首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Continuous exposure of DDT1 MF-2 smooth muscle cells to 10-100 microM norepinephrine results in a dramatic attenuation of the ability of norepinephrine to stimulate inositol phospholipid hydrolysis via alpha 1-adrenergic receptors (alpha 1-AR). In addition to the functional desensitization, norepinephrine exposure also reduces the number of accessible cell surface alpha 1-AR as assayed by [3H]prazosin binding at 4 degrees C. Desensitization of the cells with norepinephrine results in an increase in the phosphorylation of the Mr 80,000 alpha 1-AR ligand binding peptide (2.4 +/- 0.2 mol of 32P per mol of alpha 1-AR; n = 5) when compared to control cells (1.1 +/- 0.1 mol of 32P per mol of alpha 1-AR; n = 5). The time courses of these three processes are all comparable being half-maximal within 1-2 min. These norepinephrine-promoted effects can be prevented by the alpha 1-AR receptor antagonist phentolamine indicating that they are mediated via the alpha 1-AR. Treatment of cells with the vasoactive peptide bradykinin (10 microM) induces desensitization of alpha 1-AR function similar to that induced by tumor-promoting phorbol ester treatment (Leeb-Lundberg, L. M. F., Cotecchia, S., Lomasney, J. W., DeBernardis, J. F., Lefkowitz, R. J., and Caron, M. G. (1985) Proc. Natl. Acad. Sci. USA 82, 5651-5655). Both treatments also result in phosphorylation of the alpha 1-AR, with stoichiometries of 1.7 +/- 0.1 (bradykinin; n = 5) and 3.6 +/- 0.1 (PMA; n = 5) mol of 32P/mol of alpha 1-AR. However, neither phorbol esters nor bradykinin reduce the number of accessible cell surface alpha 1-AR. Similar phosphopeptide maps are obtained from tryptic phosphopeptides generated from phosphorylated alpha 1-AR derived from cells treated with norepinephrine, phorbol 12-myristate 13-acetate, and bradykinin. Phosphoamino acid analysis reveals that the various agents induce phosphorylation on both serine and threonine residues. Thus, phosphorylation of receptors linked to the inositol phospholipid/Ca2+ signaling pathway may represent an important mechanism of regulation of receptor responsiveness.  相似文献   

2.
Membranes prepared from either neuronal or glial cultures contain alpha 2-adrenergic receptors as determined by the characteristics of [3H]yohimbine [( 3H]YOH) binding. The binding was rapid, reversible, saturable, dependent on the protein concentration used, and reached equilibrium by 5 min in membranes from both neuronal and glial cultures. Scatchard analyses of saturation isotherms revealed similar KD values of 13.7 +/- 1.35 nM (n = 10) for neuronal cultures and 18.42 +/- 2.34 nM (n = 10) for glial cultures. Glial cultures contained many more binding sites for [3H]YOH than neuronal cultures, having a Bmax of 1.6 +/- 0.33 pmol/mg protein (n = 10) compared with 0.143 +/- 0.018 pmol/mg protein (n = 10) in neurons. Drugs selective for alpha 2-adrenergic receptors were the most effective displacers of [3H]YOH binding in both neuronal and glial cultures, i.e., the alpha 2-adrenergic antagonists rauwolscine and yohimbine were better displacers than the other catecholamine antagonists prazosin, corynanthine, or propranolol. The agonists showed the same pattern with the alpha 2-selective drugs clonidine and naphazoline being the most effective competitors for the [3H]YOH site. GTP and its nonhydrolyzable analog. 5'-guanylyl-imidodiphosphate, were able to lower the affinity of the alpha 2-receptors for agonists but not antagonists in membranes from both neuronal and glial cultures, suggesting that the receptors are linked to a G protein in both cell types. The presence of alpha 2-adrenergic receptors in neuronal cultures was also substantiated by light microscopic autoradiography of [3H]YOH binding. In summary, we have demonstrated that both neuronal and glial cultures contain alpha 2-adrenoceptors.  相似文献   

