首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Eight discrete cranial traits are used as biological indicators to investigate the effect of social group fission on intragroup genetic change leading to intergroup differentiation in Macaca mulatta. The timing of discrete cranial trait frequency change and group fission coincide, indicating a possible causal relationship between fission and genetic change. A significant change in the male mating population during and after fission is proposed as the mechanism causing intragroup genetic change, along with the effects of fluctuations in segregation ratios.  相似文献   

2.
Most of the genetic divergence that currently separates populations of Homo sapiens must have arisen during that long period when the local village (or band) was the basic unit of biological evolution. Studies of tribally intact Amerindian groups exhibiting such small-group organization have demonstrated marked genetic divergence between nearby villages. Some of this genetic radiation can be attributed to the effects of random genetic drift over time within these small demes. Some of it, however, might be better ascribed to the consequences of nonrandom genetic assortment at the time of village fission, a recurring event for such groups. Even random genetic assortment at the time of fission would lead to some genetic divergence, due to the finite size of the parent gene pool. We term the genetic consequences of random assortment the random fission effect. Routinely, village fission occurs along family lines, leading to even greater genetic divergence between the daughter villages. We use the term lineal fission effect to describe the genetic consequences of nonrandom assortment and contrast these results with those derived from random assortment.——A formal treatment of random and lineal fission effects is developed, first for the single-locus case, then for the multiple-locus extension. Using this formulation, three Yanomama fission events were examined. Fission in the Yanomama often involves a great deal of mutual hostility between the two factions, so that subsequent gene flow between the two daughter villages is minimal. The first two examples are typical of the Yanomama behavior norm, and are accompanied by a minimum of subsequent gene flow between the daughter villages. In these two cases, the observed divergence values are very large and are also very unlikely under random fission. The lineal fission effect is pronounced. The net impact of lineal fission is to reduce the effective size of the village at the time of fission by a factor of four, relative to expectation from random fission. The third example, however, involved an unusually amicable split of a village, followed by free genetic exchange between the fission products. This "friendly fission" yields an observed divergence value not much in excess of the expectation from random fission.—The long-term consequences of such fission bottlenecks in effective population size are discussed for both intra- and inter-tribal genetic diversity. It appears that the rate of genetic divergence for tribal and subtribal groups may have been somewhat greater than would be expected from classical drift arguments.  相似文献   

3.
Summary Many empirical studies demonstrate some degree of genetic differentiation among populations of the same species. Understanding the relative importance of the processes causing this genetic differentiation has proven to be a difficult task. In particular, population differentiation can be influenced primarily by selection, genetic drift, and migration. We review the effect of drift and migration on patterns of genetic variation, with special reference to the conditions necessary for population differentiation. Conceptually, selection may be implicated in cases of population differentiation if the effect of drift and migration can be shown to be insufficient to cause the observed patterns. We examine some of the pitfalls of this approach when used with allozyme data, and revise a previous conclusion concerning the relative importance of selection in poulations of scale insects.  相似文献   

4.
Empirical analyses and models of the lineal effects of fission indicate that considerable genetic differentiation may occur at the time of group formation, thus confusing the usual positive relationship between historical affiliation and genetic differentiation. We analyze the effects of fission pattern on variation in highly heritable morphological traits among eight social groups on Cayo Santiago. The analysis is performed using general network autocorrelation methods that quantitatively and directly measure the amount of variation in social group mean morphology that can be explained by fission. All of the fission autocorrelation coefficients are strongly negative, indicating that groups most recently formed by fission are most dissimilar. Also, most of the variation between groups can be explained by the fission pattern, indicating that lineal fission is the most important process generating between-group variation on Cayo Santiago.  相似文献   

