

7.
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.  相似文献   

8.
Fujisaki K  Tanabe N  Suzuki N  Mitsui N  Oka H  Ito K  Maeno M 《Life sciences》2006,78(17):1975-1982
Interleukin-1 (IL-1) plays key roles in altering bone matrix turnover. This turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) , and plasminogen activator inhibitor type-1 (PAI-1). In this study, we examined the effect of IL-1alpha on the expression of the MMPs, TIMPs, tPA, uPA, and PAI-1 genes in osteoblasts derived from the rat osteosarcoma cell line ROS 17/2.8. The cells were cultured in alpha-minimum essential medium containing 10% fetal bovine serum with 0 or 100 U/ml of IL-1alpha for up to 14 days. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 expression were estimated by determining the mRNA levels using real-time RT-PCR and by determining protein levels using ELISA. In IL-1alpha cultures, the expression levels of MMP-1, -2, -3, -13, and -14 exceeded that of the control through day 14 of culture, and the expression of MMPs increased markedly from the proliferative to the later stages of culture. The TIMP-1, -2, and -3 expression levels increased from the initial to the proliferative stages of culture. The expression of tPA increased greatly during the proliferative stage of culture, and uPA expression increased throughout the culture period, increasing markedly from the proliferative to the later stages of culture. In contrast, PAI-1 expression decreased in the presence of IL-1alpha through day 14. These results suggest that IL-1alpha stimulate bone matrix turnover by increasing MMPs, tPA, and uPA production and decreasing PAI-1 production by osteoblasts, and incline the turnover to the resolution.  相似文献   

9.
New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to  相似文献   

10.
It is here reported for the first time that luteal cells are capable of secreting plasminogen activators(PA),(both tissue-type,tPA,and urokinase-type,uPA),and plasminogen activator inhibitor type-1(PAl-1).Using organ culture model,we have demonstrated that tPA,but not uPA,showed markedchange during luteolytic period in rat corpus luteum.A great amount oftPA was secreted in corpusluteum on D 14 and D 17 while very low level of tPA activity was detected before D 12.Correspondingly,the progesterone production in the corpus luteum increased gradually in a time-dependent manner from D 1 to D 12 but dropped abruptly to a very low level on D 14.Additionof exogenous tPA to the CL culture caused considerable decrease in progesterone secretion whileinclusion of purified monoclone tPA antibodies in the culture augmented progesterone productionof CL.It is therefore suggested that tPA may play an important role in luteolytic process.  相似文献   

11.
Complexes between 125I-labeled urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) bound to purified alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein (LRP). No binding was observed when using uPA. The magnitude of uPA.PAI-1 binding was comparable with that of the alpha 2MR-associated protein (alpha 2MRAP). Binding of uPA.PAI-1 was blocked by natural and recombinant alpha 2MRAP, and about 80% inhibited by complexes between tissue-type plasminogen activator (tPA) and PAI-1, and by a monoclonal anti-PAI-1 antibody. In human monocytes, uPA.PAI-1, like uPA and its amino-terminal fragment, bound to the urokinase receptor (uPAR). Degradation of uPAR-bound 125I-uPA.PAI-1 was 3-4-fold enhanced as compared with uncomplexed uPAR-bound uPA. The inhibitor-enhanced uPA degradation was blocked by r alpha 2MRAP and inhibited by polyclonal anti-alpha 2MR/LRP antibodies. This is taken as evidence for mediation of internalization and degradation of uPAR-bound uPA.PAI-1 by alpha 2MR/LRP.  相似文献   

12.
Rapid fibrovascularization is a prerequisite for successful biomaterial engraftment. In addition to their well-known roles in fibrinolysis, urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA) or their inhibitor plasminogen activator inhibitor-1 (PAI-1) have recently been implicated as individual mediators in non-fibrinolytic processes, including cell adhesion, migration, and proliferation. Since these events are critical for fibrovascularization of biomaterial, we hypothesized that the components of the plasminogen activation system contribute to biomaterial engraftment. Employing in vivo and ex vivo microscopy techniques, vessel and collagen network formation within porous polyethylene (PPE) implants engrafted into dorsal skinfold chambers were found to be significantly impaired in uPA-, tPA-, or PAI-1-deficient mice. Consequently, the force required for mechanical disintegration of the implants out of the host tissue was significantly lower in the mutant mice than in wild-type controls. Conversely, surface coating with recombinant uPA, tPA, non-catalytic uPA, or PAI-1, but not with non-catalytic tPA, accelerated implant vascularization in wild-type mice. Thus, uPA, tPA, and PAI-1 contribute to the fibrovascularization of PPE implants through common and distinct effects. As clinical perspective, surface coating with recombinant uPA, tPA, or PAI-1 might provide a novel strategy for accelerating the vascularization of this biomaterial.  相似文献   

