首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on recent directed evolution of P450 2B1, six P450 2B11 mutants at three positions were created in an N-terminal modified construct termed P450 2B11dH and characterized for enzyme catalysis using five substrates. Mutant I209A demonstrated a 3.2-fold enhanced k(cat)/K(m) for 7-ethoxy-4-trifluoromethylcourmarin O-deethylation, largely due to a dramatic decrease in K(m) (0.72 microM vs. 18 microM). I209A also demonstrated enhanced selectivity for testosterone 16beta-hydroxylation over 16alpha-hydroxylation. In contrast, V183L showed a 4-fold increased k(cat) for 7-benzyloxyresorufin debenzylation and a 4.7-fold increased k(cat)/K(m) for testosterone 16alpha-hydroxylation. V183L also displayed a 1.7-fold higher k(cat)/K(m) than P450 2B11dH with the anti-cancer prodrugs cyclophosphamide and ifosfamide, resulting from a approximately 4-fold decrease in K(m). Introduction of the V183L mutation into full-length P450 2B11 did not enhance the k(cat)/K(m). Overall, the re-engineered P450 2B11dH enzymes exhibited enhanced catalytic efficiency with several substrates including the anti-cancer prodrugs.  相似文献   

2.
In search of novel anticancer agents, two series of dimethyl [1,1'-biphenyl]-2,2'-dicarboxylate derivatives, 8a-8k and 9a-9k, containing both methylenedioxy and 1,3,4-thiadiazole moieties were designed and synthesized. Cytotoxicity of these compounds was evaluated in vitro against five human tumor cell lines, i.e., HepG2, KB, A549, K562, and MCF-7. The results indicated that 8h, 8j, 8k, 9d, 9g, 9h, 9j, and 9k showed notable anticancer activities comparable to or stronger than that of 5-fluorouracil, a canonical anticancer drug. Structure-activity relationships were also discussed based on the experimental data obtained.  相似文献   

3.
目的:胃癌(GC)是全球第四大常见癌症.丁硫磷是华蟾酥的主要活性成分,从蟾蜍的皮肤和腮腺毒腺中提取,在体外具有抗癌活性.然而,丁硫磷是否对胃癌有抗癌作用尚不清楚.本研究旨在评价丁硫磷对GC的抑制作用.方法:以高转移性MKN28 GC细胞为细胞模型,研究华蟾素的抗癌作用.使用CCK-8测定细胞活力,LDH检测丁硫磷对细胞...  相似文献   

4.
Histone deacetylases (HDACs) have proven to be promising targets for the development of anti-cancer drugs. In this study, we reported a series of novel chalcone based tubulin and HDAC dual-targeting inhibitors. Three compounds inhibited the activities of HDAC and tubulin polymerization simultaneously and displayed anti-proliferative activities toward eleven human tumor cell lines. Compound 8a remarkably induced growth inhibition, apoptosis and G2/M phase arrest of A549 tumor cells. Finally, the inhibitory activities of 8a against HDAC6 and tubulin were rationalized by molecular docking studies.  相似文献   

5.
6.
All the nine 1,3-dialkylated-pyrimidin-2,4-diones investigated are active against all the 59 human tumor cell lines. Compounds 2, 3, 4, and 6 show significant anti-cancer activities at some specific cell lines while compounds 7 and 9 exhibit anti-cancer activities against more number of cell lines. The structure–activity relationship studies indicate that the presence of piperidine/pyrrolidine at the end of C-6 chain, benzoyl group at C-5, and benzyl groups at N-1, N-3 of the pyrimidine ring increases the anti-cancer activities of these molecules.  相似文献   

7.
In the current study, derivatives of 25-hydroxyprotopanaxadiol (25-OH-PPD) were prepared and their in vitro anti-tumor activities were tested on six different human tumor cell lines by standard MTT assay. The results showed that combining an ester group combined with the presence of an amino acid moiety led to a 10-fold improved anti-tumor activity. Compound 1c exhibited the best anti-tumor activity in the in vitro assays. Compounds 2c, 3c, 4c, 5c, 6c and 8b showed better anti-tumor activities compared to the parent compound 25-OH-PPD. The current results may provide useful data for researching and developing new anti-cancer agents.  相似文献   

8.
A number of 5-aminosubstituted 20(S)-camptothecin analogues were prepared via semi-synthesis starting from 20(S)-camptothecin and 9-methoxy 20(S)-camptothecin. In vitro anti-cancer activity of these analogues was determined using 60 human tumor cell line assay. Although water solubility of most of these compounds was improved compared to 20(S)-camptothecin, their anti-cancer activity was considerably diminished. However, only smaller substituents such as methylamine or hydroxylamine as present in 8s and 8t, respectively, showed good activity with improved water solubility.  相似文献   

