首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cranial glands of ten species of turtles were studied by the use of histochemistry applied to serial sections of whole heads. The majority were stenohaline species, but one brackish water form, Malaclemys, was included. The results show that all species have two major orbital glands, an anterior Harderian gland, and a posterior lachrymal gland. The latter is seromucous in all species except Malaclemys terrapin in which the gland shows little evidence or organic secretion. External and medial nasal glands are found in all species studied, and also are seromucous glands. With these reslts, combined with a review of the literature the following conclusions are made. The Harderian gland is by definition the orbital gland opening through the medial surface of the nictitating membrane at or near the anterior canthus. It is of constant occurrence, and histological appearance, probably serving the same function. However, despite much recent study this function remains unknown. The lachrymal gland is defined as the orbital gland which opens through the lateral surface of the nictitating membrane, or medial surface of the lower eyelid, at or near the posterior canthus. It is of variable occurrence, absent in many reptiles, and has a histological structure which is also variable. In the stenohaline species it is apparently involved in organic secretion, while in the brackish water Malaclemys it may be involved in salt secretion, as it is in Cheloniidae. The nasal glands in turtles are probably homologous with the nasal salt glands of lizards and birds, but they do not appear to subserve the same function. In all species of turtles studied the nasal glands are seromucous. They are perhaps involved in the maintenance of the epithelium of the olfactory cavity.  相似文献   

2.
The foot of Perna viridis is found to contain three main types of glands, the white gland, phenol gland and the enzyme gland. But in Perna indica there are only two glands, the phenol gland and the enzyme gland. Besides these, mucous glands are found in both of the species. The shape and size of the cells of these glands vary from species to species. Glycogen and 1 : 2 glycol groups are found in these gland cells. Proteins rich in disulfides and sulfhydryls are present in the phenol glands of both the species and in the white gland of p. viridis but they vary in the intensity of staining. The presence of phenols is confirmed in the phenol gland cells. Phospholipids and lipoproteins are intense in the white and phenol gland cells. They are absent in the enzyme gland. Alkaline and acid phosphatases activity in the enzyme gland cells could be demonstrated. The secretions of these glands help in the formation of the byssus threads. The mucous gland cells are subepithelial localised they secrete acid and neutral mucopolysaccharides together with glycoproteins. Which participate in the attachment of the byssus disc.  相似文献   

3.
Summary Pekin ducks were adapted to permanent osmotic stress by rearing them on a NaCl solution of increasing concentration up to 2% as drinking water. Their salt and water balance was compared with that of non-adapted ducks maintained on tap water. Amounts and osmolalities of salt gland secretion and cloacal discharges, plasma osmolality and electrolytes were measured during stepwise osmotic loading by intravenous infusion of NaCl solution of about 740 mosm·kg–1, at rates of 0.25, 0.45 and 0.65 ml·min–1. Before loading, the plasma osmolality of the adapted ducks was about 22 mosm·kg–1 higher than in non-adapted animals. The initial step of loading induced salt gland secretion in the adapted ducks after an average rise of plasma osmolality of 3.6 mosm·kg–1 and in the non-adapted animals after a rise of 7.8 mosm·kg–1. The method of osmotic loading enabled both groups of animals to balance their water input and output. However, only the adapted ducks were able to balance NaCl input and output, predominantly by salt gland secretion, thus maintaining a stable plasma osmolality. The nonadapted ducks retained 42% of the salt load which resulted in a rise of plasma osmolality of 49 mosm·kg–1, more salt being excreted by the kidneys than by the salt glands.In the salt-adapted ducks, salt gland activity, plasma osmolality and Na+ concentration did not correlate during balanced states of salt input and output. The involvement of tonicity receptors in salt gland control was confirmed by the stimulating effects of various hypertonic solutions. On the other hand, continuous loading by a constant infusion of NaCl solution of 1,300 mosm·kg–1 induced a steady salt gland secretion at a rising plasma osmolality and thus suggested that a volume factor is involved in salt gland control. Inhibition of salt gland activity by withdrawing blood and activation by blood infusion confirmed this assumption. While a direct cause and effect relationship between volume changes and salt gland secretion cannot be demonstrated, the results indicate that volume changes in one or more extracellular compartments do affect salt gland secretion.Supported by Deutsche Forschungsgemeinschaft (Si 320/2)  相似文献   