13.
Urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases that play a role in synaptic plasticity and remodeling. Psychostimulants induce both tPA and uPA in acute and chronic drug delivery, but cocaine induces preferentially uPA, whereas morphine and amphetamine induce preferentially tPA. Specific doxycline-regulatable lentiviruses expressing these extracellular proteases have been prepared and stereotaxically injected into the nucleus accumbens. We show that tPA-overexpressing animals show greater locomotor activity and behavioral sensitization upon morphine and amphetamine treatments. These effects could be fully suppressed by doxycycline or when tPA had been silenced using small interfering RNAs (siRNAs)-expressing lentiviruses. Furthermore, animals infected with lentiviruses expressing uPA show enhanced conditional place preference for cocaine compared with tPA-overexpressing animals. In contrast, tPA-overexpressing animals when administered amphetamine or morphine showed greater place preference compared with uPA-overexpressing animals. The effects are suppressed when tPA has been silenced using specific siRNAs-expressing vectors. Tissue-type plasminogen activator and uPA possibly induce distinct behaviors, which may be interpreted according to their differential pattern of activation and downstream targets. Taken together, these data add further evidence for a significant function of extracellular proteases tPA and uPA in addiction and suggest a differential role of plasminogen activators in this context.  相似文献   

14.
Plasminogen activation: biochemistry, physiology, and therapeutics   总被引:4,自引:0,他引:4  
The mammalian serine protease zymogen, plasminogen, can be converted into the active enzyme plasmin by vertebrate plasminogen activators urokinase (uPA), tissue plasminogen activator (tPA), factor XII-dependent components, or by bacterial streptokinase. The biochemical properties of the major components of the system, plasminogen/plasmin, plasminogen activators, and inhibitors of the plasminogen activators, are reviewed. The plasmin system has been implicated in a variety of physiological and pathological processes such as fibrinolysis, tissue remodeling, cell migration, inflammation, and tumor invasion and metastasis. A defective plasminogen activator/inhibitor system also has been linked to some thromboembolic complications. Recent studies of the mechanism of fibrinolysis in human plasma suggest that tPA may be the primary initiator and that overall fibrinolytic activity is strongly regulated at the tPA level. A simple model for the initiation and regulation of plasma fibrinolysis based on these studies has been formulated. The plasminogen activators have been used for thrombolytic therapy. Three new thrombolytic agents--tPA, pro-uPA, and acylated streptokinase-plasminogen complex--have been found to possess better properties over their predecessors, urokinase and streptokinase. Further improvements of these molecules using genetic and protein engineering tactics are being pursued.  相似文献   

15.
Plasminogen activator inhibitor type-1 (PAI-1) is a major inhibitor of fibrinolysis by virtue of its capacity to inhibit urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA). Systemic inflammation is invariably associated with elevated circulating levels of PAI-1, and during human sepsis plasma PAI-1 concentrations predict an unfavorable outcome. Knowledge about the functional role of PAI-1 in a systemic inflammatory response syndrome is highly limited. In this study, we determined the role of endogenous PAI-1 in cytokine release induced by administration of LPS or staphylococcal enterotoxin B (SEB). Both LPS and SEB elicited secretion of PAI-1 into the circulation of normal wild-type (Wt) mice. Relative to Wt mice, PAI-1 gene-deficient (PAI-1(-/-)) mice demonstrated strongly elevated plasma IFN-gamma concentrations after injection of either LPS or SEB. In addition, PAI-1(-/-) splenocytes released more IFN-gamma after incubation with LPS or SEB than Wt splenocytes. Both PAI-1(-/-) CD4+ and CD8+ T cells produced more IFN-gamma upon stimulation with SEB. LPS-induced IFN-gamma release in mice deficient for uPA, the uPA receptor, or tPA was not different from IFN-gamma release in LPS-treated Wt mice. These results identify a novel function of PAI-1 during systemic inflammation, where endogenous PAI-1 serves to inhibit IFN-gamma release by a mechanism that does not depend on its interaction with uPA/uPA receptor or tPA.  相似文献   

16.
Adipose tissue expresses a variety of genes including tumor necrosis factor alpha and type-1 plasminogen activator inhibitor (PAI-1); and these factors, produced by adipocytes, may be associated with the risk of coronary events in obesity. In this study, we characterized the production of fibrinolytic factors including tissue-type plasminogen activator (tPA), urokinase-type PA (uPA), and PAI-1 in the differentiation of preadipocytes, and examined the hormonal regulation of these fibrinolytic factors in mature adipocytes. Mouse 3T3-L1 preadipocytes were employed as a model of adipocytes. Adipocyte differentiation was induced by insulin, dexamethasone, and 3-isobutyl-1-methyl xanthine (IBMX). alpha-Glycerophosphate dehydrogenase (GPDH) activity and glucose transporter 4 (GLUT4) mRNA, indices for adipocyte maturation, were induced on Day 4, and gradually increased. GPDH activity reached its maximum level on Day 14. The level of tPA, a major PA in preadipocytes, dramatically decreased with differentiation. On the other hand, that of uPA reciprocally increased. PAI-1 production was also dramatically induced concomitant with differentiation. In mature adipocytes, uPA production was dominant (25 microg/ml/24 h vs. 0.8 microg/ml/24 h for tPA). Total PA activity in the mature adipocytes was reduced by insulin or dexamethasone, but not by glucagon. Insulin, IBMX, and dexamethasone significantly decreased both uPA and tPA production, and increased PAI-1 production. Glucagon had no effect on the production of these fibrinolytic factors. Our results reveal that uPA is one of the markers for the differentiation of 3T3-L1 cells and that insulin, IBMX, and dexamethasone are potent regulators of the fibrinolytic activity in differentiated 3T3-L1 cells, reciprocally affecting PA and PAI-1 levels in them.  相似文献   

