首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The duct system of the lachrymal salt gland of the green sea turtle comprises central canals, secondary ducts and a sac-like main duct. Distally the central canals consist of large columnar cells with lateral membranes folded into plicae which interdigitate in adjacent cells to form complex intercellular spaces. More proximally the central canals, secondary ducts and main duct consist of epithelia which are stratified or pseudostratified. The cells of these epithelia are separated by wide and complex inter-cellular spaces: they are joined by frequent maculae adherentes junctions. Complex intracellular webs of tonofilaments are associated with these junctions. At the luminal border of the epithelia of the secondary and main ducts is a layer of mucocytes. The mucocytes increase in density towards the proximal extremity of the main duct and secrete a thick luminal layer of mucus. The duct system is very well vascularised. It is suggested that it is unlikely to be merely a passive conduit and that it may have a role in the modification of the fluid secreted by the gland.  相似文献   

2.
Summary The lachrymal salt glands ofChelonia mydas were functional when hatchlings emerged from the nest. Osmotic concentrations up to 720 mosmol kg–1 were recorded in spontaneously produced tears (salt gland secretions). When injected with a Na+ load (1500–2700 mol (100 g)–1) newly emerged hatchlings produced tears ranging in osmotic concentration from 1000–1900 mosmol kg–1 with Na+ secretion rates from single glands of 200–475 mol (100 g·h)–1. In these circumstances the rate of sodium excretion, via the salt glands, was equivalent to the sodium content of 0.2 to 0.5 ml of sea water per hour. Since the apparent drinking rate of hatchlings within the first two days of entering sea water was approximately 0.5 to 1.7 ml per day, the excretion of Na+ imbibed by drinking is well within the secretory capacity of the lachrymal salt glands.In feeding hatchlings extraordinarily high Na+ secretion rates were induced by Na+ loading. Hatchlings which were loaded with Na+ by injection (1500–5400 mol (100 g)–1) produced tears having osmotic concentrations between 1500 and >2000 mosmol kg–1. The Na+ secretion rates from single glands were 750–4185 mol (100 g·h)–1 with extremely high short term rates of 10700 mol (100 g·h)–1 (50 mol min–1 for 28 g hatchlings).In terms of gland mass the highest long term secretion rate translates into 21 mmol of Na+ per gram of salt gland per hour and is the highest secretion rate yet recorded for a reptilian salt gland. This rate is almost three times the highest rate recorded for sea snakes (8 mmol g·h–1) and is similar to rates commonly observed in avian salt glands (25 mmol g·h–1).Secretion by the lachrymal salt glands was initiated by increased blood concentrations of Na+ or K+, K+ being as effective as Na+ but with the composition of the teras being virtually unchanged compared to tears from Na+ stimulated hatchlings. Preliminary experiments indicated that secretion was not initiated by increased Cl concentration in the blood or by increased volume or osmotic concentration of the blood.Abbreviation O.P. osmotic pressure  相似文献   

3.
The authors performed an allometric study of the growth of the rat's lachrymal and Harderian glands, during postnatal life. From the analysis of the results, they could conclude: (1) the growth of these glands in relation to body weight, during postnatal life, could be considered similar, following the allometric law; (2) the differential growth of the glands occurred in two stages: from birth until the 15th day and from the 15th day until the final period of life studied; (3) the two stages of development were separated by a critical period, during which an abrupt modification of the allometric coefficient occurred; (4) during the first days of postnatal life, the development of the Harderian gland was characterized by a high rate of growth and, just after eyelid disjunction and during rest of postnatal life, by a rate of allometric of growth less than 1. It is interesting to observe that the lachrymal and Harderian glands' critical period of development on the 15th day of postnatal life coincides with the time at which the eyelids of the animal open.  相似文献   

4.
5.
6.
Summary Catechol amine secretion is achieved by exocytosis. In this, ATP and protein are also lost from the chromaffin cells. Histochemically various specific coenzyme linked dehydrogenases associated with ATP production have been demonstrated in the adrenals of ox and sheep. These included cytochrome oxidase, DPN and TPN diaphorases, isocitric dehydrogenase, malate dehydrogenase, glutamate dehydrogenase, succinic dehydrogenase, lactic dehydrogenase, alcohol dehydrogenase, -glycerophosphate dehydrogenase and -hydroxybutyrate dehydrogenase. Enzymes of the pentose shunt were found histochemically and biochemically. The RNA content of the adrenal medulla and cortex was also investigated.  相似文献   

