首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of L-arginine on leukocyte adhesion in ischemia-reperfusion injury   总被引:5,自引:0,他引:5  
Nitric oxide has been reported to be beneficial in preserving muscle viability following ischemia-reperfusion injury. The purpose of this study was to evaluate the influence of nitric oxide via L-arginine on leukocyte adhesion following ischemia-reperfusion injury. Intravital videomicroscopy of rat gracilis muscle was used to quantify changes in leukocyte adherence. The gracilis muscle was raised on its vascular pedicle in 48 male Wistar rats. The animals were assigned to one of five groups: (1) nonischemic control; (2) ischemia-reperfusion; (3) ischemia-reperfusion and L-arginine; (4) ischemia-reperfusion and Nomega-nitro-L-arginine methyl ester (L-NAME); and (5) ischemia-reperfusion, L-NAME, and L-arginine. All groups that included ischemia-reperfusion were subjected to 4 hours of global ischemia followed by 2 hours of reperfusion. L-Arginine (10 mg/kg) and L-NAME (10 mg/kg) were infused into the contralateral femoral vein beginning 5 minutes before reperfusion, for a total of 30 minutes. The number of adherent leukocytes was counted at baseline and at 5, 15, 30, 60, and 120 minutes after reperfusion (reported as mean change from baseline, +/- SEM). Groups were compared by repeated-measures analysis of variance (five groups, five times). P < or =0.05 was accepted as significant. L-Arginine significantly reduced leukocyte adherence to venular endothelium during reperfusion when compared with the ischemia-reperfusion group (1.39 +/- 0.92 versus 12.78 +/- 1.43 at 2 hours, p < 0.05). Administration of L-NAME with L-arginine showed no significant difference in adherent leukocytes when compared with the ischemia-reperfusion group (10.28 +/- 2.03 at 2 hours). The nitric oxide substrate L-arginine appears to reduce the deleterious neutrophil-endothelial adhesion associated with ischemia-reperfusion injury. L-NAME (nitric oxide synthesis inhibitor) given concomitantly with L-arginine reversed the beneficial effect of L-arginine alone, indicating that L-arginine may be acting via a nitric oxide synthase pathway. These results suggest an important role for nitric oxide in decreasing the neutrophil-endothelial interaction associated with ischemia-reperfusion injury.  相似文献   

2.
This study analyzed the effects of L-arginine and non-specific nitric oxide (NO) synthase blocker (L-NAME) on structural and metabolic changes in experimental ischemia/reperfusion injury in the rat. Histopathological evaluation of rat tissues after reperfusion was also performed. The animals were divided into four groups: [1] nonischemic control, [2] ischemia 4 hrs/repefusion 30, 60, 120 min, [3] ischemia/reperfusion after L-arginine administration, [4] ischemia/reperfusion, after L-arginine, and L-NAME. L-arginine (500 mg/kg) and L-NAME (75 micromol/rat/day) were administrated orally for 5 days before experiment. Concentrations of free radicals, CD-62P, CD-54 and malonyl dialdehyde (MDA) in tissues, and MDA and NO levels in sera were determined. Free radical levels significantly increased in reperfused skeletal muscle, small and large intestines. In large bowel, reperfusion increased MDA levels and evoked a rise of endotoxin level while NO levels decreased. Histological studies showed an increase in the number of lymphocytes in both intestines. Administration of L-arginine reduced leukocyte adherence associated with ischemia-repefusion injury, decreased the levels of free radicals and MDA in the examined tissues, and inhibited the release of endotoxins into blood. L-arginine-treated animals showed higher serum NO levels and reduced leukocyte bowel infiltration. Concomitant L-NAME administration reduced serum NO and tissue free radical [corrected] levels, but did not affect intestinal leukocyte infiltration. L-arginine could ameliorate intestinal ischemia/reperfusion injury and constitute a possible protective mechanism by decreasing neutrophil-endothelial interactions, stimulating free radical scavenging and reducing lipid peroxidation.  相似文献   