5.
D. J. Melnick 《Genetica》1987,73(1-2):117-135
Primates, as long-lived, iteroparous, socially complex mammals, offer the opportunity to assess the effects of behavior and demography on genetic structure. Because it is difficult to obtain tissue samples from wild primate populations, research in this area has largely been confined to terrestrial and semi-terrestrial old world monkeys (e.g., rhesus and Japanese macaques, vervets and several subspecies of baboons). However, these species display a multi-male, multi-female social structure commonly found in many other primate and non-primate mammals. Electrophoretic analyses of blood proteins from individually recognized and/or marked wild Himalayan rhesus monkeys, themselves the subject of long-term behavioral and demographic research, have begun to reveal the genetic consequences of such phenomena as social group fission, malelimited dispersion, non-consanguineous mating patterns, and agonistically defined male dominance.Specifically, rhesus social groups, consisting primarily of clusters of maternal relatives, appear to be nonrandom samples of a population's genotypes and genes. The genetic effects of social group fission are highly dependent on each group's size, demographic structure, and average degree of relatedness. In all cases fission contributes to the degree of intergroup genetic differentiation. Male-limited dispersion appears both to retard genetic differentiation between social groups and to lead to mating patterns that result in an avoidance of consanguinity. Groups, therefore, appear to be genetically outbred.Comparing these results with studies of other free-ranging or wild cercopithecines allows several generalizations: (a) genetic variation seems to be evenly distributed throughout each local population of multi-male social groups; (b) social groups, however, because they contain clusters of relatives, are distinctive in their specific frequencies of genes; (c) the degree of genetic differentiation between a population's social groups, because of the effects of social group fission and non-deterministic forms of male dispersal, is somewhat greater than expected on the basis of migration rates alone; and (d) the asymmetrical pattern of dispersion with respect to sex effectively precludes inbreeding in any one social group or the population as a whole. These observations have important implications for understanding the unusually rapid rates of evolution among the primates.  相似文献   

6.
Extinction and recolonization in an island model affects genetic differentiation among subpopulations through a combination of sampling and mixing. We investigate the balance of these forces in a general model of population founding that predicts first the genetic variance among new groups and then the effect of these new groups on the total genetic variance among all populations. We allow for a broad range of types of mixing at the time of colonization and demonstrate the significant effects on differentiation from the probability of common origin of gametes (φ). We further demonstrate that kin-structured founding and inbreeding within populations can have a significant effect on the genetic variance among groups and use these results to make predictions about lineal fission and fusion of populations. These results show that population structure is critically affected by non-equilibrium dynamics and that the properties of new populations, especially founding number, probability of common origin, and kin structure, are vital in our understanding of genetic variation.  相似文献   

7.
I investigated the effects of delayed population growth on the genetic differentiation among populations subjected to local extinction and recolonization, for two different migration functions; (1) a constant migration rate, and (2) a constant number of migrants. A delayed period of population growth reduces the size of the newly founded populations for one or several generations. Whether this increases differentiation among local populations depends on the actual pattern of migration. With a constant migration rate, fewer migrants move into small populations than into large, thus providing ample opportunity for drift to act within a population. A prolonged period of population growth thus makes the conditions for enhanced differentiation between local populations less restrictive and also inflates the actual levels of differentiation. The effect depends on the relative magnitudes of ke, the effective number of colonizers and k, the actual number of colonizers. When there is a constant number of migrants into a population per generation, migration into small populations is increased. This increase of migration in small populations counteracts the effects of genetic drift due to small population size. It increases the rate by which populations approach equilibrium, as small populations are swamped by migrants from larger populations closer to genetic equilibrium, and overall levels of differentiation are thus reduced. I also discuss situations for which the results of this paper are relevant.  相似文献   

8.
Analysis of histories and genealogies from seven relatively unacculturated, swidden-farming Semai settlements shows that the composition of local groups fluctuates through time. This instability is similar to a pattern which Neel and his colleagues have suggested is typical of primitive society, the fission-fusion model. In addition, the individuals comprising Semai fission groups are kinsmen which implies that the number of independent genomes represented is markedly less than the number of individual migrants (the lineal effect). Fission groups may form new villages or fuse with an established settlement. In either case, the genetic effects of such migration are more pronounced than would be expected on the basis of founder effect or random migration. Despite several conspicuous differences in social organization between the Semai and the South American Indians (e.g., bilateral vs. unilineal descent) whose population structure provided the empirical basis for the fission-fusion, lineal effect model, the basic similarities are striking. The Semai case thus lends support to the proposition that this pattern may be of some generality in technologically primitive populations.  相似文献   

