首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of cAMP analogues on phosphatidylcholine formation via the CDP-choline pathway was investigated in cultured monolayers of rat hepatocytes. Treatment with chlorophenylthio-cAMP or the cAMP phosphodiesterase inhibitor, aminophylline, reduced the total uptake of [methyl-3H]choline by 32 and 26% (p less than 0.01), respectively. Chlorophenylthio-cAMP inhibited the incorporation of [methyl-3H]choline into phosphatidylcholine by 2.5-fold (p less than 0.001) and reduced the rate of phosphatidylcholine biosynthesis by approximately 40%. Aminophylline, 8-bromoadenosine 3':5'-monophosphate and N6,O2'-dibutyryladenosine 3':5'-monophosphate also inhibited [methyl-3H]choline incorporation into phosphatidylcholine. Although choline kinase and phosphocholinetransferase activities were stimulated by chlorophenylthio-cAMP treatment, CTP: phosphocholine cytidylyltransferase activity was reduced 46% (p less than 0.01). The results indicate that cytidylyltransferase may be phosphorylated and inhibited by cAMP-dependent protein kinases.  相似文献   

2.
The mechanism of the inhibition of phosphatidylcholine biosynthesis by the phospholipid analogue, hexadecylphosphocholine, was investigated in Madin-Darby canine kidney cells. In the presence of 50 mumol/liter hexadecylphosphocholine, there was a translocation of CTP:choline-phosphate cytidylyltransferase (EC 22.7.7.15) activity from the membranes to the cytosol of the cells. Since we recently demonstrated that hexadecylphosphocholine also inhibits protein kinase C in vitro, [methyl-3H]choline labeling experiments were repeated with phorbol ester-desensitized cells. In these cells the same inhibitory effect of hexadecylphosphocholine was measured. As a consequence of inhibition, the [methyl-3H]choline incorporation into the phosphocholine pool was increased time-dependently. In addition, there was no evidence for a difference between the choline uptake of control and hexadecylphosphocholine-treated cells. Likewise, the amount of diacylglycerol, a known activator of the translocation process, was not reduced. Finally, we showed that the inhibitory effect of hexadecylphosphocholine on CTP:choline-phosphate cytidylyltransferase translocation cannot be explained by the detergent properties of this phospholipid analogue. Therefore, we suggest a direct inhibitory effect of hexadecylphosphocholine on the translocation of CTP:choline-phosphate cytidylyltransferase.  相似文献   

3.
The genomes of Treponema denticola and Treponema pallidum contain a gene, licCA, which is predicted to encode a fusion protein containing choline kinase and CTP:phosphocholine cytidylyltransferase activities. Because both organisms have been reported to contain phosphatidylcholine, this raises the possibility that they use a CDP-choline pathway for the biosynthesis of phosphatidylcholine. This report shows that phosphatidylcholine is a major phospholipid in T. denticola, accounting for 35-40% of total phospholipid. This organism readily incorporated [14C]choline into phosphatidylcholine, indicating the presence of a choline-dependent biosynthetic pathway. The licCA gene was cloned, and recombinant LicCA had choline kinase and CTP:phosphocholine cytidylyltransferase activity. The licCA gene was disrupted in T. denticola by erythromycin cassette mutagenesis, resulting in a viable mutant. This disruption completely blocked incorporation of either [14C]choline or 32Pi into phosphatidylcholine. The rate of production of another phospholipid in T. denticola, phosphatidylethanolamine, was elevated considerably in the licCA mutant, suggesting that the elevated level of this lipid compensated for the loss of phosphatidylcholine in the membranes. Thus it appears that T. denticola does contain a licCA-dependent CDP-choline pathway for phosphatidylcholine biosynthesis.  相似文献   

