首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The angiotensin II type 1A receptor (AT(1A)R) plays an important role in cardiovascular function and as such represents a primary target for therapeutic intervention. The AT(1A)R is coupled via G(q) to the activation of phospholipase C, the hydrolysis of phosphoinositides, release of calcium from intracellular stores, and the activation of protein kinase C (PKC). We show here that PKCbetaI and PKCbetaII exhibit different membrane translocation patterns in response to AT(1A)R agonist activation. Whereas PKCbetaII translocation to the membrane is transient, PKCbetaI displays additional translocation responses: persistent membrane localization and oscillations between the membrane and cytosol following agonist removal. The initial translocation of PKCbetaI requires the release of calcium from intracellular stores and the activation of phospholipase C, but persistent membrane localization is dependent upon extracellular calcium influx. The mutation of any of the three PKC phosphorylation consensus sites (Ser-331, Ser-338, and Ser-348) localized within the AT(1A)R C-tail significantly increases the probability that persistent increases in diacylglycerol levels and PKCbetaI translocation responses will be observed. The persistent increase in AT(1A)R-mediated diacylglycerol formation is mediated by the activation of phospholipase D. Although the persistent PKCbetaI membrane translocation response is absolutely dependent upon the PKC activity-dependent recruitment of an extracellular calcium current, it does not require the activation of phospholipase D. Taken together, we show that the patterning of AT(1A)R second messenger response patterns is regulated by heterologous desensitization and PKC isoform substrate specificity.  相似文献   

2.
The intracellular localization of protein kinase C (PKC) is important for the regulation of its biological activity. Recently, it was reported that, whereas phorbol esters such as PMA induce prolonged translocation of PKC to the plasma membrane, with physiological stimuli, the translocation of PKC is transient and followed by rapid return to the cytoplasm. In addition, this membrane dissociation of PKC was shown to require both the kinase activity of PKC and the phosphorylation of its carboxyl terminus autophosphorylation sites. However, the detailed molecular mechanism of PKC reverse translocation remains obscure. We demonstrated that in porcine polymorphonuclear leucocytes (PMNs), phenylarsine oxide (PAO), a putative protein tyrosine phosphatase (PTPase) inhibitor, induced reverse translocation of PMA-stimulated PKCbetaII. Hydrogen peroxide (H(2)O(2)) in combination with vanadate, both of which are PTPase inhibitors, also induced reverse translocation of PKCbetaII. H(2)O(2) or vanadate alone had little effect on PMA-induced PKCbetaII translocation. Furthermore, genistein and ethanol, which are inhibitors of tyrosine kinase and phospholipase D, respectively, prevented the PKCbetaII reverse translocation induced by the PTPase inhibitors. These results indicate, for the first time, that the tyrosine phosphorylation/phospholipase D pathway may be involved in the process of membrane dissociation of PKC.  相似文献   

3.
Metabotropic glutamate receptors (mGluRs) coupled via Gq to the hydrolysis of phosphoinositides stimulate Ca(2+) and PKCbetaII oscillations in both excitable and non-excitable cells. In the present study, we show that mGluR1a activation stimulates the repetitive plasma membrane translocation of each of the conventional and novel, but not atypical, PKC isozymes. However, despite similarities in sequence and cofactor regulation by diacyglycerol and Ca(2+), conventional PKCs exhibit isoform-specific oscillation patterns. PKCalpha and PKCbetaI display three distinct patterns of activity: (1) agonist-independent oscillations, (2) agonist-stimulated oscillations, and (3) persistent plasma membrane localization in response to mGluR1a activation. In contrast, only agonist-stimulated PKCbetaII translocation responses are observed in mGluR1a-expressing cells. PKCbetaI expression also promotes persistent increases in intracellular diacyglycerol concentrations in response to mGluR1a stimulation without affecting PKCbetaII oscillation patterns in the same cell. PKCbetaII isoform-specific translocation patterns are regulated by specific amino acid residues localized within the C-terminal PKC V5 domain. Specifically, Asn-625 and Lys-668 localized within the V5 domain of PKCbetaII cooperatively suppress PKCbetaI-like response patterns for PKCbetaII. Thus, redundancy in PKC isoform expression and differential decoding of second messenger response provides a novel mechanism for generating cell type-specific responses to the same signal.  相似文献   