4.
The recretohalophyte with specialized salt-secreting structures including salt glands and salt bladders can secrete salt from their bodies and easily adapt themselves to many kinds of salt habitats. Salt glands and salt bladders, arose from dermatogen cells, are excretory organs specially adapted for dealing with ionic homeostasis in the cells of recretohalophytes. The main function of salt glands or salt bladders is to secrete excess ions that invade the plant. The structures of salt glands or salt bladders differ among plant species. In addition to structural differences, salt glands also differ in their secretion abilities. In this review, we mainly focus on recent progress in the mechanism of salt excretion of salt glands and salt bladders, and in particular, emphasize the vesicle-mediated secretion systems from the vacuole to the plasmalemma and the possibly involved membrane-bound translocating proteins for salt secretion of plant gland secretory cell.  相似文献   

5.
Diamond terrapins, Malaclemys terrapin Latreille, inhabit salt marshes and estuaries where they may encounter sustained high salinities for weeks or months. Terrapins can discriminate between salinities. When salt-loaded they avoid drinking high salinities (27.2–34.0%), drink small amounts of salinities which are a little more concentrated than the blood (13.6–20%), and drink copious quantities of lower salinities (0–10.2%). After seven days in full sea water (34%) they can rehydrate themselves in < 15 min if given access to fresh water. Terrapins are capable of drinking from the thinnest of freshwater films (1.6 mm), exploit menisci and have specific postural responses to collect small quantities of fresh water from horizontal and vertical surfaces. Specimens of Malaclemys terrapin respond to the vibration of simulated rainfall by rapid emergence followed by drinking from thin films, either on the exposed substratum or from the surface of the water column. Under simulated conditions of heavy rainfall they collect rain directly from above.  相似文献   

6.
The present study was undertaken to localize adenylate cyclase activity in salivary glands by cytochemical means. For the study, serous parotid glands and mixed sublingual glands of the rat were used. Pieces of the fixed glands were incubated with adenosine triphosphate (ATP) or adenylyl-imidodi-phosphate (AMP-PNP) as substrate: inorganic pyrophosphate or PNP liberated upon the action of adenylate cyclase on the substrates is precipitated by lead ions at their sites of production. In both glands, the reaction product was detected along the myoepithelial cell membranes in contact with secretory cells, indicating that a high level of adenylate cyclase activity occurs in association with these cell membranes. The association with a high level of the enzyme activity might be related to the contractile nature of myoepithelial cells which are supposed to aid secretory cells in discharging secretion products. A high level of adenylate cyclase activity was also detected associated with serous secretory cells (acinar cells of the parotid gland and demilune cells of the sublingual gland), but not with mucous secretory cells. In serous cells, deposits of reaction product were localized along the extracellular space of the apical cell membrane bordering the lumen. This is the portion of the cell membrane which fuses with the granule membranes during secretion. Since the granule membranes are not associated with a detectable level of adenylate cyclase activity, it appears that the enzyme activity becomes activated or associated with the granule membranes as they become part of the cell membrane by fusion. The association with a high level of adenylate cyclase activity appears to be related to the ability of the membrane to fuse with other membranes. It is likely, since the luminal membrane of mucous cells which does not fuse with mucous granule membranes during secretion is not associated with a detectable enzyme activity.  相似文献   