9.
In cyclic populations, high genetic diversity is currently reported despite the periodic low numbers experienced by the populations during the low phases. Here, we report spatio-temporal monitoring at a very fine scale of cyclic populations of the fossorial water vole (Arvicola terrestris) during the increasing density phase. This phase marks the transition from a patchy structure (demes) during low density to a continuous population in high density. We found that the genetic diversity was effectively high but also that it displayed a local increase within demes over the increasing phase. The genetic diversity remained relatively constant when considering all demes together. The increase in vole abundance was also correlated with a decrease of genetic differentiation among demes. Such results suggest that at the end of the low phase, demes are affected by genetic drift as the result of being small and geographically isolated. This leads to a loss of local genetic diversity and a spatial differentiation among demes. This situation is counterbalanced during the increasing phase by the spatial expansion of demes and the increase of the effective migration among differentiated demes. We provide evidences that in cyclic populations of the fossorial water voles, the relative influence of drift operating during low density populations and migration occurring principally while population size increases interacts closely to maintain high genetic diversity.  相似文献   

10.
Habitat fragmentation may disrupt original patterns of gene flow and lead to drift-induced differentiation among local population units. Top predators such as the jaguar may be particularly susceptible to this effect, given their low population densities, leading to small effective sizes in local fragments. On the other hand, the jaguar's high dispersal capabilities and relatively long generation time might counteract this process, slowing the effect of drift on local populations over the time frame of decades or centuries. In this study, we have addressed this issue by investigating the genetic structure of jaguars in a recently fragmented Atlantic Forest region, aiming to test whether loss of diversity and differentiation among local populations are detectable, and whether they can be attributed to the recent effect of drift. We used 13 microsatellite loci to characterize the genetic diversity present in four remnant populations, and observed marked differentiation among them, with evidence of recent allelic loss in local areas. Although some migrant and admixed individuals were identified, our results indicate that recent large-scale habitat removal and fragmentation among these areas has been sufficiently strong to promote differentiation induced by drift and loss of alleles at each site. Low estimated effective sizes supported the inference that genetic drift could have caused this effect within a short time frame. These results indicate that jaguars' ability to effectively disperse across the human-dominated landscapes that separate the fragments is currently very limited, and that each fragment contains a small, isolated population that is already suffering from the effects of genetic drift.  相似文献   

11.
Over a 9-year period from 1982 to 1990 ecological and demographic data were collected on two genetic isolates of Barbary macaques (Macaca sylvanus) in Algeria, from the deciduous oak-forest of Akfadou and from the evergreen cedar-oak forest of the National Park Djurdjura. Macaques at Djurdjura profit from more suitable ecological conditions and have a higher rate of population increase as well as a higher male migration rate than those at Akfadou. Genetic data, gained from 23 genetic markers (blood proteins), proved to be highly influenced by the demographic structure of the groups. The macaque populations of Akfadou and Djurdjura have become genetically differentiated. Group fission, coupled with founder effect (genetic drift) and kin-structured (matrilineal) separation, resulted in a priori genetic diversity between one newly-established group and its parent group.  相似文献   

12.
Evolutionary consequences of natural selection, migration, genotype-environment interaction, and random genetic drift on interpopulation variation and covariation of quantitative characters are analysed in terms of a selection model that partitions natural selection into directional and stabilizing components. Without migration, interpopulation variation and covariation depend mainly on the pattern and intensities of selection among populations and the harmonic mean of effective population sizes. Both transient and equilibrium covariance structures are formulated with suitable approximations. Migration reduces the differentiation among populations, but its effect is less with genotype-environment interaction. In some special cases of genotype-environment interaction, the equilibrium interpopulation variation and covariation is independent of migration.  相似文献   

13.
Wright's metaphor of sampling is extended to consider three components of genetic drift: those occurring before, during, and after migration. To the extent that drift at each stage behaves like an independent random sample, the order of events does not matter. When sampling is not random, the order does matter, and the effect of population size is confounded with that of mobility. The widely cited result that genetic differentiation of local groups depends only on the product of group size and migration rate holds only when nonrandom sampling does not occur prior to migration in the life cycle.  相似文献   