7.
Busch L  Borda E 《Life sciences》2007,80(9):842-851
We have studied the signaling pathways involved in pilocarpine-induced mucin release in rat submandibular slices. Pilocarpine produced a significant increment of PGE2 levels and a positive (r=0.8870) and significant (p=0.0077) correlation between PGE2 production and mucin released was determined. The participation of PGE2 was confirmed by the use of indomethacin (indo) and of acetyl salicylic acid (ASA), cyclooxygenase inhibitors, which inhibited pilocarpine-induced mucin release. The muscarinic receptors involved in the regulation of mucin release were identified as M1 and M4 by the use of the selective acetylcholine receptors (mAChR) antagonists, pirenzepine, AF-DX 116, 4-DAMP and tropicamide. The secretory process was dependent on both, intracellular and extracellular calcium pools since it was inhibited by thapsigargin and verapamil. Cyclic AMP, nitric oxide synthase and PKC also participated in pilocarpine-induced mucin release. It is concluded that pilocarpine, by activation the M1 and M4 mAChR subtypes induces an increase of intracellular Ca2+ concentration ([Ca2+]I) and elevates cAMP levels, which in turn stimulates COX, PKC and NOS and promotes mucin exocytosis. PGE2 released induces cAMP accumulation which, together with PKC are involved in the PGE2 increased Ca2+/cAMP-regulated exocytosis. Thus, cAMP accumulation induced by cholinergic stimulation is, in part, the result of PGE2 production.  相似文献   

8.
9.
Summary The glands responsible for the formation of the byssus threads inArca symmetrica, Barbatia obliquata andSeptifer bilocularis are the white gland, phenol gland and enzyme gland. Besides these, mucous glands are also present in the sub-epithelia. The size and shape of the cells of these glands vary in one and the same species. From histochemical investigations it has been revealed that these glands contain 1,2-glycol groups in addition to disulphides and sulphhydryls. The white gland secretes a protein material and the phenol gland is rich in phenols. These two combine to form a phenolic protein which is acted upon by a polyphenol oxidase secreted by the enzyme gland and leads to the formation of a byssus thread. The mucous gland cells secrete acid mucopolysaccharides, neutral mucins and glycoproteins.  相似文献   

10.
11.
Unlike the NaCl-secreting salt glands of many birds and reptiles, the nasal salt glands of lizards can secrete potassium as well as sodium, with either chloride or bicarbonate as the accompanying anion. The factors responsible for initiating secretion by the gland and the rates of cation and anion secretion were studied in the desert iguana, Dipsosaurus dorsalis. Lizards were given combinations of ions for several days, and secreted salt was collected daily and analyzed for sodium, potassium, chloride, and bicarbonate. Maximum total cation secretion rate was 4.4+/-0.38 micromol/g/d. Cation secretion ranged from 24% to 100% potassium; even high NaCl loads did not abolish potassium secretion. Maximum bicarbonate secretion was about 0.5 micromol/g/d; chloride was the predominant anion. Secretion rate increased only in response to those treatments that included potassium and/or chloride; sodium ions and other osmotic loads (e.g., sucrose) did not increase secretion. This is in contrast to birds and some other reptiles with salt glands, which initiate NaCl secretion in response to any osmotic load. The specificity of the response of the salt gland of Dipsosaurus may be related to the ecological importance of dietary potassium and chloride for herbivorous desert lizards.  相似文献   