4.
When type II pneumonocytes from adult rats were maintained in a medium that lacked choline, the incorporation of [14C]glycerol into phosphatidylcholine was not greatly diminished during the period that the cells displayed characteristics of type II pneumonocytes. Cells that were maintained in choline-free medium that contained choline oxidase and catalase, however, became depleted of choline and subsequent synthesis of phosphatidylcholine by these cells was responsive to choline in the extracellular medium. Incorporation of [14C]glycerol into phosphatidylcholine by choline-depleted cells was stimulated maximally (approx. 6-fold) by extracellular choline at a concentration (0.05 mM) that also supported the greatest incorporation into phosphatidylglycerol. The incorporation of [14C]glycerol into other glycerophospholipids by choline-depleted cells was not increased by extracellular choline. When cells were incubated in the presence of [3H]cytidine, the choline-dependent stimulation of the synthesis of phosphatidylcholine and phosphatidylglycerol was accompanied by an increased recovery of [3H]CMP. This increased recovery of [3H]CMP reflected an increase in the intracellular amount of CMP from 48 +/- 9 to 76 +/- 16 pmol/10(6) cells. Choline-depleted cells that were exposed to [3H]choline contained [3H]CDP-choline as the principal water-soluble choline derivative. As the extracellular concentration of choline was increase, however, the amount of 3H in phosphocholine greatly exceeded that in all other water-soluble derivatives. Choline-depletion of cells resulted in an increase in the specific activity of CTP:phosphocholine cytidylyltransferase in cell homogenates (from 0.40 +/- 0.15 to 1.31 +/- 0.20 nmol X min-1 X mg of protein-1). These data are indicative that the biosynthesis of phosphatidylcholine is integrated with that of phosphatidylglycerol and are consistent with the proposed involvement of CMP in this integration. The choline-depleted type II pneumonocyte provides a new model for investigating the regulation of CTP:phosphocholine cytidylyltransferase activity.  相似文献   

5.
After a 3-h incubation of Krebs II ascitic cells in the presence of phospholipase C from Clostridium welchii under nonlytic conditions, the incorporation of [3H] choline into phosphatidylcholine was increased 1.7-fold as compared to untreated cells. The total amounts of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were unchanged up to 3 h of incubation. The limiting step in phosphatidylcholine biosynthesis was the formation of CDP-choline catalyzed by CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) as monitored by the decrease in phosphocholine labeling following phospholipase C treatment of cells prelabeled with [3H]choline. The specific activity of homogenate cytidylyltransferase was increased about 1.6-fold in phospholipase C-treated cells. Specific activity of the membrane fraction was increased 2-fold, whereas cytosolic specific activity decreased in phospholipase C-treated cells. The activation of cytidylyltransferase was concomitant with translocation of the enzyme from the cytosol to the membrane fraction. The latter was further fractionated using a Percoll gradient that allowed an efficient separation between endoplasmic reticulum and other subcellular membranes. In control cells, particulate cytidylyltransferase activity co-migrated with the endoplasmic reticulum and ribosome markers and not with the plasma membrane. Also, in treated cells, the stimulation of cytidylyltransferase activity occurred at the endoplasmic reticulum level and did not involve either the external cell membrane or other cellular organelles including the Golgi apparatus, lysosomes, or mitochondria. Thus, our results demonstrate that a stimulus acting on the plasma membrane promotes the translocation of the soluble form of cytidylyltransferase specifically to the endoplasmic reticulum.  相似文献   

6.
CTP:phosphocholine cytidylyltransferase was located in both the cytosolic and particulate fractions from Chinese hamster ovary cells. The activity of the cytosolic form of the enzyme was greatly enhanced by incubation with sonicated preparations of several different lipids, although incubations with either phosphatidylcholine or 1,2-sn-diolein did not increase activity. The activation of the cytidylyltransferase in Chinese hamster ovary cells treated with phospholipase C from Clostridium perfringens occurred with a concomitant shift in the subcellular distribution of the enzyme from cytosolic to particulate fractions. This shift was rapid and did not require protein synthesis. Removal of phospholipase C from the cell cultures resulted in a return to basal levels of incorporation of [3H]choline into phosphatidylcholine, a decrease in the activity of cytidylyltransferase, and a loss of the membrane-bound form of the enzyme. Similar experiments with LM cells, which are resistant to exogenous phospholipase C, showed no change in subcellular distribution of cytidylyltransferase, suggesting that the activation of CTP:phosphocholine cytidylyltransferase required a change in membrane phospholipid composition. The results presented are discussed in terms of a mechanism of regulation of phosphatidylcholine production involving monitoring of membrane phospholipid composition.  相似文献   