3.
We have characterized the pertussis toxin substrate in NG 108-15 cell membranes using site-specific antisera and ADP-ribosylation. Cell membranes contain two pertussis toxin-sensitive guanine nucleotide-binding protein alpha-subunits (G alpha) whose Rf values in gel electrophoresis coincide with those of G alpha o and G alpha i2. The total quantity of Gi and Go immunoreactivity amounted to 24.3 +/- 2.8 pmol/mg, whereas only 1.5 +/- 0.2 pmol/mg are capable of undergoing ADP-ribosylation catalyzed by pertussis toxin. Pretreatment of cells with the agonist [D-Ala2,D-Leu2]-enkephalin (DADLE) for 24 h and DADLE or morphine for 72 h did not alter the incorporation of ADP-ribose or the immunoreactive amount of Gi and Go subunits. However, pretreatment for 72 h with naloxone increased the incorporation of ADP-ribose without an apparent change in affinity or in the immunochemically determined protein levels of Gi and Go. This indicates that the process of down-regulation and desensitization of the delta-opioid receptor neither requires quantitative alterations in the levels of Gi and Go nor changes in the degree of coupling among their subunits. In contrast, chronic exposure to antagonists seems to alter the degree of precoupling between alpha- and beta-subunits of Gi and/or Go.  相似文献   

4.
Adrenergic control of human fat cell lipolysis is mediated by two kinds of receptor sites that are simultaneously stimulated by physiological amines. To establish a correlation between the binding characteristics of the receptor and biological functions, the ability of physiological amines to stimulate or inhibit isolated fat cell lipolysis in vitro was compared to the beta- and alpha 2-adrenoceptor properties of the same fat cell batch. The beta-selective antagonist (-)[3H]dihydroalprenolol ([3H]DHA) and the alpha 2-selective antagonists [3H]yohimbine ([3H]YOH) and [3H]rauwolscine ([3H]RAU) were used to identify and characterize the two receptor sites. Binding of each ligand was rapid, saturable, and specific. The results demonstrate 1) the weaker lipolytic effect of epinephrine compared with norepinephrine. This can be explained by the equipotency of the amines at the beta 1-sites and the higher affinity of epinephrine for alpha 2-adrenergic receptors. 2) The preponderance of alpha 2-adrenergic receptor sites labeled by [3H]YOH (Bmax, 586 +/- 95 fmol/mg protein; KD, 2.7 +/- 0.2 nM) or [3H]RAU (Bmax, 580 +/- 100 fmol/mg protein; KD, 3.7 +/- 0.1 nM). These two ligands can be successfully used to label alpha 2-adrenergic receptor sites. 3) The beta 1-adrenergic receptor population labeled by [3H]DHA(Bmax, 234 +/- 37 fmol/mg protein; KD, 1.8 +/- 0.4 nM), although a third as numerous as the alpha 2-adrenergic population, is responsible for the lipolytic effect of physiological amines and is weakly counteracted by simultaneous alpha 2-adrenergic receptor stimulation under our experimental conditions. It is concluded that, in human fat cells, the characterization of beta 1- and alpha 2-adrenergic receptors by saturation studies or kinetic analysis to determine affinity (KD) and maximal number of binding sites (Bmax) is not sufficient for an accurate characterization of the functional adrenergic receptors involved in the observed biological effect.  相似文献   