3.
The low flow state that results from ischemia and reperfusion injury is a potentially reversible process that is important in numerous clinical situations. However, the point in time during the course of reperfusion where tissue injury becomes irreversible is unknown. This experiment evaluated the continuum of tissue damage in skeletal muscle after ischemic insult by quantifying the number of flowing capillaries and percentage muscle necrosis in a male Wistar rat skeletal muscle model. A gracilis muscle flap was raised on the vascular pedicle of 39 male Wistar rats and examined at 832x using intravital videomicroscopy. The numbers of flowing capillaries in five consecutive high-power fields were counted for baseline values. The flap was then subjected to 4 hours of global ischemia (except in sham animals, n = 7) by placing a microvascular clamp on the pedicle artery and vein. Upon reperfusion, flowing capillaries were counted in the same five high-power fields at intervals of 5, 15, 30, and 60 minutes, then at 2 to 8 (1-hour intervals), 24, and 48 hours. The gracilis muscle was then harvested at these intervals during reperfusion and assessed for viability. Compared with baseline, flowing capillaries from the ischemia and reperfusion group (mean +/- SEM) decreased significantly in the first 8 hours of reperfusion (7.7 +/- 0.2 to 3.2 +/- 0.3, p < 0.001) with minimal change noted from 8 to 48 hours. Percentage muscle necrosis increased progressively in ischemia and reperfusion preparations from 1 to 7 hours of reperfusion (16.5 +/- 2.6 percent to 38.9 +/- 1.2 percent, p < 0.001). No significant change in muscle necrosis in the ischemia and reperfusion group was noted between 7 and 48 hours. Sham preparations showed no change in the number of flowing capillaries through 3 hours of reperfusion, with a slight decrease at 24 hours. This rat gracilis microcirculation skeletal muscle model demonstrates a heterogeneous reperfusion injury. The decrease in flowing capillaries correlated with the increase in percentage necrosis and appeared to stabilize at the 7- to 8-hour interval. This finding may have important implications for the timing of interventions aimed at minimizing tissue damage from ischemia-reperfusion.  相似文献   

4.
Nitric oxide is produced from the amino acid L-arginine by nitric oxide synthase, which has three known isoforms: (1) endothelial nitric oxide synthase and (2) brain nitric oxide synthase, both of which are constitutive nitric oxide synthase; and (3) inducible nitric oxide synthase. The authors' hypothesis is that after reperfusion injury, endothelial cell dysfunction leads to disruption of nitric oxide synthase-mediated nitric oxide production and that this may in part explain the deleterious effects of ischemia-reperfusion injury on tissue survival and blood reflow in flaps. An experiment was designed to study the effects of ischemia-reperfusion injury on the bioactivity of all three isoforms of nitric oxide synthase. Buttock skin flaps and latissimus dorsi myocutaneous flaps were elevated in eight pigs. Flaps on one side of the animal were randomized to receive 6 hours of arterial ischemia, whereas flaps on the other side served as controls. At 6 hours of ischemia and at 1, 4, and 18 hours after reflow, tissue biopsy specimens were obtained and were processed for both constitutive nitric oxide synthase and inducible nitric oxide synthase enzyme activity on the basis of the L-citrulline assay. In addition, specimens were processed for Western blot analysis of the three isoforms. The authors' results revealed three key findings: first, there was a statistically significant (p < 0.001) decrease in constitutive nitric oxide synthase activity of ischemia-reperfusion-injured flaps as compared with controls in both skin and muscle for all time intervals measured. Second, Western blot analyses of endothelial nitric oxide synthase and brain nitric oxide synthase showed a significant decrease in the signal intensity in ischemic and reperfused tissue as compared with controls. Third, the inducible nitric oxide synthase isoform's activity and protein remained undetectable in both tissue types for all time points measured. The authors' data demonstrated that following ischemia-reperfusion injury in the pig flap model there was a disruption of constitutive nitric oxide synthase expression and activity, which may lead to decreased nitric oxide production. The significant decrease in nitric oxide synthase activity found in the current study may partly explain the mechanism of tissue damage in flaps subjected to ischemia-reperfusion injury. Knowledge of the kinetics of nitric oxide synthase activity under conditions of ischemia-reperfusion injury has important implications for the choice and timing of delivery of therapeutic agents whose goal is to increase the bioavailability of nitric oxide in reperfused tissue.  相似文献   