7.
The purpose of this investigation was to determine whether or not the nasal glands of the roadrunner and the Coturnix quail show cytological specializations for salt secretion. In addition, the Na-K ATPase content of the quail gland was determined before and after drinking of saline solutions, in an effort to evaluate the functional status of the gland. The ability to maintain weight while drinking salt water was also measured as a general index of tolerance to saline conditions. The ultrastructure of the nasal glands of the roadrunner injected with salt and of quail drinking 200 mM NaCl was similar to that of salt glands in reptiles and the fresh-water acclimated duck. Numerous lateral cell evaginations and abundant mitochondria were present in the principal cell types. There was a significant increase in quail nasal gland Na-K ATPase when young birds were offered only saline solutions to drink. The ability of Coturnix quail to maintain weight while drinking saline solutions improves with age and at adulthood is comparable to that of some North American desert quail. Roadrunners were previously known to possess functional salt glands whereas quail were not. However the characteristic fine structure and the high Na-KATPase content of the quail nasal gland suggest that it is a salt gland.  相似文献   

8.
Skin of the Indian tree frog, Polypedates maculatus (Rhacophoridae), was studied in the context of self-wiping behaviour which functions to expel and distribute cutaneous secretions recently shown to retard evaporative water loss. The secretions contain both mucus and lipids and are derived from a common gland considered to be homologous with characteristic anuran mucous glands. The glands are bipotent and secrete both mucus and lipoid products which are evidently mixed within the glandular lumen. Another type of gland resembling characteristic anuran serous (or granular) glands is found in dorsal but not ventral skin, whereas the lipid-secreting mucous glands are found in skin associated with all body surfaces. There is no distinct, lipid-secreting gland present in the skin of this species other than the mucous glands. These histochemical data complement the earlier finding that resistance to evaporative water loss in this species is relatively small compared with phyllomedusine 'waterproof frogs which also exhibit wiping behaviour associated with secretion of lipids. Thus, wiping behaviour may have evolved in association with mucous secretions before dominant lipoid secretions resulted from strong selection for water conservation.  相似文献   

9.
The amount of Na+,K+-ATPase of the avian salt gland increased concomitantly with plasma membrane surface area during salt feeding of ducklings (adaptation), and both enzyme content and membrane surface area decreased upon return to fresh water (deadaptation). In a further study of the enzyme, a marker for plasma membrane biogenesis, polyvalent antibodies were raised to the denatured alpha-subunit of the purified ATPase. Antisera did not inhibit enzymatic activity but immunoprecipitated the phosphorylated intermediate of the alpha-subunit. Furthermore, the alpha-subunit, which was not glycosylated, was immunoprecipitated from homogenates of tissue slices metabolically labelled with [35S]-methionine, using antisera raised against either duck salt gland or dog kidney alpha-subunit. The former antisera also recognized the alpha-subunit in the brain, heart, kidney, liver, intestine and skeletal muscle of the duck. Immunocytochemistry with the antisera raised to the duck salt gland alpha-subunit revealed reaction at basolateral as well as apical plasma membrane in the duck salt gland principal cells, with essentially no deposits on peripheral cells, fibroblasts, erythrocytes, endothelial cells and neural elements. Within the principal cells, immunolabelling was also detected on small vesicles, multivesicular bodies and lysosomes; deposits on extracellular debris and vesicles in the lateral and lumenal spaces were also apparent. The labelling patterns were qualitatively but not quantitatively similar in salt glands of control, adapted and deadapted ducklings, and are discussed in the context of a model for plasma membrane biogenesis and turnover in which degradative events may play a major role.  相似文献   