5.
alpha 2-Adrenergic receptors, a population of receptors linked to inhibition of adenylate cyclase, accelerate Na+/H+ exchange in NG108-15 neuroblastoma x glioma cells (Isom, L. L., Cragoe, E. J., Jr., and Limbird, L. E. (1987) J. Biol. Chem. 262, 6750-6757). We now report that two other receptor populations linked to inhibition of adenylate cyclase, muscarinic cholinergic and delta-opiate receptors, also alkalinize the interior of NG108-15 cells, as measured with the pH-sensitive fluorescent probe, 2,7-biscarboxyethyl-5(6)-carboxy-fluorescein. Manipulations that block Na+/H+ exchange, i.e. removal of extracellular Na+, reduction of extracellular pH to equal that of intracellular pH, and addition of 5-amino-substituted analogs of amiloride, all block alpha 2-adrenergic, delta-opiate, or muscarinic cholinergic receptor-induced alkalinization in a parallel fashion. These data suggest that all three populations of receptors alkalinize NG108-15 cells by acceleration of Na+/H+ exchange and do so via a shared or similar mechanism. Although these three receptor populations are linked to inhibition of adenylate cyclase, decreased production of cAMP does not appear to be the mechanism responsible for receptor-accelerated Na+/H+ exchange. Thus, ADP-ribosylation of intact NG108-15 cells with Bordetella pertussis islet-activating protein prevents attenuation of prostaglandin E1-stimulated cAMP accumulation by alpha 2-adrenergic, muscarinic, and delta-opiate agonists but has no measurable effect on the ability of these agonists to accelerate Na+/H+ exchange. Similarly, manipulations that block receptor-accelerated Na+/H+ exchange influence but do not block receptor-mediated attenuation of cAMP accumulation. Thus, the present data suggest that these two receptor-mediated biochemical events, acceleration of Na+/H+ exchange and attenuation of cAMP accumulation, occur through divergent mechanisms in NG108-15 cells.  相似文献   

6.
The norepinephrine-induced inhibition of avian pineal N-acetyltransferase activity appears to be mediated by alpha 2-adrenergic receptors. In this study, alpha 2-adrenergic receptors in the chicken pineal gland were directly identified by radioligand binding. Membrane preparations of pineal glands from chickens from 1 to 6 weeks of age were examined using [3H]rauwolscine, a selective alpha 2-adrenergic receptor antagonist, to characterize the binding sites. The results indicate no ontological change in either the affinity (KD) or density of receptor binding sites (Bmax) during the time span examined. The binding was saturable and of high affinity with a mean KD of 0.27 +/- 0.01 nM and a mean Bmax of 242 +/- 12 fmol/mg protein. Further characterization of these binding sites indicated that the alpha 2-adrenergic receptor is of the alpha 2A subtype, since prazosin and ARC-239 bound with low affinities and oxymetazoline bound with high affinity.  相似文献   

7.
We have generated, by transfection and proper selection, a stable mouse C127 cell line which expresses the human alpha 2-adrenergic receptor gene. The size of the mRNA produced by the cloned gene is 1.8 kb. Electrophoretic analysis and autoradiography of cell membrane proteins photoaffinity labeled with p-[3H]azidoclonidine gave a broad protein band of molecular mass of approx. 64 kDa. Saturation binding with [3H]rauwolscine as ligand gave an equilibrium dissociation constant of 1.29 +/- 0.46 nM (mean +/- S.D.) and binding capacity range of 18-35 pmol/mg membrane protein, with (3-6) x 10(6) receptors per cell. Antagonist competition experiments displayed the order of potency: yohimbine greater than rauwolscine greater than phentolamine much greater than prazosin. Agonist competitions demonstrated the order of potency: p-aminoclonidine greater than (-)epinephrine much greater than (+)epinephrine much greater than (-)isoproterenol. This pharmacological profile is characteristic of the human platelet alpha 2-adrenergic receptor. The expressed receptor is able to couple to the Gi protein. Thus, when epinephrine competition for specific binding of [3H]rauwolscine was performed in the presence of 1 mM MgCl2, 1 mM Gpp[NH]p increased the Ki for epinephrine from 164 to 315 nM. Following preincubation of cultures with 1 mM isobutylmethylxanthine, 1 microM epinephrine decreased forskolin-stimulated cellular cyclic AMP accumulation by 72%. The response was biphasic, and the attenuation effect disappeared at 100 microM epinephrine. A transfected clone which did not demonstrate detectable alpha 2-adrenergic receptor mRNA displayed low levels of alpha 2-adrenergic receptor, (less than 50 fmol/mg membrane protein), similar to those found in the parent C127 cell line. In this clone, epinephrine did not attenuate but, rather, enhanced forskolin-stimulated cyclic AMP accumulation. This new C127 cell line expressing high levels of alpha 2-adrenergic receptor provides an abundant source of a single human adrenergic receptor subtype in membrane-bound conformation which is able to couple to the Gi protein and inhibit forskolin-stimulated adenylate cyclase activity. This cell line will facilitate studies of the structure: function relationship of the alpha 2-adrenergic receptor and should aid in separating the components of various signal transduction mechanisms putatively attributed to this receptor.  相似文献   