4.
Sustained activation of protein kinase C (PKC) isoenzymes alpha and betaII leads to their translocation to a perinuclear region and to the formation of the pericentrion, a PKC-dependent subset of recycling endosomes. In MCF-7 human breast cancer cells, the action of the PKC activator 4beta-phorbol-12-myristate-13-acetate (PMA) evokes ceramide formation, which in turn prevents PKCalpha/betaII translocation to the pericentrion. In this study we investigated the mechanisms by which ceramide negatively regulates this translocation of PKCalpha/betaII. Upon PMA treatment, HEK-293 cells displayed dual phosphorylation of PKCalpha/betaII at carboxyl-terminal sites (Thr-638/641 and Ser-657/660), whereas in MCF-7 cells PKCalpha/betaII were phosphorylated at Ser-657/660 but not Thr-638/641. Inhibition of ceramide synthesis by fumonisin B1 overcame the defect in PKC phosphorylation and restored translocation of PKCalpha/betaII to the pericentrion. To determine the involvement of ceramide-activated protein phosphatases in PKC regulation, we employed small interference RNA to silence individual Ser/Thr protein phosphatases. Knockdown of isoforms alpha or beta of the catalytic subunits of protein phosphatase 1 not only increased phosphorylation of PKCalpha/betaII at Thr-638/641 but also restored PKCbetaII translocation to the pericentrion. Mutagenesis approaches in HEK-293 cells revealed that mutation of either Thr-641 or Ser-660 to Ala in PKCbetaII abolished sequestration of PKC, implying the indispensable roles of phosphorylation of PKCalpha/betaII at those sites for their translocation to the pericentrion. Reciprocally, a point mutation of Thr-641 to Glu, which mimics phosphorylation, in PKCbetaII overcame the inhibitory effects of ceramide on PKC translocation in PMA-stimulated MCF-7 cells. Therefore, the results demonstrate a novel role for carboxyl-terminal phosphorylation of PKCalpha/betaII in the translocation of PKC to the pericentrion, and they disclose specific regulation of PKC autophosphorylation by ceramide through the activation of specific isoforms of protein phosphatase 1.  相似文献   

5.
6.
Epidermal growth factor (EGF) protects the intestinal epithelial tight junctions from acetaldehyde-induced insult. The role of phospholipase Cgamma (PLCgamma) and protein kinase C (PKC) isoforms in the mechanism of EGF-mediated protection of tight junction from acetaldehyde was evaluated in Caco-2 cell monolayers. EGF-mediated prevention of acetaldehyde-induced decrease in transepithelial electrical resistance and an increase in inulin permeability, and subcellular redistribution of occludin and ZO-1 was attenuated by reduced expression of PLCgamma1 by short hairpin RNA. EGF induced a rapid activation of PLCgamma1 and PLC-dependent membrane translocation of PKCepsilon and PKCbetaI. Inhibition of PKC activity or selective interference of membrane translocation of PKCepsilon and PKCbetaI by RACK interference peptides attenuated EGF-mediated prevention of acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. BAPTA-AM and thapsigargin blocked EGF-induced membrane translocation of PKCbetaI and attenuated EGF-mediated prevention of acetaldehyde-induced disruption of tight junctions. EGF-induced translocation of PKCepsilon and PKCbetaI was associated with organization of F-actin near the perijunctional region. This study shows that PLCgamma-mediated activation of PKCepsilon and PKCbetaI and intracellular calcium is involved in EGF-mediated protection of tight junctions from acetaldehyde-induced insult.  相似文献   

7.
RACK1 (receptor for activated C kinase 1) is an abundant scaffolding protein, which binds active PKCbetaII (protein kinase C betaII) increasing its activity in vitro. RACK1 has also been described as a component of the small ribosomal subunit, in proximity to the mRNA exit channel. In the present study we tested the hypothesis that PKCbetaII plays a specific role in translational control and verified whether it may associate with the ribosomal machinery. We find that specific inhibition of PKCbetaI/II reduces translation as well as global PKC inhibition, but without affecting phosphorylation of mTOR (mammalian target of rapamycin) targets. These results suggest that PKCbetaII acts as a specific PKC isoform affecting translation in an mTOR-independent fashion, possibly close to the ribosomal machinery. Using far-Western analysis, we found that PKCbetaII binds ribosomes in vitro. Co-immunoprecipitation studies indicate that a small but reproducible pool of PKCbetaII is associated with membranes containing ribosomes, suggesting that in vivo PKCbetaII may also physically interact with the ribosomal machinery. Polysomal profiles show that stimulation of PKC results in an increased polysomes/80S ratio, associated with a shift of PKCbetaII to the heavier part of the gradient. A RACK1-derived peptide that inhibits the binding of active PKCbetaII to RACK1 reduces the polysomes/80S ratio and methionine incorporation, suggesting that binding of PKCbetaII to RACK1 is important for PKC-mediated translational control. Finally, down-regulation of RACK1 by siRNA (small interfering RNA) impairs the PKC-mediated increase of translation. Taken together the results of the present study show that PKCbetaII can act as a specific PKC isoform regulating translation, in an mTOR-independent fashion, possibly close to the ribosomal machinery.  相似文献   