7.
The influence of chlorpromazine and trifluoperazine on phosphatidylcholine biosynthesis in HeLa cells was investigated. HeLa cells were prelabeled with [Me-3H]choline for 1 h. The cells were subsequently incubated with various concentrations of drugs. Both compounds were potent inhibitors of phosphatidylcholine biosynthesis, with 50% inhibition by 5 micron of either drug. Analysis of the radioactivity in the soluble precursors indicated a block in the conversion of phosphocholine to CDPcholine catalyzed by CTP:phosphocholine cytidylyltransferase (CTP:cholinephosphate cytidylyltransferase, EC 2.7.7.15). Inhibition by these drugs was slowly reversed after incubation for more than 2 h, or was immediately abolished when 0.4 mM oleate was included in the cell medium or when the drug-containing medium was removed. The subcellular location of the cytidylyltransferase was unaffected by either drug, nor did the drugs alter the rate of release of cytidylyltransferase from HeLa cells by digitonin treatment. The drugs had a direct inhibitory effect on cytidylyltransferase activity in HeLa cell postmitochondrial supernatants. Half-maximal inhibition was achieved with 30 microM trifluoperazine and 50 microM chlorpromazine. These drugs did not change the apparent Km of the cytidylyltransferase for CTP or phosphocholine. Inhibition of cytidylyltransferase by these compounds was reversible with exogenous phospholipid or oleate in the enzyme assay. The data indicate that both drugs inhibit phosphatidylcholine synthesis by an effect on the cytidylyltransferase. The mechanism of action remains unknown at this time.  相似文献   

8.
Short time effect of oleate and 1-O-alkyl-2-O-methyl-rac-glycero-3-phosphocholine (AMGPC) on choline incorporation into phosphatidylcholines were studied in HL-60 cells. The non lytic concentration of 50 microM oleate induced a three-fold increase in [3H]choline incorporation into phosphatidylcholine. This stimulation was accompanied by a translocation of the CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15) from cytosol to membranes. By contrast, the ether-lipid AMGPC inhibited [3H]choline incorporation into phosphatidylcholine by 60% at 10 microM. AMGPC had no effect on choline kinase or choline phosphotransferase activities. When AMGPC was added separately to an homogenate, a particulate or a cytosolic fraction, cytidylyltransferase inhibition was observed only in the homogenate. However on particulates recovered from homogenates treated with increasing concentrations of AMGPC, membranous cytidylyltransferase activity decreased dose-dependently. Thus AMGPC had no effect on cytidylyltransferase activity itself but inhibited its translocation from cytosol to membrane. At variance with the well-established positive effect on cytidylyltransferase translocation induced by fatty acids, this is the first demonstration that AMGPC can inhibit cytidylyltransferase translocation in cell-free system.  相似文献   