8.
Isolation of an endogenous clonidine-displacing substance from rat brain   总被引:3,自引:0,他引:3  
D Atlas  Y Burstein 《FEBS letters》1984,170(2):387-390
An endogenous substance which specifically displaces clonidine, yohimbine and rauwolscine from rat brain alpha 2-adrenergic receptors, has been isolated. The new compound, designed clonidine-displacing-substance (CDS), has been partially purified by ion exchange chromatography, zone electrophoresis and high performance liquid chromatography (HPLC). CDS binds specifically to alpha 2-adrenergic receptors by competing with either alpha 2-adrenergic agonists or alpha 2-antagonists, but has no effect on the specific binding of [3H]prazosin to alpha 1-adrenergic receptors in rat brain membranes. In the course of isolation, CDS was shown to be neither the endogenous neurotransmitter (-)norepinephrine (NE) nor the guanyl nucleotide GTP which lowers the specific binding of alpha 2-agonists to the alpha 2-adrenergic receptors.  相似文献   

9.
B Gout 《Life sciences》1988,43(24):1961-1971
The biochemical exploration of the alpha 2-adrenergic receptors was investigated in the canine saphenous vein using the highly selective alpha 2-adrenergic antagonist rauwolscine as a tritiated ligand. Following an enzymatic digestive pretreatment, we isolated a purified smooth muscle cell membrane fraction from saphenous veins in quantity sufficient to permit us to study the venous alpha 2-adrenoceptor content. The binding of tritiated rauwolscine was rapid, specific, saturable and reversible. The presence of high affinity binding sites (Kd = 1.53 +/- 0.71 nM) with a density of binding Bmax of 125.2 +/- 43.1 fmol/mg protein was demonstrated on a unique class of non interacting sites (nHill = 1.001 +/- 0.06). The kinetically derived Kd was 1.28 nM, in good agreement with the value obtained from saturation isotherms. The pharmacological profile of these sites was assessed by the comparison of the potency of alpha-adrenergic agonists and antagonists to inhibit 1 nM (3H)-rauwolscine. Their efficacy was respectively: rauwolscine greater than phentolamine greater than RX 781094 greater than clonidine much greater than prazosin greater than (-)-phenylephrine greater than (-)-noradrenaline. The results showed that (3H)-rauwolscine bound specifically to sites in our membranal preparation, which had the pharmacological characteristics of the alpha 2-adrenoceptors. The correlation between biochemical and pharmacological data revealed the usefulness of binding methods in the further study of adrenergic mechanisms in the canine saphenous vein.  相似文献   