8.
Previous studies showed that short term exposure of cells to high glucose destabilized protein kinase C (PKC) betaII mRNA, whereas PKCbetaI mRNA levels remained unaltered. Because PKCbeta mRNAs share common sequences other than the PKCbetaII exon encoding a different carboxyl terminus, we examined PKCbetaII mRNA for a cis-acting region that could confer glucose-induced destabilization. A beta-globin/growth hormone reporter con struct containing the PKCbetaII exon was transfected into human aorta and rat vascular smooth muscle cells (A10) to follow glucose-induced destabilization. Glucose (25 mm) exposure destabilized PKCbetaII chimeric mRNA but not control mRNA. Deletion analysis and electrophoretic mobility shift assays followed by UV cross-linking experiments demonstrated that a region introduced by inclusion of the betaII exon was required to confer destabilization. Although a cis-acting element mapped to 38 nucleotides within the betaII exon was necessary to bestow destabilization, it was not sufficient by itself to confer complete mRNA destabilization. Yet, in intact cells antisense oligonucleotides complementary to this region blocked glucose-induced destabilization. These results suggest that this region must function in context with other sequence elements created by exon inclusion involved in affecting mRNA stability. In summary, inclusion of an exon that encodes PKCbetaII mRNA introduces a cis-acting region that confers destabilization to the mRNA in response to glucose.  相似文献   

9.
Parathyroid hormone (PTH) inhibits Na+-K+-ATPase activity by serine phosphorylation of the alpha1 subunit through protein kinase C (PKC)- and extracellular signal-regulated kinase (ERK)-dependent pathways. Based on previous studies we postulated that PTH regulates sodium pump activity through isoform-specific PKC-dependent activation of ERK. In the present work utilizing opossum kidney cells, a model of renal proximal tubule, PTH stimulated membrane translocation of PKCalpha by 102 +/- 16% and PKCbetaI by 41 +/- 7% but had no effect on PKCbetaII and PKCzeta. Both PKCalpha and PKCbetaI phosphorylated the Na+-K+-ATPase alpha1 subunit in vitro. PTH increased the activity of PKCalpha but not PKCbetaI. Coimmunoprecipitation assays demonstrated that treatment with PTH enhanced the association between Na+-K+-ATPase alpha1 subunit and PKCalpha, whereas the association between Na+-K+-ATPase alpha1 subunit and PKCbetaI remained unchanged. A PKCalpha inhibitory peptide blocked PTH-stimulated serine phosphorylation of the Na+-K+-ATPase alpha1 subunit and inhibition of Na+-K+-ATPase activity. Pharmacologic inhibition of MEK-1 blocked PTH-stimulated translocation of PKCalpha, whereas transfection of constitutively active MEK-1 cDNA induced translocation of PKCalpha and increased phosphorylation of the Na+-K+-ATPase alpha1 subunit. In contrast, PTH-stimulated ERK activation was not inhibited by pretreatment with the PKCalpha inhibitory peptide. Inhibition of PKCalpha expression by siRNA did not inhibit PTH-mediated ERK activation but significantly reduced PTH-mediated phosphorylation of the Na+-K+-ATPase alpha1 subunit. Pharmacologic inhibition of phosphoinositide 3-kinase blocked PTH-stimulated ERK activation, translocation of PKCalpha, and phosphorylation of the Na+-K+-ATPase alpha1 subunit. We conclude that PTH stimulates Na+-K+-ATPase phosphorylation and decreases the activity of Na+-K+-ATPase by ERK-dependent activation of PKCalpha.  相似文献   