9.
A series of novel curcumin analogs were synthesized and screened for anti-cancer and anti-angiogenesis activities at Emory University and at the National Cancer Institute (NCI). These compounds are symmetrical alpha,beta-unsaturated and saturated ketones. The majority of the analogs demonstrated a moderate degree of anti-cancer activity. Compounds 10, 11, and 14 exhibited a high degree of cytotoxicity in the NCI in vitro anti-cancer cell line screen. In addition, this screen revealed that these compounds inhibit tumor cell growth with a higher potency than the commonly used chemotherapeutic drug, cisplatin. In independent in vitro screens conducted at Emory, the same compounds plus 4, 5, 8, 9, and 13 exhibited a high degree of cytotoxicity to tumor cells. Analogs that were effective in the anti-cancer screens were also effective in in vitro anti-angiogenesis assays. Compounds 4, 9, 11, and 14 were most effective in the anti-angiogenesis assays run at Emory. In the assays conducted by the NCI, compound 14 was almost as potent as the anti-angiogenic drug TNP-470, which has undergone clinical trials. Based on the favorable in vitro anti-cancer and anti-angiogenesis results with 14, further in vivo tests were conducted. This compound effectively reduced the size of human breast tumors grown in female athymic nude mice and showed little toxicity. This data, coupled with the remarkable in vitro data, suggests that compound 14 may potentially be an effective chemotherapeutic agent. As a follow-up, a 3D quantitative structure relationship based on 14 has been developed. It shows a cross-validated r2(q2) and a predictive r2(p2) = 0.71. COMPARE analysis suggests the compound to be a possible RNA/DNA antimetabolite, but also implies that the compound's cytotoxicity may arise from a presently unknown mechanism.  相似文献   

10.
Popovic S  Urbán E  Lukic M  Conlon JM 《Peptides》2012,34(2):275-282
The pathogenesis of acne vulgaris is multifactorial involving infection of the pilosebaceous unit with Propionibacterium acnes and a cytokine-mediated inflammatory response. Five frog skin-derived antimicrobial peptides ([D4k]ascaphin-8, [G4K]XT-7, [T5k]temporin-DRa, brevinin-2GU, and B2RP-ERa), chosen for their low hemolytic activity against human erythrocytes, were assessed for their effects on the growth of clinical isolates of P. acnes and on the release of pro-inflammatory and anti-inflammatory cytokines from peripheral blood mononuclear (PBM) cells. All peptides inhibited the growth of P. acnes with the highest potency exhibited by [D4k]ascaphin-8 (minimum inhibitory concentration, MIC=3-12.5 μM). Release of TNF-α from concanavalin A (ConA)-stimulated PBM cells was significantly reduced by [D4k]ascaphin-8, [G4K]XT-7, brevinin-2GU, and B2RP-ERa (1 and 20 μg/ml) and by [T5k]temporin-DRa (20 μg/ml). Release of IFN-γ from unstimulated PBM cells was significantly reduced by [D4k]ascaphin-8 and brevinin-2GU (1 and 20 μg/ml). No peptide showed significant effects on Il-17 release. Release of the anti-inflammatory cytokines TGF-β, IL-4, and IL-10 from both unstimulated and ConA-treated PBM cells was significantly increased by [T5k]temporin-DRa and B2RP-ERa (1 and 20μg/ml). The potent activities of [D4k]ascaphin-8 and [T5k]temporin-DRa in inhibiting the growth of P. acnes and the release of pro-inflammatory cytokines, and in stimulating the release of anti-inflammatory cytokines suggest a possible therapeutic role in the treatment of acne vulgaris.  相似文献   

11.
Our earlier research has shown that N-phenyl-2,2-dichloroacetamide analogues had much higher anti-cancer activity than the lead compound sodium dichloroacetate (DCA). In this current study, a variety of N-arylphenyl-2,2-dichloroacetamide analogues were synthesized via Suzuki coupling reaction and their anti-cancer activity was evaluated. The results showed that N-terphenyl-2,2-dichloroacetamide analogues had satisfactory anti-cancer activity. Among them, N-(3,5-bis(benzo[d][1,3]dioxol-5-yl)phenyl)-2,2-dichloroacetamide (6 k) had an IC50 of 2.40 μM against KB-3-1 cells, 1.04 μM against H460 cells and 1.73 μM against A549 cells.  相似文献   