17.
Plasminogen activator inhibitor-1 (PAI-1) is the primary inhibitor of plasminogen activators (uPA and tPA) and thus plays a central role in fibrinolysis. The spontaneous insertion of its reactive centre loop (RCL) into β-sheet A is responsible for its irreversible conversion into the inactive latent form. In this study, we used two peptides mimicking residues P14-P9 and P8-P3 of the RCL so as to understand this dynamic process. We show that both peptides inhibit the formation of PAI-1/uPA and PAI-1/tPA complexes via two different mechanisms. Targeting the N-terminal part of the loop induces the cleavage of PAI-1 by the proteases uPA/tPA while targeting its C-terminal part greatly favors the irreversible formation of latent PAI-1.  相似文献   

18.
Human thyroid cells in culture take up and organify (125)I when cultured in TSH (acting through cAMP) and insulin. They also secrete urokinase (uPA) and tissue-type (tPA) plasminogen activators (5-100 IU/10(6)cells/day). TSH and insulin both decreased secreted PA activity (PAA), uPA and tPA protein and their mRNAs. Autocrine fibroblast growth factor increased secreted PAA and inhibited thyroid cell (125)I uptake. Epidermal growth factor (EGF) and the protein kinase C (PKC) activator, TPA significantly increased PAA and inhibited thyroid differentiated function, (TPA > EGF). For TPA, effects were rapid, increased PAA secretion and decreased (125)I uptake being seen at 4 h whereas for EGF, a 24 h incubation was required. qRT-PCR showed significantly increased mRNA expression of uPA with lesser effects on tPA. Aprotinin, which inhibits PAA, increased (125)I uptake but did not abrogate the effects of TPA and EGF. The MEKK inhibitor, PD98059 partially reversed the effects of EGF and TPA on PAA, and largely reversed the effects of EGF but not TPA on differentiated function. PKC inhibitors bisindoylmaleimide 1, and the specific PKCbeta inhibitor, LY379196 completely reversed the effects of TPA on (125)I uptake and PAA whereas EGF effects were unaffected. TPA inhibited follicle formation and this effect was blocked by LY379196 but not PD98059. We conclude that in thyroid cells, MAPK activation inversely correlates with (125)I uptake and directly correlates with PA expression, in contrast to the effects of cAMP. TPA effects on iodide metabolism, dissolution of follicles and uPA synthesis are mediated predominantly through PKCbeta whereas EGF exerts its effects through MAPK but not PKCbeta.  相似文献   

19.
Plasmin(ogen) acquisition is critical for invasive disease initiation by Streptococcus pyogenes (GAS). Host urokinase plasminogen activator (uPA) plays a role in mediating plasminogen activation for GAS dissemination, however the contribution of tissue-type plasminogen activator (tPA) to GAS virulence is unknown. Using novel tPA-deficient ALBPLG1 mice, our study revealed no difference in mouse survival, bacterial dissemination or the pathology of GAS infection in the absence of tPA in AlbPLG1/tPA?/? mice compared to AlbPLG1 mice. This study suggests that tPA has a limited role in this humanized model of GAS infection, further highlighting the importance of its counterpart uPA in GAS disease.  相似文献   

20.
Bone matrix turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), and plasminogen activator inhibitor type-1 (PAI-1). We previously demonstrated that 1.0g/cm(2) of compressive force was an optimal condition for inducing bone formation by osteoblastic Saos-2 cells. Here, we examined the effect of mechanical stress on the expression of MMPs, TIMPs, tPA, uPA, and PAI-1 in Saos-2 cells. The cells were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum and with or without continuously compressive force (0.5-3.0g/cm(2)) for up to 24h. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 gene expression were estimated by determining the mRNA levels using real-time PCR, and the protein levels were determined using ELISA. The expression levels of MMP-1, MMP-2, MMP-14, and TIMP-1 markedly exceeded the control levels at 1.0g/cm(2) of compressive force, whereas the expression levels of MMP-3, MMP-13, TIMP-2, TIMP-3, TIMP-4, tPA, uPA, and PAI-1 markedly exceeded the control levels at 3.0g/cm(2). These results suggest that mechanical stress stimulates bone matrix turnover by increasing these proteinases and inhibitors, and that the mechanism for the proteolytic degradation of bone matrix proteins differs with the strength of the mechanical stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号