10.
Salt and water balance in the estuarine crocodile, Crocodylus porosus, involves the coordinated action of both renal and extra-renal tissues. The highly vascularised, lingual salt glands of C. porosus excrete a concentrated sodium chloride solution. In the present study, we examined the in vivo actions of vasoactive intestinal peptide (VIP), B-type natriuretic peptide (BNP) and angiotensin II (ANG II) on the secretion rate and blood perfusion of the lingual salt glands. These peptides were selected for their vasoactive properties in addition to their reported actions on salt gland activity in birds and turtles and rectal gland activity in elasmobranchs. The femoral artery was cannulated in seven juvenile crocodiles for delivery of peptides and measurement of mean blood pressure and heart rate. In addition, secretion rate of, and blood flow to, the salt glands were recorded simultaneously using laser Doppler flowmetry. VIP stimulated salt secretion was coupled to an increase in blood flow and vascular conductance of the lingual salt glands. BNP was a potent stimulant of salt gland secretion, resulting in a maximal secretion rate of more than 15-fold higher than baseline; however, this was not coupled to an increase in perfusion rate, which remained unchanged. ANG II failed to stimulate salt gland secretion and there was a transient decrease in salt gland blood flow and vascular conductance. It is evident from this study that blood flow to, and secretion rate from, the lingual salt glands of C. porosus are regulated independently; indeed, it is apparent that maximal secretion from the salt glands may not require maximal blood flow.  相似文献   

11.
Adaxial peels were made from fully expanded leaves of Avicenniagerminans (L). Stearn. The peels consisted of the epidermis,epidermal salt glands, and underlying hypodermal cells. Electronmicroscopic examinations showed that the structural integrity(except for the innermost hypodermal cells) of all cell typeswas not altered in making the peels. When the peels were floatedon salt solutions, the glands were shown to be functionallycompetent in secretion. Secretion also occurred when the peelswere floated on distilled water, presumably from salts storedin the hypodermis. Secretion occurred in the dark and sinceall cell types in the peels lacked chloroplasts, glandular functioncould not be directly coupled energetically to photosynthesis.However, secretion was shown to be temperature dependent andinhibited by azide and dinitrophenol, which indicates that theenergy cost underlying secretion is mitochondrial and most likelycoming from the mitochondria-enriched gland cells. Inhibitorsknown to affect membrane H+ ATPase activity and membrane transportalso inhibited secretion, indicating that membrane transportis probably the primary mechanism underlying secretion. Lanthanum,a membrane calcium antagonist, also inhibited secretion. Avicennia germinans (Avicenniaccac), salt glands, metabolic inhibitors, ultrastructure, secretion  相似文献   

12.
Summary The estuarine turtle,Malaclemys terrapin is able to ionregulate when acclimated to fresh water, 55% sea water or 100% (full strength) sea water, but when in 100% sea water it does not volume regulate successfully. Orbital gland secretions collected by a new eye cup method are very low in animals from all three salinities without salt load. After salt loading the animals from all three groups produce an orbital gland secretion with a sodium concentration greater than sea water. The concentration of ions and kinetics of the response are similar in all three groups. Orbital gland secretion returns to control preload levels well before the injected load is excreted. There is no correlation between the plasma sodium concentration and any of the parameters of the orbital gland response. There is also no correlation between the concentration of sodium in the tear fluid or the rate of sodium excretion and the level of K+-stimulatedp-nitrophenylphosphatase activity in the gland. Some of these unexpected results may relate to the estuarine habitat occupied byMalaclemys.Abbreviations K +NPPase potasium stimulated p-nitrophenylphosphatase - Na–K-ATPase sodium, potassium stimulated adenosine triphosphatase  相似文献   

13.
The sublingual salt gland is the primary site of salt excretion in sea snakes; however, little is known about the mechanisms mediating ion excretion. Na+/K+–ATPase (NKA) and Na+/K+/2Cl cotransporter (NKCC) are two proteins known to regulate membrane potential and drive salt secretion in most vertebrate secretory cells. We hypothesized that NKA and NKCC would localize to the basolateral membranes of the principal cells comprising the tubular epithelia of sea snake salt glands. Although there is evidence of NKA activity in salt glands from several species of sea snake, the localization of NKA and NKCC and other potential ion transporters remains unstudied. Using histology and immunohistochemistry, we localized NKA and NKCC in salt glands from three species of laticaudine sea snake: Laticauda semifasciata, L. laticaudata, and L. colubrina. Antibody specificity was confirmed using Western blots. The compound tubular glands of all three species were found to be composed of serous secretory epithelia, and NKA and NKCC were abundant in the basolateral membranes. These results are consistent with the morphology of secretory epithelia found in the rectal salt glands of marine elasmobranchs, the nasal glands of marine birds and the gills of teleost fishes, suggesting a similar function in regulating ion secretion.  相似文献   