12.
Various Escherichia coli mutant strains designed for succinate production under aerobic conditions were characterized in chemostat. The metabolite profiles, enzyme activities, and gene expression profiles were studied to better understand the metabolic network operating in these mutant strains. The most efficient succinate producing mutant strain HL27659k was able to achieve a succinate yield of 0.91 mol/mol glucose at a dilution rate of 0.1/h. This strain has the five following mutations: sdhAB, (ackA-pta), poxB, iclR, and ptsG. Four other strains involved in this study were HL2765k, HL276k, HL2761k, and HL51276k. Strain HL2765k has mutations in sdhAB, (ackA-pta), poxB and iclR, strain HL276k has mutations in sdhAB, (ackA-pta) and poxB, strain HL2761k has mutations in sdhAB, (ackA-pta), poxB and icd, and strain HL51276k has mutations in iclR, icd, sdhAB, (ackA-pta) and poxB. Enzyme activity data showed strain HL27659k has substantially higher citrate synthase and malate dehydrogenase activities than the other four strains. The data also showed that only iclR mutation strains exhibited isocitrate lyase and malate synthase activities. Gene expression profiles also complemented the studies of enzyme activity and metabolites from chemostat cultures. The results showed that the succinate synthesis pathways engineered in strain HL27659k were highly efficient, yielding succinate as the only major product produced under aerobic conditions. Strain HL27659k was the only strain without pyruvate accumulation, and its acetate production was the least among all the mutant strains examined.  相似文献   

13.
Cinnamic acid (C9H8O2), is a major constituent of the oriental Ayurvedic plant Cinnamomum cassia (Family: Lauraceae). This phenolic acid has been reported to possess various pharmacological properties of which its antioxidant activity is a prime one. Therefore it is rational to hypothesize that it may ameliorate myelosuppression and oxidative stress induced by cyclophosphamide, a widely used chemotherapeutic agent. Commercial cyclophosphamide, Endoxan, was administered intraperitoneally to Swiss albino mice (50mg/kg) pretreated with 15, 30 and 60mg/kg doses of cinnamic acid orally at alternate days for 15days. Cinnamic acid pre-treatment was found to reduce cyclophosphamide induced hypocellularity in the bone marrow and spleen. This recovery was also reflected in the peripheral blood count. Amelioration of hypocellularity could be correlated with the modulation of cell cycle phase distribution. Cinnamic acid pre-treatment reduced bone marrow and hepatic oxidative stress as evident by lipid peroxidation and activity assays of antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. The present study indicates that cinnamic acid pretreatment has protective influence on the myelosuppression and oxidative stress induced by cyclophosphamide. This investigation is an attempt and is the first of its kind to establish cinnamic acid as an agent whose consumption provides protection to normal cells from the toxic effects of a widely used anti-cancer drug.  相似文献   

14.
Indoles carrying a cyclic ester (gamma-butyrolactone) at C-3 position have been synthesized by the allylation of 3-indoleglyoxylate followed by iodocyclisation and the nucleophilic replacement of the iodo-group. Screening of these molecules for COX-2 inhibition and anti-cancer activities has identified compounds 10 and 11 as highly potent and selective for COX-2 as well as showing remarkable anti-cancer activities (better than that of indomethacin).  相似文献   

15.
BackgroundPrimary effusion lymphoma (PEL) is an aggressive B cell non-Hodgkin lymphoma that develops especially in AIDS patients and immunocompromised patients infected with human herpes virus-8 (HHV-8)/Kaposi's sarcoma-associated herpesvirus (KSHV). PEL has a poor prognosis in patients despite conventional chemotherapeutic treatment, and a safe and efficient therapy is required.PurposeTo examine the effects on PEL of cucurbitacin B (CuB), a triterpene found in plants of the Cucurbitaceae family that has several anti-cancer activities.Study designWe evaluated the anti-cancer activities of CuB in vitro and in vivo.MethodsCell proliferation of PEL cell lines was measured by MTT assay. Cleaved caspases and signaling transduction associated proteins were analyzed by western blotting. Wright and Giemsa staining and immunofluorescence staining were carried out to observe cell morphology. Cell cycles were analyzed by flow cytometry. RT-PCR was performed to detect viral gene expressions. A xenograft mouse model was employed to evaluate the anti-cancer activity of CuB in vivo.ResultsCuB inhibited cell proliferation of PEL cell lines (BCBL-1, BC-1, GTO and TY-1) in a dose-dependent manner (0–50 nM) and induced apoptosis of BCBL-1 cells via caspase activation in a dose- and time-dependent manner. In addition, CuB caused cell-shape disruption by inducing actin aggregation and suppressing the p-cofilin level, resulting in BCBL-1 cell arrest at the G2/M phase. In contrast, CuB showed almost no suppression of p-STAT3 and p-Akt activation, which were constitutively activated by KSHV-derived proteins. Furthermore, CuB (0.5 mg/kg) via intraperitoneal injection significantly (p < 0.05) suppressed solid tumor growth in the xenograft mouse model.ConclusionThis study suggests that CuB is a promising agent for PEL treatment.  相似文献   