9.
In hamster heart, the majority of the phosphatidylcholine is synthesized via the CDP-choline pathway, and the rate-limiting step of this pathway is catalysed by CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15). We have shown previously [Choy (1982) J. Biol. Chem. 257, 10928-10933] that, in the myopathic heart, the level of cardiac CTP was diminished during the development of the disease. In order to maintain the level of CDP-choline, and consequently the rate of phosphatidylcholine biosynthesis, cardiac cytidylyltransferase activity was increased. However, it was not clear if the same compensatory mechanism would occur when the cardiac CTP level was decreased rapidly. In this study, hypoxia of the hamster heart was produced by perfusion with buffer saturated with 95% N2. The heart was pulse-labelled with radioactive choline and then chased with non-radioactive choline for various periods under hypoxic conditions. There was a severe decrease in ATP and CTP levels within 60 min of hypoxic perfusion, with a corresponding fall in the rate of phosphatidylcholine biosynthesis. Analysis of the choline-containing metabolites revealed that the lowered ATP level did not affect the phosphorylation of choline to phosphocholine, but the lower CTP level resulted in the decreased conversion of phosphocholine to CDP-choline. Determination of enzyme activities revealed that hypoxic treatment resulted in the enhanced translocation of cytidylyltransferase from the cytosolic to the microsomal form. This enhanced translocation was probably caused by the accumulation of fatty acids in the heart during hypoxia. We postulate that the enhancement of translocation of the cytidylyltransferase to the microsomal form (a more active form) is a mechanism by which the heart can compensate for the decrease in CTP level during hypoxia in order to maintain phosphatidylcholine biosynthesis.  相似文献   

10.
The effect of norepinephrine on phosphatidylcholine and phosphatidylethanolamine formation was investigated in short-term incubations with freshly isolated rat hepatocytes. In the presence of dl-propranolol, norepinephrine decreases the incorporation of [methyl-14C]choline into phosphatidylcholines in a dose-dependent manner. At a concentration of 50 microM, norepinephrine (plus 20 microM propranolol) inhibits the incorporation of [methyl-14C]choline over a wide range of choline concentrations (59% inhibition at 5 microM choline; 34% inhibition at 1 mM choline). Norepinephrine also decreases the incorporation rates of [1-14C]palmitic acid and [1-14C]oleic acid into phosphatidylcholines. The effect of norepinephrine is mediated through an alpha-adrenergic receptor. Norepinephrine (plus propranolol) does not decrease the uptake or phosphorylation rate of [methyl-14C]choline. Pulse-label and pulse-chase studies indicate that the conversion rate of phosphocholine to CDP-choline, catalyzed by CTP:phosphocholine cytidylyltransferase, is diminished by norepinephrine. In contrast with the inhibitory effect of norepinephrine on phosphatidylcholine synthesis, this hormone stimulates the formation of phosphatidylethanolamines from [1,2-14C]ethanolamine. This increased incorporation rate is apparent at ethanolamine concentrations above 25 microM. A combination of norepinephrine and propranolol decreases, however, the synthesis of phosphatidylcholines from [1,2-14C]ethanolamine. The results indicate that alpha-adrenergic regulation dissociates the synthesis of phosphatidylcholines from that of phosphatidylethanolamines.  相似文献   

11.
The purpose of this study was to examine the effect of exogenous CDP-choline on choline metabolism and phosphatidylcholine biosynthesis in adult rat ventricular myocytes. Choline uptake and metabolism were examined, using [methyl3 H] choline. CDP-choline in the medium produced a concentration dependent reduction in the amount of radio-label in phosphocholine and phospholipid but it did not alter choline uptake into the myocytes. CDP-choline also did not antagonize the effect of hypoxia on phosphatidylcholine synthesis; rather it accentuated the hypoxia-induced reductions in cellular phosphocholine and phosphatidylcholine biosynthesis. These results indicate that the exogenous administration of CDP-choline alters choline metabolism in the heart by reducing the formation of phosphocholine and phosphatidylcholine without altering choline uptake and suggest an effect of a CDP-choline metabolite on choline metabolism which is not effective in opposing the effect of hypoxia on phosphatidylcholine biosynthesis.  相似文献   