10.
The regulation of cytoplasmic pH (pHi) was examined in neuroblastoma X glioma hybrid cell-line cells (NG108-15 cells) using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein. The pHi of NG108-15 cells suspended in nominally HCO-3-free, Na+-containing buffer could be reduced by the external application of acetate. The recovery of pHi to its resting value was blocked by the removal of extracellular Na+, by the addition of extra-cellular H+, and by the addition of analogs of amiloride selective for inhibition of Na+/H+ exchange. The rate of recovery of pHi from acid load exhibited an ionic selectivity of Na+ greater than Li+ much greater than K+, and no recovery was observed in N-methyl-D-glucamine+. Tetrodotoxin and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid had no effect on early pHi recovery. These data suggest that Na+/H+ exchange accounts primarily for the recovery of pHi in NG108-15 cells under our experimental conditions. Na+/H+ exchange in NG108-15 cells was accelerated by alpha 2-adrenergic receptors. Thus, (-)epinephrine, but not (+)epinephrine, elicited an intracellular alkalinization which was blocked by the alpha 2-adrenergic receptor selective antagonist yohimbine but not by the alpha 1-adrenergic receptor antagonist, prazosin, nor the beta-adrenergic antagonist, propranolol. Norepinephrine, clonidine, and the clonidine analog, UK-14304, also caused alkalinization of NG108-15 cells, whereas isoproterenol, a beta-adrenergic receptor agonist, and phenylephrine, a selective alpha 1-adrenergic receptor agonist, did not. Manipulations that blocked Na+/H+ exchange blocked the ability of alpha 2-adrenergic agonists to alkalinize the interior of NG108-15 cells without blocking the ability of these agonists to attenuate cAMP accumulation. These findings provide the first direct evidence of modulation of Na+/H+ exchange activity by a receptor linked to inhibition of adenylate cyclase and offer a possible mechanism whereby alpha 2-adrenergic receptors might influence cellular activity apart from changes in cyclic nucleotide metabolism.  相似文献   

11.
The net content of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was measured in bradykinin (BK)-stimulated NIH3T3 fibroblasts and neuroblastoma-glioma hybrid cells (NG108-15). BK-mediated production of Ins(1,4,5)P3 was not affected by replacing the medium with Ca2+-free medium, but addition of EGTA (1mM) to Ca2+-free medium markedly prevented production of Ins(1,4,5)P3. Although pertussis toxin (PT) treatment caused ADP-ribosylation in both NIH3T3 cells and NG108-15 cells, the BK-induced Ins(1,4,5)P3 formation was considerably reduced in the former cells but not in the latter cells, suggesting that PT-sensitive and PT-insensitive GTP-binding proteins are involved in phosphoinositide phospholipase C (PI-PLC) activation in fibroblasts and neuroblastoma cells, respectively. In NG108-15 cells down-regulated in protein kinase C (PKC) by long-term exposure to phorbol 12-myristate 13-acetate (PMA), BK-stimulated Ins(1,4,5)P3 accumulation was significantly enhanced compared to control cells.  相似文献   

12.
Exposure of a nontransformed, continuous line of epithelial cells derived from rat liver (WB cells) to epidermal growth factor, angiotensin II, [Arg8]vasopressin, and epinephrine resulted in rapid accumulation of the inositol phosphates (InsP) InsP1, InsP2, and InsP3. Although short-term (5-60 min) pretreatment of WB cells with the phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) markedly attenuated InsP accumulation in response to all agonists, the inhibitory effects on the InsP response were lost after 2 h incubation with PMA; and, with extended (6-24 h) preincubation, a time-dependent potentiation of the InsP response to angiotensin II, epidermal growth factor and [Arg8]vasopressin was observed. The InsP response during a 15-min challenge with angiotensin II in cells pretreated for 18 h with 600 nM and 10 microM PMA was increased by 2-3-fold and 4-6-fold, respectively. Long-term (18 h) treatment with 600 nM and 10 microM PMA caused a similar 90-100% loss of measurable Ca2+/phospholipid-dependent enzyme (protein kinase C) activity in cytosolic and soluble particulate fractions. The effects of long-term PMA pretreatment do not represent a general enhancement of hormone responsiveness since the InsP response to epinephrine was not affected. In control cells, the InsP response to angiotensin II and epinephrine desensitized very rapidly. Long-term pretreatment with PMA greatly reduced the contribution of agonist-induced desensitization to the angiotensin II response; in contrast, the extent of desensitization occurring during incubation of WB cells with epinephrine was unaltered by long-term treatment with PMA suggesting that an additional mechanism may be involved in alpha 1-adrenergic receptor desensitization. No PMA-induced change in resting levels of [3H]phosphoinositides or the metabolism of exogenous [3H]inositol 1,4,5-trisphosphate by WB homogenates occurred. Stimulation of InsP formation in intact cells by NaF and activation of phospholipase C by GTP gamma S in membranes both were unaltered by short-term or long-term PMA pretreatment. These data are consistent with the idea that following long-term treatment of WB cells with PMA, the occurrence of agonist-induced desensitization of receptors linked to the phosphoinositide/Ca2+ signaling system is reduced, apparently at least in part due to the loss of contribution of a negative feedback regulatory role of protein kinase C.  相似文献   