10.
To investigate a putative involvement of protein kinase C (PKC) isoforms in supporting neuroblastoma cell proliferation, SK-N-BE(2) neuroblastoma cells were transfected with expression vectors coding for the C2 and V5 regions from different PKC isoforms. These structures have been suggested to inhibit the activity of their corresponding PKC isoform. The PKC fragments were fused to enhanced green fluorescent protein to facilitate the detection of transfected cells. Expression of the C2 domain from a classical PKC isoform (PKCalpha), but not of C2 domains from novel PKCdelta or PKCepsilon, suppressed the number of neuroblastoma cells positive for cyclin A and bromodeoxyuridine incorporation. This indicates a role for a classical isoform in regulating proliferation of these cells. Among the V5 fragments from PKCalpha, PKCbetaI, and PKCbetaII, the PKCbetaI V5 had the most suppressive effect on proliferation markers, and this fragment also displaced PKCbetaI from the nucleus. Furthermore, a PKCbeta-specific inhibitor, LY379196, suppressed the phorbol ester- and serum-supported growth of neuroblastoma cells. There was a marked enhancement by LY379196 of the growth-suppressive and/or cytotoxic effects of paclitaxel and vincristine. These results indicate that PKCbetaI has a positive effect on the growth and proliferation of neuroblastoma cells and demonstrate that inhibition of PKCbeta may be used to enhance the effect of microtubule-interacting anticancer agents on neuroblastoma cells.  相似文献   

11.
Previous research showed that protein kinase C alpha (PKC alpha) translocated to the perinuclear region and activated phospholipase D1, but the mechanism involved was not clear. Here, we provide evidence that Phe 663 (the 10th amino acid from C-terminus) of PKC alpha is essential for its translocation. A point mutation (F663D) completely blocked PKC alpha's binding to and activation of phospholipase D1. Further studies showed that deletion of the C-terminal nine amino acids of PKC alpha did not alter its translocation to the perinuclear region but deletion of the C-terminal 10 amino acids and the F663D mutation abolished this translocation. The F663D mutant was found to be resistant to dephosphorylation, which might account for its inability to translocate to the perinuclear region and activate PLD1, since dephosphorylation of PKC alpha is required for its relocation from plasma membrane to the perinuclear region.  相似文献   

12.
Expression of the COOH-terminal residues 179-330 of the LSP1 protein in the LSP1(+) B-cell line W10 increases anti-IgM- or ionomycin-induced apoptosis, suggesting that expression of this LSP1 truncate (B-LSP1) interferes with a Ca(2+)-dependent step in anti-IgM signaling. Here we show that inhibition of Ca(2+)-dependent conventional protein kinase C (cPKC) isoforms with G?6976 increases anti-IgM-induced apoptosis of W10 cells and that expression of B-LSP1 inhibits translocation of PKCbetaI but not of PKCbetaII or PKCalpha to the plasma membrane. The increased anti-IgM-induced apoptosis is partially reversed by overexpression of PKCbetaI. This shows that the B-LSP1-mediated inhibition of PKCbetaI leads to increased anti-IgM-induced apoptosis. Expression of constitutively active PKCbetaI protein in W10 cells activates the mitogen-activated protein kinase ERK2, whereas expression of B-LSP1 inhibits anti-IgM-induced activation of ERK2, suggesting that anti-IgM-activated PKCbetaI is involved in the activation of ERK2 and that inhibition of ERK2 activation contributes to the increased anti-IgM-induced apoptosis. Pull-down assays show that LSP1 interacts with PKCbetaI but not with PKCbetaII or PKCalpha in W10 cell lysates, while in vitro LSP1 and B-LSP1 bind directly to PKCbetaI. Thus, B-LSP1 is a unique reagent that binds PKCbetaI and inhibits anti-IgM-induced PKCbetaI translocation, leading to inhibition of ERK2 activation and increased apoptosis.  相似文献   

13.
In addition to the classical role of protein kinase C (PKC) as a mediator of transmembrane signals initiated at the plasma membrane, there is also significant evidence to suggest that a more sustained PKC activity is necessary for a variety of long term cellular responses. To date, the subcellular localization of PKC during sustained activation has not been extensively studied. We report here that long term activation of PKC (1 h) leads to the selective translocation of classical PKC isoenzymes, alpha and betaII, to a juxtanuclear compartment. Juxtanuclear translocation of PKC required an intact C1 and C2 domain, and occurred in a microtubule-dependent manner. This juxtanuclear compartment was localized close to the Golgi complex but displayed no overlap with Golgi markers, and was resistant to dispersal with Golgi disrupting agents, brefeldin A and nocodazole. Further characterization revealed that PKCalpha and betaII translocated to a compartment that colocalized with the small GTPase, rab11, which is a marker for the subset of recycling endosomes concentrated around the microtubule-organizing center/centrosome. Analysis of the functional consequence of cPKC translocation on membrane recycling demonstrated a cPKC-dependent sequestration of transferrin, a marker of membrane recycling, in the cPKC compartment. These results identify a novel site for cPKC translocation and define a novel function for the sustained activation of PKCalpha and betaII in regulation of recycling components.  相似文献   