5.
白藜芦醇甙对大鼠心脏缺血/再灌注损伤的保护作用   总被引:1,自引:0,他引:1  
Zhang LP  Yang CY  Wang YP  Cui F  Zhang Y 《生理学报》2008,60(2):161-168
本文利用冠脉结扎/放松方法和Langendorff灌注技术,建立在体和离体大鼠心脏缺血/再灌注(ischemia/reperfusion,I/R)损伤模型,探讨白藜芦醇甙(polydatin)对大鼠I/R心肌损伤的保护作用及其机制.观察白藜芦醇甙对缺血和再灌注心律失常、心肌梗死面积、心脏收缩功能、心肌超氧化物歧化酶(superoxide dismutase,SOD)活性、丙二醛(malondialdehyde,MDA)含量、NO含量以及一氧化氮合酶(nitric oxide synthase,NOS)活性的影响.结果显示:与对照组相比,白藜芦醇甙组大鼠缺血和再灌注心律失常明显降低(P<0.05,P<0.01);心肌梗死面积显著减少(P相似文献   

6.
Oxygen free radicals are implicated in the pathophysiology of ischemia-reperfusion (I/R) injury in skeletal muscle. Nitric oxide (NO) and prostaglandin E2 (PGE2) are important regulators of the microcirculation in skeletal muscle. The effects of L-arginine, substrate for NO, and N(G)-nitro L-arginine methyl ester (L-NAME) on PGE2 synthesis, lipid peroxidation and reduced glutathione (GSH) levels was investigated in the rat gastrocnemius muscle after 3 h of reperfusion following 2 h of ischemia. Lipid peroxidation and GSH levels showed a non-significant changes in the I/R groups compared to the control group. According to these results, it can be assumed that skeletal muscle can resist 2 h of ischemia followed by 3 h of reperfusion-induced oxidative stress. PGE2-like activity in the gastrocnemius muscle increased in the L-NAME treated and I/R groups. L-arginine administration reversed the increase in PGE2-like activity of reperfused skeletal muscle. These findings support the conclusion that endothelium-derived PGE2 synthesis increases during reperfusion and suggest that PGE2 may have a protective role in the maintenance of endothelial function.  相似文献   

7.
Amputated tissue maintained in a hypothermic environment can endure prolonged ischemia and improve replantation success. The authors hypothesized that local tissue hypothermia during the early reperfusion period may provide a protective effect against ischemia-reperfusion injury similar to that seen when hypothermia is provided during the ischemic period. A rat gracilis muscle flap model was used to assess the protective effects of exposing skeletal muscle to local hypothermia during ischemia only (p = 18), reperfusion only (p = 18), and both ischemia and reperfusion (p = 18). Gracilis muscles were isolated and exposed to hypothermia of 10 degrees C during 4 hours of ischemia, the initial 3 hours of reperfusion, or both periods. Ischemia-reperfusion outcome measures used to evaluate muscle flap injury included muscle viability (percent nitroblue tetrazolium staining), local edema (wet-to-dry weight ratio), neutrophil infiltration (intramuscular neutrophil density per high-power field), neutrophil integrin expression (CD11b mean fluorescence intensity), and neutrophil oxidative potential (dihydro-rhodamine oxidation mean fluorescence intensity) after 24 hours of reperfusion. Nitroblue tetrazolium staining demonstrated improved muscle viability in the experimental groups (ischemia-only: 78.8 +/- 3.5 percent, p < 0.001; reperfusion-only: 80.2 +/- 5.2 percent, p < 0.001; and ischemia-reperfusion: 79.6 +/- 7.6 percent, p < 0.001) when compared with the nonhypothermic control group (50.7 +/- 9.3 percent). The experimental groups demonstrated decreased local muscle edema (4.09 +/- 0.30, 4.10 +/- 0.19, and 4.04 +/- 0.31 wet-to-dry weight ratios, respectively) when compared with the nonhypothermic control group (5.24 +/- 0.31 wet-to-dry weight ratio; p < 0.001, p < 0.001, and p < 0.001, respectively). CD11b expression was significantly decreased in the reperfusion-only (32.65 +/- 8.75 mean fluorescence intensity, p < 0.001) and ischemia-reperfusion groups (25.26 +/- 5.32, p < 0.001) compared with the nonhypothermic control group (62.69 +/- 16.93). There was not a significant decrease in neutrophil CD11b expression in the ischemia-only group (50.72 +/- 11.7 mean fluorescence intensity, p = 0.281). Neutrophil infiltration was significantly decreased in the reperfusion-only (20 +/- 11 counts per high-power field, p = 0.025) and ischemia-reperfusion groups (23 +/- 3 counts, p = 0.041) compared with the nonhypothermic control group (51 +/- 28 counts). No decrease in neutrophil density was observed in the ischemia-only group (40 +/- 15 counts per high-power field, p = 0.672) when compared with the nonhypothermic control group (51 +/- 28 counts). Finally, dihydrorhodamine oxidation was significantly decreased in the reperfusion-only group (45.83 +/- 11.89 mean fluorescence intensity, p = 0.021) and ischemia-reperfusion group (44.30 +/- 11.80, p = 0.018) when compared with the nonhypothermic control group (71.74 +/- 20.83), whereas no decrease in dihydrorhodamine oxidation was observed in the ischemia-only group (65.93 +/- 10.3, p = 0.982). The findings suggest a protective effect of local hypothermia during early reperfusion to skeletal muscle after an ischemic insult. Inhibition of CD11b expression and subsequent neutrophil infiltration and depression of neutrophil oxidative potential may represent independent protective mechanisms isolated to local tissue hypothermia during the early reperfusion period (reperfusion-only and ischemia-reperfusion groups). This study provides evidence for the potential clinical utility of administering local hypothermia to ischemic muscle tissue during the early reperfusion period.  相似文献   