13.
The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. [3H]Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, [3H]Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.  相似文献   

14.
Noradrenaline (NA) stimulated the release of arachidonic acid (AA) from the [3H]AA-labelled rabbit platelets via alpha 2-adrenergic receptors, since the effect of NA was inhibited by yohimbine. The stimulatory effect of NA in digitonin-permeabilized platelets was completely dependent on the simultaneous presence of GTP and Ca2+. The NA- and thrombin-stimulated releases of AA were markedly decreased by the prior ADP-ribosylation of the permeabilized platelets with pertussis toxin. Antiserum directed against the pig brain Go (a GTP-binding protein of unknown function), recognizing both alpha 39 and beta 35,36 subunits, but not alpha 41, of pig brain, reacted with 41 kDa and 40 kDa bands, with not one of 39 kDa, in rabbit platelet membranes. Anti-Go antiserum inhibited guanosine 5'-[gamma-thio]triphosphate-, A1F4(-)-, NA- and thrombin-stimulated AA releases in the membranes. Although the effect of thrombin was inhibited by low concentrations of anti-Go antiserum, high concentrations of the antiserum was needed for inhibition of the NA effect. Antiserum directed against the pig brain G1 (inhibitory G-protein), recognizing both alpha 41 and beta 35,36 subunits, but not alpha 39, of pig brain, reacted with the 41 kDa band in platelets. Anti-G1 antiserum inhibited only the effect of NA. Reconstitution of the platelet membranes ADP-ribosylated by pertussis toxin with Go, not Gi, purified from pig brain restored the thrombin-stimulated release of AA. In contrast, reconstitution of those membranes with Gi, not Go, restored the NA-stimulated release of AA. These results indicate that different GTP-binding proteins, Gi- and Go-like proteins, may be involved in the mechanism of signal transduction from alpha 2-adrenergic receptors and thrombin receptors to phospholipase A2 in rabbit platelets.  相似文献   

15.
alpha(2)-adrenergic receptors (alpha(2)AR) couple to multiple effectors including adenylyl cyclase and phospholipase C. We hypothesized that signaling selectivity to these effectors is dynamically directed by kinase-sensitive domains within the third intracellular loop of the receptor. Substitution of Ala for Ser232, which is in the N-terminal region of this loop in the alpha(2A)AR, resulted in a receptor that was markedly uncoupled ( approximately 82% impairment) from stimulation of inositol phosphate accumulation while the capacity to inhibit adenylyl cyclase remained relatively intact. In S232A alpha(2A)AR transfected cell membranes, agonist-promoted [(35)S]GTPgammaS binding was reduced by approximately 50%. Coexpression of modified G proteins rendered insensitive to pertussis toxin revealed that the S232A receptor was uncoupled from both G(i) and G(o). S232 is a potential PKC phosphorylation site, and whole cell phosphorylation studies showed that the mutant had depressed phosphorylation compared to wild type (1.3- vs 2.1-fold/basal). Consistent with S232 directing coupling to phospholipase C, PMA exposure resulted in approximately 67% desensitization of agonist-promoted inositol phosphate accumulation without significantly affecting inhibition of adenylyl cyclase. The dominant effect of mutation or phosphorylation at this site on inositol phosphate as compared to cAMP signaling was found to most likely be due to the low efficiency of signal transduction via phospholipase C vs adenylyl cyclase. Taken together, these results indicate that S232 acts as a selective, PKC-sensitive, modulator of effector coupling of the alpha(2A)AR to inositol phosphate stimulation. This represents one mechanism by which cells route stimuli directed to multifunctional receptors to selected effectors so as to attain finely targeted signaling.  相似文献   