14.
We studied the development of genetic differentiation and postzygotic isolation in experimental metapopulations of the two-spotted spider mite, Tetranychus urticae Koch. A genetically diverse starter population was made by allowing six inbred sublines to interbreed. Then three migration patterns were tested: no migration, or one or three immigrants per subpopulation per generation. Variations in four traits were investigated: allozymes, acaricide resistance, diapause, and hatchability. In the allozymes, acaricide resistance, and diapause, genetic variation among subpopulations became high in metapopulations with no migration, but not in the others, which showed that one immigrant is enough to prevent genetic differentiation. Hatchability, which was decreased by interbreeding among the six sublines, gradually recovered in succeeding generations. In metapopulations with no migration, hatchability was reduced again after in-migration at the 15th generation. Different karyotypes or coadapted gene complexes can survive in different subpopulations by genetic drift, and both Wolbachia-infected and -noninfected subpopulations may be selected, which would lead to postzygotic isolation between isolated subpopulations. Our results indicate that sampling effects such as genetic drift or stochastic loss of Wolbachia produce postzygotic isolation in laboratory populations of spider mite.  相似文献   

15.
The analysis of biologic variation in prehistoric human populations separately by sex has been used as a tool to recover post-marital residential rules. These studies, which focus on the sexual distribution of skeletal traits, assume that the degree of intragroup or intergroup biologic diversity is higher in one sex with regard to unilocality (uxori- or virilocality). Despite a recent attempt to interpret this phenomenon in terms of population genetics (Konigsberg 1988), the main assumption has never been tested in situations in which the real residential practice of an indigenous population is known and in which genetic rather than phenotypic data are available. We investigated the within-group and between-group genetic variability among males and females from 4 villages of an uxorilocal Amazonian tribe, the Urubu-Ka'apor, on the basis of 20 polymorphic loci. The results were only partly concordant with the expected. Individual mean per locus heterozygosities were not different between the sexes, and the analysis of genetic heterogeneity showed similar gene frequencies for males and females in all villages. On the other hand, the intergroup approach detected a level of variation significantly greater among females than among males. The ethnographic evidence shows that three of the four subgroups studied belong to the same gamic unity, with the fourth subgroup belonging to another gamic network. Within-sex differences in intergroup analysis turned out to be more evident; yet, when those 3 villages were investigated separately, the female FST (0.0609) proved to be significantly higher than the male FST (0.0218). Such results suggest that the intergroup analysis is more sensitive to the genetic effects of differential migration rates between the sexes. In prehistoric contexts, therefore, an intergroup genetic approach can provide more reliable grounds for sociocultural inferences.  相似文献   

16.
We assessed genetic differentiation and diversity in 14 populations of sika deer (Cervus nippon) from Japan and four populations of sika deer introduced to the UK, using nine microsatellite loci. We observed extreme levels of differentiation and significant differences in diversity between populations. Our results do not support morphological subspecies designations, but are consistent with previous mitochondrial DNA analyses which suggest the existence of two genetically distinct lineages of sika deer in Japan. The source of sika introduced to the UK was identified as Kyushu. The underlying structure of Japanese populations probably derives from drift in separate glacial refugia and male dispersal limited by distance. This structure has been perturbed by bottlenecks and habitat fragmentation, resulting from human activity from the mid-nineteenth century. Most current genetic differentiation and differences in diversity among populations probably result from recent drift. Coalescent model analysis suggests sika on each of the main Japanese islands have experienced different recent population histories. Hokkaido, which has large areas of continuous habitat, has maintained high levels of gene flow. In Honshu the population is highly fragmented and is likely to have been evolving by drift alone. In Kyushu there has been a balance between gene flow and drift but all the populations have experienced high levels of drift. Habitat fragment size was not significantly associated with genetic diversity in populations but there was a significant correlation between habitat fragment size and effective population size.  相似文献   

17.
Populations may become differentiated from one another as a result of genetic drift. The amounts and patterns of differentiation at neutral loci are determined by local population sizes, migration rates among populations, and mutation rates. We provide exact analytical expressions for the mean, variance, and covariance of a stochastic model for hierarchically structured populations subject to migration, mutation, and drift. In addition to the expected correlation in allele frequencies among populations in the same geographic region, we demonstrate that there is a substantial correlation in allele frequencies among regions at the top level of the hierarchy. We propose a hierarchical Bayesian model for inference of Wright's F-statistics in a two-level hierarchy in which we estimate the among-region correlation in allele frequencies by substituting replication across loci for replication across time. We illustrate the approach through an analysis of human microsatellite data, and we show that approaches ignoring the among-region correlation in allele frequencies underestimate the amount of genetic differentiation among major geographic population groups by approximately 30%. Finally, we discuss the implications of these results for the use and interpretation of F-statistics in evolutionary studies.  相似文献   