14.
15.
The protein kinase C (PKC) was secreted from thrombin-stimulated human platelets in a time- and dose-dependent manner. The PKC specific inhibitors Ro31-8220 (0.05 microM) and GF 109203X (0.5 microM) totally inhibited the secreted kinase activity. Western blot analysis of the secretory components showed reactivity to PKCalpha, PKCbetaII, and PKCdelta antibodies, but not to PKCbetaI, and p42/44 MAPK, although they were present in lysed platelets. The fractionation of platelets secreted components showed that PKC activity increased in both soluble and microparticle fractions after thrombin treatments. This is the first report demonstrating that activated human platelets selectively secrete protein kinase C isozymes. Protein kinase C secreted by platelets in this unique manner may have an extracellular role in the plasma, and may regulate cellular functions, including remodeling of vascular endothelial cells.  相似文献   

16.
The regulation of phospholipase D1 (PLD1), which has been shown to be activated by protein kinase C (PKC) alpha, was investigated in the human melanoma cell lines. In G361 cell line, which lacks PKCalpha, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced PLD activation was potentiated by introducing PKCalpha by the adenovirus vector. The kinase-negative PKCalpha elevated TPA-induced PLD activity less significantly than the wild type. A PKC specific inhibitor GF109203X lowered PLD activation in the cells expressing PKCalpha, but did not prevent PLD potentiation induced by the kinase-negative PKCalpha. Expression of PKCbetaII and the kinase-negative PKCbetaII enhanced TPA-stimulated PLD activity moderately in MeWo cell line, in which PKCbetaII is absent. Furthermore, the TPA treatment increased the association of PKCalpha, PKCbetaII, and their kinase-negative mutants with PLD1 in melanoma cells. These results indicate that PLD1 is dually regulated through phosphorylation as well as through the protein-protein interaction by PKCalpha, and probably by PKCbetaII, in vivo.  相似文献   

17.
We report a selective, differential stimulus-dependent enrichment of the actin-associated protein alpha-actinin and of isoforms of the signaling enzyme protein kinase C (PKC) in the neutrophil cytoskeleton. Chemotactic peptide, activators of PKC, and cell adhesion all induce a significant increase in the amount of cytoskeletal alpha-actinin and actin. Increased association of PKCbetaI and betaII with the cytoskeletal fraction of stimulated cells was also observed, with phorbol ester being more effective than chemotactic peptide. A fraction of phosphatase 2A was constitutively associated with the cytoskeleton independent of cell activation. None of the stimuli promoted association of vinculin or myosin II with the cytoskeleton. Phosphatase inhibitors okadaic acid and calyculin A prevented increases in cytoskeletal actin, alpha-actinin, and PKCbetaII induced by phorbol ester, suggesting the requirement for phosphatase activity in these events. Increases in cytoskeletal alpha-actinin and PKCbetaII showed differing sensitivity to agents that prevent actin polymerization (cytochalasin D, latrunculin A). Latrunculin A (1 microM) completely blocked PMA-induced increases in cytoskeletal alpha-actinin but reduced cytoskeletal recruitment of PKCbetaII only by 16%. Higher concentrations of latrunculin A (4 microM), which almost abolished the cytoskeletal actin pool, reduced cytoskeletal PKCbetaII by 43%. In conclusion, a selective enrichment of cytoskeletal and signaling proteins in the cytoskeleton of human neutrophils is induced by specific stimuli.  相似文献   