16.
alpha 2-Adrenergic receptors recognize a number of molecules with diverse chemical structures, including the yohimban diastereoisomers yohimbine and rauwolscine, catecholamines, guanidinium analogs, and imidazolines, such as clonidine. The affinity of the receptor protein for some of these ligands can vary by 10-100-fold among various tissues and species, suggesting a heterogeneous class of binding sites. Certain cellular effects elicited by the compounds possessing an imidazoline or guanidinium moiety may actually be mediated by a membrane receptor distinct from the alpha 2-adrenergic receptor. To determine whether this imidazoline/guanidinium receptive site (IGRS) and the alpha 2-adrenergic receptor represent distinct proteins, we solubilized and partially characterized the two binding sites in rabbit kidney. This tissue expresses both alpha 2-adrenergic receptors and high affinity imidazoline/guanidinium binding sites, the latter which are rauwolscine-insensitive but can be identified with the benzodioxan [3H]idazoxan. The IGRS and alpha 2-adrenergic receptor in rabbit kidney exhibit distinct ligand recognition properties, which are maintained after solubilization and partial purification. In addition, the two receptors can be physically separated by heparin-agarose or lectin affinity chromatography indicating that the two binding sites are distinct entities. [3H]Idazoxan binding is trypsin-sensitive, indicating that the IGRS is a protein rather than a lipid component of the plasma membrane. [3H]Idazoxan binding is not inhibited by endogenous agonists for known neurotransmitter receptors. However, the IGRS does recognize clonidine-displacing substance, a small non-catechol compound isolated from calf brain, suggesting the existence of a previously uncharacterized hormonal/neurotransmitter receptor system.  相似文献   