8.
The purpose of this study was to analyze the nicotinamide adenine dinucleotide phosphate - diaphorase (NADPH-d) activity in the rat jejunum after a mesenteric ischemia/reperfusion injury. Nitric oxide, synthetised from L-arginine by the enzyme nitric oxide synthase, is a nonadrenergic noncholinergic relaxant neurotransmitter of the intestinal smooth muscle. It plays an important role in the process of plasticity after the ischemia/reperfusion injury. Experimental animals were divided in two groups: the control group and the ischemic/reperfusion group, with different period of the reperfusion. The NADPH-d histochemical method has been used as a marker for the nitric oxide synthase. NADPH-d activity has been rapidly decreased in the neurons of both enteric nervous systems in plexuses of the jejunum after 1 h mesenteric ischemia and 1 h reperfusion. Differences were predominantly detected in the myenteric plexus; they were seen in change of the neuronal shape, in the arrangement of neurons and in intensity of their staining. The NADPH-d positivity was absent in the intestinal crypts. After 1 h ischemia and 24 h reperfusion, the NADPH-d activity was gradually increased, but it was lower in comparison with the control group. On the 30th day following the ischemia/reperfusion there were no changes in NADPH-d positivity compared with the control animals. These results indicated that the jejunal ischemia/reperfusion has affected the neurons of the enteric nervous system of adult rats and resulted in the early decrease of NADPH-d positivity 1 h of the reperfusion insult. The gradual increasing of NADPH-d activity in 24 h following the reperfusion could be considered as a result of the plasticity process. On the 30(th) day after the ischemia/reperfusion all histochemical changes were returned to the control levels.  相似文献   