18.
In a previous study, we showed that protein kinase C betaII (PKC betaII) translocated to a novel juxtanuclear compartment as observed in several cell types (Becker, K. P., and Hannun, Y. A. (2003) J. Biol. Chem. 278, 52747-52754). In this study, we noted the absence of this translocation in MCF-7 breast cancer cells, and we examined the mechanisms underlying this selectivity of response. We show that sustained stimulation of PKC betaII with 4beta-phorbol 12-myristate 13-acetate (PMA) resulted in accumulation of ceramide in MCF-7 cells but not in those cells that showed juxtanuclear translocation of PKC betaII. Addition of exogenous ceramides or formation of endogenous ceramide by the action of bacterial sphingomyelinase prevented PMA-induced translocation of PKC betaII in HEK 293 cells. On the other hand, inhibition of ceramide accumulation with fumonisin B1 restored the ability of PMA to induce translocation of PKC betaII in MCF-7 cells. Taken together, the results showed that endogenous ceramide is both necessary and sufficient for preventing juxtanuclear translocation of PKC betaII in response to PMA. Investigation of the mechanisms of ceramide generation in response to PMA revealed that PMA activated the salvage pathway of ceramide formation and not the de novo pathway. This conclusion was based on the following: 1) the ability of fumonisin B1 but not myriocin to inhibit ceramide formation, 2) the ability of PMA to induce increases in palmitate-labeled ceramide only under chase labeling but not acute pulse labeling, 3) the induction of the levels of sphingosine but not dihydrosphingosine in response to PMA, and 4) induction of sphingomyelin hydrolysis in response to PMA. Together, these results define a novel pathway of regulated formation of ceramide, the salvage pathway, and they define a role for this pathway in regulating juxtanuclear translocation of PKC betaII.  相似文献   

19.
We have shown previously that insulin attenuates beta1-adrenergic receptor (beta1-AR)-mediated lipolysis via activation of protein kinase C (PKC) in rat adipocytes. This antilipolysis persists after removal of insulin and is independent of the phosphodiesterase 3B activity, and phorbol 12-myristate 13-acetate (PMA) could substitute for insulin to produce the same effect. Here, we attempted to identify the PKC isoform responsible for antilipolysis. Isolated adipocytes were treated with high and low concentrations of PMA for up to 6 h to degrade specific PKC isoforms. In the PMA-treated cells, the downregulation profiles of PKC isoforms alpha and betaI, but not betaII, delta, epsilon, or zeta, correlated well with a decrease of lipolysis-attenuating effect of PMA. After rats fasted for 24 h, adipocyte expression of PKC isoform alpha increased, while expression of PKCdelta decreased. Fasting did not change the potency of PMA to attenuate lipolysis, however. The lipolysis-attenuating effect of PMA was blocked by the PKCbetaI/betaII inhibitor LY 333531, but not by the PKCbetaII inhibitor CGP 53353 or the PKCdelta inhibitor rottlerin. These data suggest that PKCbetaI interacts with beta1-AR signaling and attenuates lipolysis in rat adipocytes.  相似文献   

20.
We have seen that protein kinase Calpha (PKCalpha) is transiently translocated to the plasma membrane by carbachol stimulation of neuroblastoma cells. This is induced by the Ca2+ increase, and PKCalpha does not respond to diacylglycerol (DAG). The unresponsiveness is dependent on structures in the catalytic domain of PKCalpha. This study was designed to investigate if and how the kinase activity and autophosphorylation are involved in regulating the translocation. PKCalpha enhanced green fluorescent protein translocation was studied in living neuroblastoma cells by confocal microscopy. Carbachol stimulation induced a transient translocation of PKCalpha to the plasma membrane and a sustained translocation of kinase-dead PKCalpha. In cells treated with the PKC inhibitor GF109203X, wild-type PKCalpha also showed a sustained translocation. The same effects were seen with PKCbetaI, PKCbetaII, and PKCdelta. Only kinase-dead and not wild-type PKCalpha translocated in response to 1,2-dioctanoylglycerol. To examine whether autophosphorylation regulates relocation to the cytosol, the autophosphorylation sites in PKCalpha were mutated to glutamate, to mimic phosphorylation, or alanine, to mimic the non-phosphorylated protein. After stimulation with carbachol, glutamate mutants behaved like wild-type PKCalpha, whereas alanine mutants behaved like kinase-dead PKCalpha. When the alanine mutants were treated with 1,2-dioctanoylglycerol, all cells showed a sustained translocation of the protein. However, neither carbachol nor GF109203X had any major effects on the level of autophosphorylation, and GF109203X potentiated the translocation of the glutamate mutants. We, therefore, hypothesize that 1) autophosphorylation of PKCalpha limits its sensitivity to DAG and 2) that kinase inhibitors augment the DAG sensitivity of PKCalpha, perhaps by destabilizing the closed conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号