17.
Cultured cerebellar granule cells express phospholipase C-coupled muscarinic cholinergic, histaminergic, alpha 1-adrenergic, and serotonergic receptors. In an attempt to study desensitization of these neurotransmitter receptors, cells were prestimulated with saturating concentrations of carbachol, histamine, norepinephrine, or serotonin during the labeling of cells with myo-[3H]inositol and then rechallenged with various receptor agonists for their ability to elicit accumulation of [3H]inositol monophosphate in the presence of lithium. Prestimulation with each of these receptor agonists was found to cause a time-dependent desensitization to subsequent stimulation with the desensitizing agonist. Thus, prestimulation for 0.5, 4, and 18 h decreased carbachol response to 87 +/- 4, 52 +/- 2, and 40 +/- 1% of the control, respectively; histamine response to 37 +/- 2, 24 +/- 2, and 18 +/- 2%, respectively; norepinephrine response to 55 +/- 5, 14 +/- 1, and 10 +/- 1%, respectively; and serotonin response to 36 +/- 1, 18 +/- 1, and 9 +/- 2%, respectively. In all cases, the responses mediated by receptors which were not prestimulated remained virtually unchanged, thus indicating homologous desensitization. Dose-response studies indicate that the desensitization was associated with a major reduction in the maximal extent of agonist-induced responses. The basal accumulation was markedly enhanced following 0.5- and 4-h prestimulation, but returned to near normal after 18-h pretreatment. Biologically active phorbol ester, 4 beta-phorbol 12-myristate 13-acetate, rapidly attenuated basal phospholipase C activity, as well as the responses mediated by carbachol, histamine, norepinephrine, and serotonin, suggesting that activation and translocation of protein kinase C might play a role in the desensitization of phospholipase C-coupled receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Cultured endothelium derived from three fractions of human cerebral microvessels was used to characterize dopamine (DA) receptors linked to adenylate cyclase activity. DA or D1 agonist, (+/-)-SKF-82958 hydrobromide, stimulated endothelial cyclic AMP formation in a dose-dependent manner. The selective D1 antagonist, (+/-)SCH-23390, inhibited in a dose-dependent manner the production of cyclic AMP induced by DA. The affinity for the D1 receptor appeared to be greater in endothelium derived from large and small microvessels than from capillaries. Cholera toxin ADP-ribosylation of Gs proteins abolished the DA stimulatory effect on endothelial adenylate cyclase, whereas pertussis toxin ADP-ribosylation enhanced the DA-inducible formation, indicating the presence of both D1 and D2 receptors. Agonists of alpha 1-adrenergic receptors (phenylephrine, 6-fluoronorepinephrine) or serotonin (5-HT), which stimulated the production of cyclic AMP, had no additive effect on DA-stimulated cyclic AMP formation. Incubation of these agents with DA produced the same or lower levels of cyclic AMP as compared to that formed by DA alone. The effect of alpha 1-adrenergic agonists or 5-HT on DA production of cyclic AMP was partially prevented by the D2 antagonist, S(-)-sulpiride, or ketanserin (5-HT2 greater than alpha 1 greater than H1 antagonists), respectively. These findings represent the first demonstration of D1- (stimulatory) and D2- (inhibitory) receptors linked to adenylate cyclase in microvascular endothelium derived from human brain. The data also indicate that dopaminergic receptors can interact with either alpha 1-adrenergic or or 5-HT receptors in endothelium on the adenylate cyclase level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Treatment of isolated hepatocytes with the tumor-promoting agent, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) produced a time- and dose-dependent, non-competitive inhibition of alpha 1-adrenergic responses, including the activation of phosphorylase, increase in Ca2+ efflux, increase in free cytosolic Ca2+, and release of myo-inositol-1,4,5-P3. The actions of [8-arginine] vasopressin (AVP) on liver cells were also inhibited by PMA, but the inhibition could be overcome by high AVP concentrations. No significant inhibition of beta-adrenergic and glucagon-mediated activation of phosphorylase was induced by PMA and no inhibitory or synergistic effects of PMA were observed on the dose-dependent activation of phosphorylase by the Ca2+ ionophore A23187. In radioligand binding studies, PMA did not directly interfere with [3H]prazosin specific binding, the displacement of [3H]prazosin by (-)-norepinephrine nor with [3H]AVP specific binding to purified liver plasma membranes. Plasma membranes prepared from livers perfused with PMA exhibited a 30-44% reduction in [3H]prazosin binding capacity. Under identical conditions [3H]AVP binding was unchanged. The alpha 1-receptors remaining in membranes from PMA-treated livers had equivalent affinities for [3H]prazosin and (-)-norepinephrine, and were unaffected in terms of coupling to guanine nucleotide-regulating proteins as indicated by the ability of guanosine 5'-(beta, gamma-imido)triphosphate to promote the conversion of the remaining alpha 1-receptors into a low affinity state. These data indicate that tumor promoters are potent antagonists of alpha 1-adrenergic and vasopressin (low dose) responses in liver. It is proposed that PMA acting via protein kinase C (which presumably mediates the action of PMA) exerts its inhibitory action on alpha 1-adrenergic responses at the alpha 1-adrenergic receptor itself and also at a site close to or before myo-inositol-1,4,5-P3 release.  相似文献   

20.
Several new clonidine analogs were synthesized and their ability to inhibit [3H]phentolamine binding to human platelet alpha 2-adrenergic receptors was tested. The order of potency and calculated dissociation constants for clonidine and its analogs were as follows: clonidine (0.020 +/- 0.005 microM) greater than p-aminoclonidine (0.100 +/- 0.010 microM) greater than hydroxy-phenacetyl-aminoclonidine (0.20 +/- 0.03 microM) greater than p-dansyl clonidine (1.00 +/- 0.20 microM) greater than t-boc-tyrosine clonidine (1.80 +/- 0.60 microM). Thus, p-amino substitution reduces alpha 2-adrenergic affinity in the platelet system. The effects of clonidine and its p-amino analogs on platelet adenylate cyclase were also evaluated. This enzyme is inhibited by epinephrine acting via alpha 2-adrenergic receptors. Both clonidine and p-aminoclonidine cause slight inhibition of basal adenylate cyclase and reverse the inhibition induced by epinephrine. These observations indicate that clonidine is a partial agonist for platelet alpha 2-adrenergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号