9.
The involvement of nitric oxide (*NO) in oxidative stress in the rat gastrocnemius muscle subjected to ischemia/reperfusion injury was investigated using a specific and sensitive chemiluminescence (CL) method for measurement of both membrane lipid peroxide and total tissue antioxidant capacity (TRAP). In addition, inhibitors of nitric oxide synthase enzymes were used. The CL time-course curve increased dramatically after 1, 2, and 4 h of reperfusion, reaching values about 12 times higher than those of both control and ischemic rats. Initial velocity (V0) increased from 13.6 cpm mg protein(-1) min(-1) in the ischemic group, to 7341-8524 cpm mg protein(-1) min(-1) following reperfusion. The administration of L-NAME prior to reperfusion significantly reduced (p<0.007) the time-course of the CL curve, decreasing the V(0) value by 51% and preventing antioxidant consumption for 1h following reperfusion. No significant change in CL time-course curve and TRAP values were observed with aminoguanidine treatment. On contrary, after 4h following reperfusion, pre treatment with aminoguanidine led to a significant decrease (p < 0.0001) in the time-course of the CL curve, where V0 decreased by 75% and TRAP returned to control levels. No significant change in CL time-course curve and TRAP values were observed with L-NAME treatment. When RT-PCR was carried out with an iNOS-specific primer, a single band was detected in RNA extracted from muscle tissue of only the 4 h ischemia/4 h reperfusion group. No bands were found in either the control, 4 h ischemia or 4 h ischemia/1 h reperfusion groups. Based on these results, we conclude that *NO plays an important role in oxidative stress injury, possibly via -ONOO, in skeletal muscle subjected to ischemia/reperfusion. Our results also show that cNOS isoenzymes are preferentially involved in *NO generation at the beginning of reperfusion and that iNOS isoenzyme plays an important role in reperfusion injury producing *NO later in the process.  相似文献   

10.
This study evaluated the effects of the selective inducible nitric oxide synthase (iNOS) inhibitor N-[3-(aminomethyl)benzyl]acetamidine (1400W) on the microcirculation in reperfused skeletal muscle. The cremaster muscles from 32 rats underwent 5 h of ischemia followed by 90 min of reperfusion. Rats received either 3 mg/kg 1400W or PBS subcutaneously before reperfusion. We found that blood flow in reperfused muscles was <45% of baseline in controls but sharply recovered to near baseline levels in 1400W-treated animals. There was a significant (P < 0.01 to P < 0.001) difference between the two groups at each time point throughout the 90 min of reperfusion. Vessel diameters remained <80% of baseline in controls during reperfusion, but recovered to the baseline level in the 1400W group by 20 min, and reached a maximum of 121 +/- 14% (mean +/- SD) of baseline in 10- to 20-micro m arterioles, 121 +/- 6% in 21- to 40-micro m arterioles, and 115 +/- 8% in 41- to 70-micro m arteries (P < 0.01 to P < 0.001). The muscle weight ratio between ischemia-reperfused (left) and non-ischemia-reperfused (right) cremaster muscles was 193 +/- 42% of normal in controls and 124 +/- 12% in the 1400W group (P < 0.001). Histology showed that neutrophil extravasation and edema were markedly reduced in 1400W-treated muscles compared with controls. We conclude that ischemia-reperfusion leads to increased generation of NO from iNOS in skeletal muscle and that the selective iNOS inhibitor 1400W reduces the negative effects of ischemia-reperfusion on vessel diameter and muscle blood flow. Thus 1400W may have therapeutic potential in treatment of ischemia-reperfusion injury.  相似文献   

11.
Endothelin (ET) receptor antagonism protects from ischemia-reperfusion injury. We hypothesized that the cardioprotective effect is related to nitric oxide (NO) bioavailability. Buffer-perfused rat and mouse hearts were subjected to ischemia and reperfusion. At the onset of ischemia, the rat hearts received vehicle, the dual endothelin type A/type B (ETA/ETB) receptor antagonist bosentan (10 microM), the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA; 100 microM), the combination of bosentan and L-NMMA or the combination of bosentan, L-NMMA, and the NO substrate L-arginine (1 mM). Hearts from wild-type and endothelial NO synthase (eNOS)-deficient mice received either vehicle or bosentan. Myocardial performance, endothelial function, NO outflow, and eNOS expression were monitored. Bosentan significantly improved myocardial function during reperfusion in rats and in wild-type mice, but not in eNOS-deficient mice. The functional protection afforded by bosentan was inhibited by L-NMMA, whereas it was restored by L-arginine. Myocardial expression of eNOS (immunoblotting) increased significantly in bosentan-treated rat hearts compared with vehicle hearts. Recovery of NO outflow during reperfusion was enhanced in the bosentan-treated rat heart. The endothelium-dependent vasodilator adenosine diphosphate increased coronary flow by 18 +/- 9% at the end of reperfusion in the bosentan group, whereas it reduced coronary flow by 7 +/- 5% in the vehicle group (P < 0.001). The response to the endothelium-independent dilator sodium nitroprusside was not different between the two groups. In conclusion, the dual ETA/ETB receptor antagonist bosentan preserved endothelial and cardiac contractile function during ischemia and reperfusion via a mechanism dependent on endothelial NO production.  相似文献   