16.
Based on the anticancer activity of novel quinoxalinyl-piperazine compounds, 1-[(5 or 6-substituted alkoxyquinoxalinyl)aminocarbonyl]-4-(hetero)arylpiperazine derivatives published in Bioorg. Med. Chem.2010, 18, 7966, we further explored the synthesis of 7 or 8-substituted quinoxalinyl piperazine derivatives. From in vitro studies of the newly synthesized compounds using human cancer cell lines, we identified some of the 8-substituted compounds, for example 6p, 6q and 6r, which inhibited the proliferation of various human cancer cells at nanomolar concentrations. Compound 6r, in particular, showed the lowest IC(50) values, ranging from 6.1 to 17nM, in inhibition of the growth of cancer cells, which is better than compound 6k (compound 25 in the reference cited above). In order to select and develop a leading compound among the quinoxaline compounds with substitutions on positions 5, 6, 7 or 8, the compounds comparable to compound 6k in in vitro cancer cell growth inhibition were chosen and their pharmacokinetic properties were evaluated in rats. In these studies, compound 6k showed the highest oral bioavailability of 83.4%, and compounds 6j and 6q followed, with 77.8% and 57.6%, respectively. From the results of in vitro growth inhibitory activities and the pharmacokinetic study, compound 6k is suggested for further development as an orally deliverable anticancer drug.  相似文献   

17.
《Reproductive biology》2014,14(3):238-242
The adverse effects of the anti-cancer agent cyclophosphamide (CTX) on follicular growth and ovarian angiogenesis were investigated in mice. CTX treatment irreversibly induced a loss of follicles through apoptosis and decreased microvascularization of the corpora lutea and follicles in a dose-dependent manner. Our findings demonstrated that CTX adversely affected the ovaries indicating the need to support an awareness of fertility preservation before chemotherapy is initiated.  相似文献   

18.
本文应用细胞化学和显微分光光度计对癌细胞的 DNA,ACP,ANAE、SDH 和G6PDH 进行定量测定,又用流式细胞计分析癌细胞 RNA 含量的变化.实验证明大蒜油能明显抑制癌细胞 DNA 与 RNA 合成,并减低五种酶的活性。表明大蒜油能影响癌细胞的核酸代谢、能量代谢及功能活动、抑制癌细胞的分裂增殖,从而起到抗癌效应.  相似文献   

19.
Five series of novel carbazole derivatives containing an aminoguanidine, dihydrotriazine, thiosemicarbazide, semicarbazide or isonicotinic moiety were designed, synthesised and evaluated for their antimicrobial activities. Most of the compounds exhibited potent inhibitory activities towards different bacterial strains (including one multidrug-resistant clinical isolate) and one fungal strain with minimum inhibitory concentrations (MICs) between 0.5 and 16 µg/ml. Compounds 8f and 9d showed the most potent inhibitory activities (MICs of 0.5–2 µg/ml). Furthermore, compounds 8b, 8d, 8f, 8k, 9b and 9e with antimicrobial activities were not cytotoxic to human gastric cancer cell lines (SGC-7901 and AGS) or a normal human liver cell line (L-02). Structure–activity relationship analyses and docking studies implicated the dihydrotriazine group in increasing the antimicrobial potency and reducing the toxicity of the carbazole compounds. In vitro enzyme activity assays suggested that compound 8f binding to dihydrofolate reductase might account for the antimicrobial effect.  相似文献   

20.
Summary The localization of exopeptidase activities was demonstrated histochemically (by simultaneous azo coupling) on the visceral endoderm of whole unfixed yolk sacs of rats (12.5–18.5 days of gestation). For comparison, the topochemistry of exopeptidases was studied by conventional section histochemistry of frozen yolk sacs. The study of unfixed visceral yolk-sac epithelium showed that different artificial peptidase substrates (Ala-, Met-, Phe-, Leu-, -Asp-, -Glu-, -Glu, Tyr-, Val-, Ser, Arg- and Gly-Pro-MNA) are hydrolysed in the apical-cell membranes (membrane-bound peptidases) and, in a number of cells, within the cytoplasmic matrix. Section histochemistry showed that peptidase activities were almost only directed against -Glu-and Gly-Pro-MNA at the cell apices. It is concluded that most of the exopeptidase activities in the apiccal cell membrane of the visceral yolk-sac epithelium are only demonstrable in unfixed yolk sacs. These activities are of great importance for the supplying of the embryo with amino acids.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号