14.
Salt stress is harmful to plants, especially for those that live under conditions of intense salt aport. For this reason, several species present alternatives to prevent or diminish the damages that high salt concentrations may cause to the cells. Salt glands are one of these alternatives once they are specialized structures that secrete salt. Here, we aimed to investigate if the glandular trichomes in the leaves of Jacquinia armillaris are salt glands. Anatomical and ultrastructural observations showed that the glandular trichomes in J. armillaris resemble the salt glands from other recretohalophytes Primulaceae, such as, their occurrence in sunken regions in the leaf epidermis, the presence of a large basal cell that acts as a collecting cell, the detachment of the cuticle from the outer periclinal walls forming a cuticular chamber, the thickness of the cuticle in the stalk portion of the trichome, and the presence of sodium and chloride ions in the secretion and in the xylem. Altogether, the gathered results support the hypothesis that the glandular trichomes in J. armillaris are adapted to salt secretion, thus characterizing as salt glands.  相似文献   

15.
Marine birds can drink seawater because their cephalic 'salt' glands secrete a sodium chloride (NaCl) solution more concentrated than seawater. Salt gland secretion generates osmotically free water that sustains their other physiological processes. Acclimation to saline induces interstitial water and Na move into cells. When the bird drinks seawater, Na enters the plasma from the gut and plasma osmolality (Osm(pl)) increases. This induces water to move out cells expanding the extracellular fluid volume (ECFV). Both increases in Osm(pl) and ECFV stimulate salt gland secretion. The augmented intracellular fluid content should allow more rapid expansion of ECFV in response to elevated Osm(pl) and facilitate activation of salt gland secretion. To fully utilize the potential of the salt glands, intestinally absorbed NaCl must be reabsorbed by the kidneys. Thus, Na uptake at gut and renal levels may constrain extrarenal NaCl secretion. High NaCl intake elevates plasma aldosterone concentration of Pekin ducks and aldosterone stimulates intestinal and renal water and sodium uptake. High NaCl intake induces lengthening of the small intestine of adult Mallards, especially males. High NaCl intake has little effect on glomerular filtration rate or tubular sodium Na uptake of birds with competent salt glands. Relative to body mass, kidney mass and glomerular filtration rate (GFR) are greater in birds with salt glands than in birds that do not have them. Birds with salt glands do not change GFR, when they drink saline. Thus, their renal filtrate contains excess Na that is, in some species, almost completely renally reabsorbed and excreted in a more concentrated salt gland secretion. Na reabsorption by kidneys of other species, like mallards is less complete and their salt glands make less concentrated secretion. Such species may reflux urine into the hindgut, where additional Na may also be reabsorbed for extrarenal secretion. During exposure to saline, marine birds maintain elevated aldosterone levels despite high Na intake. Marine birds are excellent examples of physiological plasticity.  相似文献   

16.
The enzyme Na+,K+-ATPase was localized immunohistochemically in major salivary glands of mouse, rat, and human and in exorbital lacrimal glands of the rodents. Immunoreactive Na+,K+-ATPase was abundant in the basolateral membranes of all epithelial cells lining striated and intra- and interlobular ducts of all glands. Reactivity of intercalated ducts varied among gland type and species. Cells lining granular ducts in rodent submandibular gland showed a heterogeneous staining pattern in rat but stained homogeneously in mouse. Secretory cells varied greatly in their content of immunoreactive Na+,K+-ATPase. As with all duct cells, staining was present only at the basolateral surface and was never observed at the luminal surface of reactive secretory cells. Mucous cells failed to show any reactivity in any gland examined. Serous cells showed a gradient of immunostaining intensity ranging from strongly positive in demilunes of human sublingual gland to negative in rat submandibular gland and lacrimal glands of rats and mice. The presence of basolaterally localized Na+,K+-ATPase in most serous cells but not in mucous cells suggests that the enzyme contributes to the ion and water content of copious, low-protein serous secretions. The intense immunostaining of cells in most if not all segments of the duct system supports the idea that the ducts are involved with modification of the primary saliva, and extends this concept to include all segments of the duct system.  相似文献   