12.
Recretohalophytes with specialized salt-secreting structures, including salt glands and salt bladders, can secrete excess salts from plant tissues and enhance salinity tolerance of plants. However, the pathway and property of salt secretion by the salt gland has not been elucidated. In the article, Limonium bicolor Kuntze was used to investigate the pathway and characteristics of salt secretion of salt gland. Scanning electron microscope micrographs showed that each of the secretory cells had a pore in the center of the cuticle, and the rice grain-like secretions were observed above the pore. The chemical composition of secretions from secretory pores was mainly NaCl using environmental scanning electron microscope technique. Non-invasive micro-test technology was used to directly measure ion secretion rate of salt gland, and secretion rates of Na+ and Cl? were greatly enhanced by a 200-mmol/L NaCl treatment. However, epidermal cells and stoma showed little secretion of ions. In conclusion, our results provide evidence that the salt glands of L. bicolor have four secretory pores and that NaCl is secreted through these pores of salt gland.  相似文献   

13.
The authors performed a study of the mitotic activity and the nuclear/cytoplasmic (N/C) ratio during postnatal life of the lachrymal and Harderian glands of the rat. Based on the results, they concluded: (1) during the first days of postnatal life the development of lachrymal and Harderian glands was characterized by an intense mitotic activity and a low N/C ratio; (2) the period prior to eyelid disjunction was characterized by a diminished mitotic activity and a progressive and slow increase of the N/C ratio; (3) after eyelid disjunction, mitotic activity was reduced and an abrupt increase of the N/C ratio occurred, more evident in the Harderian gland; (4) during the final period of postnatal life studied mitotic activity was absent and the N/C ratio presented a higher, more constant level, which was always higher for the Harderian gland.  相似文献   

14.
15.
16.
Oxymetazoline is a potent secretagogue for the salivary glands of rats. In the parotid gland, it activates preferentially alpha-adrenoceptors. As for the submandibular glands, it activates alpha-adrenoceptors at relatively low doses but at higher doses it allows secretion of new types of proteins.  相似文献   

17.
18.
Pulmonary surfactant, consisting predominantly of phosphatidylcholine (PC), is secreted from Type II cells into the lungs of all air-breathing vertebrates, where it functions to reduce surface tension. In mammals, glucocorticoids and thyroid hormones contribute to the maturation of the surfactant system. It is possible that phylogeny, lung structure, and the environment may influence the development of the surfactant system. Here, we investigate the ontogeny of PC secretion from cocultured Type II cells and fibroblasts in the sea turtle, Chelonia mydas, following 58, 62, and 73 d of incubation and after hatching. The influence of glucocorticoids and thyroid hormones on PC secretion was also examined. Basal PC secretion was lowest at day 58 (3%) and reached a maximal secretion rate of 10% posthatch. Dexamethasone (Dex) alone stimulated PC secretion only at day 58. Triiodothyronine (T(3)) stimulated PC secretion in cells isolated from days 58 and 73 embryos and from hatchling turtles. A combination of Dex and T(3) stimulated PC secretion at all time points.  相似文献   

19.
20.
Salt and water balance in the estuarine crocodile, Crocodylus porosus, involves the coordinated action of both renal and extra-renal tissues. The highly vascularised, lingual salt glands of C. porosus excrete a concentrated sodium chloride solution. In the present study, we examined the in vivo actions of vasoactive intestinal peptide (VIP), B-type natriuretic peptide (BNP) and angiotensin II (ANG II) on the secretion rate and blood perfusion of the lingual salt glands. These peptides were selected for their vasoactive properties in addition to their reported actions on salt gland activity in birds and turtles and rectal gland activity in elasmobranchs. The femoral artery was cannulated in seven juvenile crocodiles for delivery of peptides and measurement of mean blood pressure and heart rate. In addition, secretion rate of, and blood flow to, the salt glands were recorded simultaneously using laser Doppler flowmetry. VIP stimulated salt secretion was coupled to an increase in blood flow and vascular conductance of the lingual salt glands. BNP was a potent stimulant of salt gland secretion, resulting in a maximal secretion rate of more than 15-fold higher than baseline; however, this was not coupled to an increase in perfusion rate, which remained unchanged. ANG II failed to stimulate salt gland secretion and there was a transient decrease in salt gland blood flow and vascular conductance. It is evident from this study that blood flow to, and secretion rate from, the lingual salt glands of C. porosus are regulated independently; indeed, it is apparent that maximal secretion from the salt glands may not require maximal blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号