12.
This study compared the effects of rosuvastatin on left ventricular infarct size in mice after permanent coronary occlusion vs. 60 min of ischemia followed by 24 h of reperfusion. Statins can inhibit neutrophil adhesion, increase nitric oxide synthase (NOS) expression, and mobilize progenitor stem cells after ischemic injury. Mice received blinded and randomized administration of rosuvastatin (20 mg.kg(-1).day(-1)) or saline from 2 days before surgery until death. After 60 min of ischemia with reperfusion, infarct size was reduced by 18% (P = 0.03) in mice randomized to receive rosuvastatin (n = 18) vs. saline (n = 22) but was similar after permanent occlusion in rosuvastatin (n = 17) and saline (n = 20) groups (P = not significant). Myocardial infarct size after permanent left anterior descending coronary artery occlusion (n = 6) tended to be greater in NOS3-deficient mice than in the wild-type saline group (33 +/- 4 vs. 23 +/- 2%, P = 0.08). Infarct size in NOS3-deficient mice was not modified by treatment with rosuvastatin (34 +/- 5%, n = 6, P = not significant vs. NOS3-deficient saline group). After 60 min of ischemia-reperfusion, neutrophil infiltration was similar in rosuvastatin and saline groups as was the percentage of CD34(+), Sca-1(+), and c-Kit(+) cells. Left ventricular NOS3 mRNA and protein levels were unchanged by rosuvastatin. Rosuvastatin reduces infarct size after 60 min of ischemia-reperfusion but not after permanent coronary occlusion, suggesting a potential anti-inflammatory effect. Although we were unable to demonstrate that the myocardial protection was due to an effect on neutrophil infiltration, stem cell mobilization, or induction of NOS3, these data suggest that rosuvastatin may be particularly beneficial in myocardial protection after ischemia-reperfusion injury.  相似文献   

13.
缺血再灌注对小鼠肠神经丛nNOS 和iNOS表达的影响   总被引:1,自引:0,他引:1  
目的观察缺血再灌注后小鼠回肠神经型一氧化氮合酶(neuron alnitric oxide synthase,nNOS)和诱导型一氧化氮合酶(induciblenitric oxide synthase,iNOS)的表达,探讨肠缺血再灌注损伤(ischemia-reperfusion injury,IRI)的发生机制。方法采用小鼠肠系膜上动脉缺血再灌注模型,根据不同再灌注时间对小鼠随机分1d组、3d组、5d组、7d组、对照组和假手术组,用SP法检测小鼠回肠nNOS和iNOS的表达情况。结果与对照组和假手术组相比较,nNOS在再灌注1d后开始在肌间神经丛持续高表达(P<0.01);而iNOS在再灌注3d后开始在肌间神经丛持续高表达(P<0.05)。结论nNOS和iNOS在肠缺血再灌注后的表达增强,提示一氧化氮及一氧化氮合酶与肠神经节细胞在缺血再灌注中的损伤有着密切关系。  相似文献   

14.
It is controversial whether nitric oxide (NO) is protective or deleterious against ischemia-reperfusion injury. We examined the effect of NO on PKC isoform translocation and protection against ischemia-reperfusion injury in perfused heart. An NO synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester, 3.0 microM), administered only during reperfusion but not during ischemia, inhibited the translocation of PKC-alpha, -delta and -epsilon isoforms to the nucleus-myofibril fraction and the translocation of PKC-alpha to the membrane fraction after ischemia (20 min) and reperfusion (10 min) in the perfused rat heart. NO donors, 3-morpholinosydnonimine (SIN-1) or S-nitroso-N-acetylpenicillamine (SNAP) activated purified PKC in vitro. SIN-1 also induced PKC isoform translocation in perfused heart. On the other hand, PKC selective inhibitor, calphostin C (0.2 microM) or chelerythrine (1.0 microM), aggravated the contractile dysfunction of ischemic heart during reperfusion, when they were perfused during reperfusion. These data suggest that NO generated during reperfusion following ischemia activates PKC isoforms and may protect the heart against contractile dysfunction in the perfused rat heart.  相似文献   