17.
Hypertonic saline loading (0.5 M NaCl, 15 ml.kg-1 i.v.) increased cardiac frequency and elicited nasal salt gland secretion in control ducks. Partial depletion of catecholamines by prior treatment with reserpine decreased body weight, lowered arterial pressure and abolished the tachycardiac responses to saline loading. Reserpine also increased plasma concentrations of Na, K and total osmolytes, yet altered neither the composition nor the flow rate of nasal fluid secretion. The preservation of the normal secretory responses to hypertonic stress in hypotensive, reserpine-treated ducks indicates that the nasal salt glands can function independently of changes in circulating catecholamine hormones.  相似文献   

18.
Summary The functional morphology of the mammiliform penial glands ofLittorina saxatilis has been investigated with both light and electron microscopy. These penial glands line the ventral edge of the penis and orient with the female mantle during copulation. Secretions are released from the penial glands to this interface where they probably function in adhesion. The penial gland secretions comprise heterogeneous granules as well as apocrine and mucous secretions. The heterogeneous granules are produced in separate multicellular glands arranged in a series of lobes that lie outside a thick smooth muscle layer enclosing the lumen. Each glandular lobe is surrounded by a thin layer of smooth muscle. Secretions are transported in individual cellular processes that pass through the thick smooth muscle layer and empty into the lumen. Surrounding the lumen is an epithelium containing apocrine secretory cells as well as occasional goblet-type, mucous cells. The combined action of the muscles forces secretions out of the lumen through the penial papilla, onto the external surface of the mammiliform penial gland. Longitudinal muscles extend into the penial papilla enabling its protrusion or retraction. Retraction of the penial papilla following secretion release is thought to create negative pressure beneath the penial gland producing suction adhesion. The visco-elastic properties of the penial gland secretion are qualitatively different from foot mucus and may represent specialization to an adhesive function.  相似文献   

19.
Summary The glands responsible for the formation of the byssus threads inArca symmetrica, Barbatia obliquata andSeptifer bilocularis are the white gland, phenol gland and enzyme gland. Besides these, mucous glands are also present in the sub-epithelia. The size and shape of the cells of these glands vary in one and the same species. From histochemical investigations it has been revealed that these glands contain 1,2-glycol groups in addition to disulphides and sulphhydryls. The white gland secretes a protein material and the phenol gland is rich in phenols. These two combine to form a phenolic protein which is acted upon by a polyphenol oxidase secreted by the enzyme gland and leads to the formation of a byssus thread. The mucous gland cells secrete acid mucopolysaccharides, neutral mucins and glycoproteins.  相似文献   

20.
Morphology of the exocrine glands of the frog skin   总被引:1,自引:0,他引:1  
Frog skin contains three distinct types of exocrine glands: granular (poison), mucous, and seromucous. The granular gland forms a syncytial secretory compartment within the acinus, which is surrounded by smooth muscle cells. The mucous and seromucous glands are easily identifiable as distinct glands. The serous and mucous secretory cells are arranged in a semilunar configuration opposite the ductal end and are filled with granules. Within the acinus, located at the ductal pole of the gland, are distinct groups of cells with few or no granules in the cytoplasm. In both the mucous and seromucous gland there is a cell type with abundant mitochondria; the one in the mucous gland is located in the region adjacent to the secretory cells. The duct of these glands is two-layered, with the individual cells appearing morphologically similar to the layers of the skin epithelium as the duct traverses the skin. The duct appears to be patent throughout its length. The morphological heterogeneity and distinct distribution of the cell types within the gland acinus may be indicative of a functional heterogeneity that allows the production of distinctly different types of secretion from the same gland type, depending on the type of stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号