18.
Genetic studies of recently established populations are challenging because the assumption of equilibrium underlying many analyses is likely to be violated. Using microsatellites, we investigated determinants of genetic structure and migration among invasive European-Chinese mitten crab populations, applying a combination of traditional population genetic analyses and nonequilibrium Bayesian methods. Consistent with their recent history, invasive populations showed much lower levels of genetic diversity than a native Chinese population, indicative of recent bottlenecks. Population differentiation was generally low but significant and especially pronounced among recently established populations. Significant differentiation among cohorts from the same geographical location (River Thames) suggests the low effective population size and associated strong genetic drift that would be anticipated from a very recent colonization. An isolation-by-distance pattern appears to be driven by an underlying correlation between geographical distance and population age, suggesting that cumulative homogenizing gene flow reduces founder bottleneck-associated genetic differentiation between longer-established populations. This hypothesis was supported by a coalescent analysis, which supported a drift + gene flow model as more likely than a model excluding gene flow. Furthermore, admixture analysis identified several recent migrants between the UK and Continental European population clusters. Admixture proportions were significantly predicted by the volume of shipping between sites, indicating that human-mediated transport remains a significant factor for dispersal of mitten crabs after the initial establishment of populations. Our study highlights the value of nonequilibrium methods for the study of invasive species, and also the importance of evaluating nonequilibrium explanations for isolation by distance patterns.  相似文献   

19.
《Genetika》2004,40(7):949-960
The absence of panmixia at all hierarchical levels of the European beaver communities down to individual families implies a complex organization of the population-genetic structures of the species, in particular, a large intergroup component of gene diversity in the populations. Testing this assumption by analysis of 39 allozyme loci in the communities of reintroduced beaver from the Vyatka river basin (Kirov oblast) has shown that only the beaver colonies exhibit high intergroup gene diversity (Gst = 0.32) whereas this parameter is much lower when estimated among beaver groups from individual Vyatka River tributaries and among localities of one of the tributaries (0.07 and 0.11, respectively). The data suggesting genetic heterogeneity among individual settles within colonies have been obtained. The factors affecting the structure of the beaver communities of the lower hierarchical ranks are considered: the common origin, founder effect, selection, gene drift, assortative mating, and social and behavior features of the species. The conclusion is drawn that the founder effect could be the primary factor of population differentiation only at the time of their formation. The heterogeneity among colonies and among settles is maintained largely by isolation of colonies from one another. The strong interspecific competition for food resources, which is behaviorally implemented in the species at the level of minimal structural units (individual settles) creates a profound and unique population-genetic subdivision of the species. These results substantiate the suggestion that an elementary population (micropopulation) of European beaver is a colony, i.e., a set of related settles of different types. Based on ecological and genetic parameters, the effective reproductive size Ne of the minimum beaver population was estimated to be equal to three animals. This extremely low value of effective reproductive population size largely explains the high tolerance of European beaver to inbreeding and striking viability of the species, which from the early 19th century has been for more than hundred years on the brink of survival in the condition which would made any other mammalian species vanish from the Earth.  相似文献   

20.
Extremely fine-scale genetic partitioning has recently been detected among populations of Lake Malawi''s rock-dwelling cichlids through the study of microsatellite loci. Understanding the mechanisms of genetic differentiation that operate in this rapidly speciating group requires further investigation of the geographic patterns of gene flow and the congruence between morphological and genetic divergence. In pursuit of this goal, genetic variation at four microsatellite loci and variation in male breeding coloration were examined in several populations of Labeotropheus fuelleborni from southern Lake Malawi. Significant genetic differentiation exists among populations (overall FST = 0.063; p = 0.0002). While migration appears unrestricted within continuous rocky patches, deep waters and sandy bays more than 2 km wide act as strong barriers to gene flow. Dispersal of L. fuelleborni appears to follow a stepping-stone model in which the distribution of habitats often constrains migration to one dimension. It is hypothesized that clinal colour variation in the study area has resulted from the secondary contact of divergent lineages, although reproductive isolation between colour variants is not apparent. Relative to shoreline populations, reduced levels of gene flow among populations inhabiting isolated, deep-water islands provides greater opportunities for drift, adaptation to local conditions, or sexual selection to effect genetic differentiation in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号