15.
In this study, the cardioprotective effects of nitric oxide (NO)-aspirin, the nitroderivative of aspirin, were compared with those of aspirin in an anesthetized rat model of myocardial ischemia-reperfusion. Rats were given aspirin or NO-aspirin orally for 7 consecutive days preceding 25 min of myocardial ischemia followed by 48 h of reperfusion (MI/R). Treatment groups included vehicle (Tween 80), aspirin (30 mg.kg(-1).day(-1)), and NO-aspirin (56 mg.kg(-1).day(-1)). NO-aspirin, compared with aspirin, displayed remarkable cardioprotection in rats subjected to MI/R as determined by the mortality rate and infarct size. Mortality rates for vehicle (n = 23), aspirin (n = 22), and NO-aspirin groups (n = 22) were 34.8, 27.3, and 18.2%, respectively. Infarct size of the vehicle group was 44.5 +/- 2.7% of the left ventricle (LV). In contrast, infarct size of the LV decreased in the aspirin- and NO-aspirin-pretreated groups, 36.7 +/- 1.8 and 22.9 +/- 4.3%, respectively (both P < 0.05 compared with vehicle group; P < 0.05, NO-aspirin vs. aspirin ). Moreover, NO-aspirin also improved ischemia-reperfusion-induced myocardial contractile dysfunction on postischemic LV developed pressure. In addition, NO-aspirin downregulated inducible NO synthase (iNOS; 0.37-fold, P < 0.01) and cyclooxygenase-2 (COX-2; 0.61-fold, P < 0.05) gene expression compared with the vehicle group after 48 h of reperfusion. Treatment with N(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg), a nonselective NOS inhibitor, aggravated myocardial damage in terms of mortality and infarct size but attenuated effects when coadministered with NO-aspirin. L-NAME administration did not alter the increase in iNOS and COX-2 expression but did reverse the NO-aspirin-induced inhibition of expression of the two genes. The beneficial effects of NO-aspirin appeared to be derived largely from the NO moiety, which attenuated myocardial injury to limit infarct size and better recovery of LV function following ischemia and reperfusion.  相似文献   

16.
Reperfusion injury is remarkable clinical issue that needs to be resolved as ischemia-reperfusion is a common phenomenon encountered in numerous clinical situations. The present communication report the involvement of nitric oxide (NO) in cardioprotection offered by flavonoids (rutin and quercetin) against myocardial ischemia reperfusion. Rutin produced better cardioprotection than quercetin in normal and diabetic rats. The observed cardioprotection offered with quercetin and rutin was partially abolished by prior administration of nitric oxide synthase inhibitor, L-NAME (N-nitro-L-arginine methyl ester) in both normal and diabetic rats. L-NAME abolished the cardioprotective actions of rutin more strongly than the cardioprotective actions of quercetin. However, mechanistic study with NOS inhibitor implied the possible partial role of nitric oxide in infarct size limiting effect of quercetin and rutin  相似文献   

17.
We have used electron paramagnetic resonance to investigate the time course of nitric oxide (NO) generation and its susceptibility to inhibitors of nitric oxide synthase (NOS) in ischemia-reperfusion (IR) injury to rat skeletal muscle in vivo. Significant levels of muscle nitroso-heme complexes were detected 24 h postreperfusion, but not after at 0.05, 3, and 8 h of reperfusion. The levels of muscle nitroso-heme complexes were not decreased by the NOS inhibitor N-nitro-L-arginine methyl ester as a single dose (30 mg/kg) prior to reperfusion or as multiple doses continued throughout the reperfusion (total administered, 120 mg/kg) or by the potent NOS inhibitor S-methylisothiourea (3 mg/kg). In contrast, nitroso-heme levels were reduced by the glucocorticoid dexamethasone (2.5 mg/kg). Muscle necrosis in vitro did not result in the formation of nitroso-heme complexes. The finding that reperfusion after ischemia is necessary for NO formation suggests that an inflammatory pathway is responsible for NOS-independent NO formation in IR injury to skeletal muscle.  相似文献   

18.
The present study was aimed to evaluate the efficacy of L-arginine on mitochondrial function in ischemic and reperfusion (I/R) induced hepatic injury. Adult Wistar rat were subjected to 1 h of partial liver ischemia followed by 3 hour reperfusion. Eighteen wistar rats were divided into three groups viz. sham-operated control group (I) (n = 6), ischemia and reperfusion (I/R) group (II) (n = 6), L-arginine treated group (100 mg/kg body weight/daily by oral route for 7 days before induced ischemia reperfusion maneuver) (III) (n = 6). Mitochondrial injury was assessed in terms of decreased (P < 0.05) activities of mitochondrial antioxidant enzymes (GSH, SOD, CAT), respiratory marker enzymes (NADH dehydrogenase, cytochrome c oxidases) and hepatocytes nitric oxide production. Pre-treatment with L-arginine (10 mg/kg/p.o. for 7 days) significantly counteracted the alternations of hepatic enzymes and mitochondrial respiratory and antioxidant enzymes. In addition, electron microscopy and histopathology study showed the restoration of cellular normalcy and accredits the cytoprotective role of L-arginine against I/R induced hepatocellular injury. On the basis of these findings it may be concluded that L-arginine protects mitochondrial function in hepatic ischemic and reperfused liver.  相似文献   

19.
We examined the role of the nitric oxide (NO) pathway on ischemia-reperfusion injury via the use of isolated perfused guinea pig lungs. We administered both L-Arginine and N-nitro-L-arginine methyl ester (L-NAME) to the lungs in or after 3 h of ischemia. We observed pulmonary artery pressures as well as tissue and perfusate malondialdehyde (MDA) and glutathione (GSH) levels. We observed that L-NAME significantly increased both tissue and perfusate GSH levels and pulmonary artery pressures, but it decreased both tissue and perfusate MDA levels. On the other hand, L-arginine significantly decreased pulmonary artery pressure and both tissue and perfusate glutathione levels, but it increased both tissue and perfusate MDA levels. Electron microscopic evaluation supported our findings by indicating the preservation of lamellar bodies of type II pneumocytes. We concluded that L-NAME administration during reperfusion improves lung recovery from ischemic injury.  相似文献   

20.
The aim of this study was to investigate the role of nitric oxide (NO) in hepatic ischemia-reperfusion (I/R) injury in rats. Immunohistochemistry was used to examine the protein expression of endothelial and inducible nitric oxide synthases (eNOS, iNOS) and nitrotyrosine after I/R challenges to the liver, and blood levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactic dehydrogenase (LDH), hydroxyl radical and NO were measured before ischemia and after reperfusion. Ischemia was induced by occlusion of the common hepatic artery and portal vein for 40 min, followed by reperfusion for 90 min. Reperfusion of the liver induced a significant increase in the blood concentrations of AST, ALT, LDH (n = 8; P < 0.001), hydroxyl radical (n = 8; P < 0.001) and NO (n = 8; P < 0.01). The eNOS, iNOS, nitrotyrosine, SOD1 and SOD2 protein expression was also found to increase significantly after reperfusion (n = 3). Administration of the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) (n = 8) had a protective effect on the I/R-related injury, but the NO donor L-arginine (L-Arg) (n = 8) potentiated the damage caused by I/R. These results suggest that reperfusion of the liver induces expression of NOS, which is related to the elevation of blood NO. The increase in hydroxyl radical concentration was accompanied by an increase in antioxidant enzyme expression (SOD1 and SOD2), and an increase in nitrotyrosine expression was also observed, reflecting the increased production of NO and oxygen radicals. We concluded from the protective effect of L-NAME and the potentiation by L-Arg that NOS expression and increases in NO and hydroxyl radical production have deleterious effects on the response to I/R in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号