12.
The production and characterization of an antibody to rat liver CTP:phosphocholine cytidylyltransferase is described. This antibody quantitatively precipitated cytidylyltransferase from both rat liver and HeLa cell cytosol. Following affinity purification, the antibody was used to demonstrate, for the first time, the phosphorylation of cytidylyltransferase in vivo. Following the immunoprecipitation of cytidylyltransferase from HeLa cells, acid hydrolysis, and thin layer electrophoresis of the amino acids, only [32P]phosphoserine was detected. The phosphorylation state of cytidylyltransferase in HeLa cells was examined following treatment with phorbol ester for 1 h. In agreement with previous studies, the incorporation of [3H]choline into phosphatidylcholine via the CDP-choline pathway was stimulated 5-fold in cultures of HeLa cells following treatment with phorbol ester for 1 h. However, no appreciable translocation of cytidylyltransferase was detected, despite the utilization of two different methods of cell lysis. Furthermore, the inclusion of phosphatase inhibitors and chelators of divalent cations in the homogenization buffers had no effect on the observed distribution or activity of the enzyme. Immunoprecipitated cytidylyltransferase was phosphorylated to the same extent, and on serine residues only, in both control and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-treated cells. Measurement of the pool sizes of the aqueous intermediates of the CDP-choline pathway, following TPA treatment, revealed a modest decrease in the phosphocholine pool only, consistent with an activation of cytidylyltransferase.  相似文献   

13.
Regulation of phosphatidylcholine metabolism in mammalian hearts   总被引:1,自引:0,他引:1  
Phosphatidylcholine is the major phospholipid in the mammalian heart. Over 90% of the cardiac phosphatidylcholine is synthesized via the CDP-choline pathway. The rate-limiting step of this pathway is catalyzed by CTP:phosphocholine cytidylyltransferase. Current evidence suggests that phosphatidylcholine biosynthesis in the heart is regulated by the availability of CTP and the modulation of cytidylyltransferase activity. Phosphatidylcholine is degraded mainly by the actions of phospholipase A1 and A2, with the formation of lysophosphatidylcholine. Lysophosphatidylcholine may be further deacylated by lysophospholipase or reacylated back into the parent phospholipid by the action of acyltransferase. The accumulation of lysophosphatidylcholine in the heart may be one of the biochemical factors for the production of cardiac arrhythmias.  相似文献   

14.
Immunoprecipitation of 32P-labeled CTP:phosphocholine cytidylyltransferase from freshly isolated rat hepatocytes followed by trypsin digestion and two-dimensional peptide mapping revealed multiple phosphorylation sites. Treatment of the hepatocytes with 0.5 mM of the cAMP analog, 8-(4-chlorophenylthio)-adenosine 3':5'-monophosphate or elevation of intracellular cAMP levels by cholera toxin activated the cAMP-dependent protein kinase activity in intact cells. Despite the activation of cAMP-dependent protein kinase no change in the rate of [3H]choline incorporation into phosphatidylcholine was detected. In addition, the activity of cytidylyltransferase in total cell homogenates and its distribution between soluble and particulate fractions remained unchanged. Comparison of peptide maps of 32P-labeled cytidylyltransferase obtained from control and cholera-toxin-treated hepatocytes did not reveal any differences in the phosphorylation state of cytidylyltransferase. Furthermore, only [32P]phosphoserine residues were detected following phosphoamino acid analysis. We conclude that cytidylyltransferase activity is not altered solely by the activation of the cAMP-dependent kinase in fresh hepatocytes.  相似文献   

15.
The effects of cholecystokinin (CCK) and other pancreatic secretagogues on phosphatidylcholine (PC) synthesis were studied in isolated rat pancreatic acini. When acini were incubated with [3H]choline in the presence of 1 nM CCK-octapeptide (CCK8) for 60 min, the incorporations of [3H]choline into both water-soluble choline metabolites and PC in acini were reduced by CCK8 to 74 and 41% of control, respectively. Pulse-chase study revealed that CCK8 reduced both the disappearance of phosphocholine and the synthesis of PC. Other Ca(2+)-mobilizing secretagogues such as carbamylcholine, bombesin, and Ca2+ ionophore A23187 also reduced PC synthesis to the same extent as did CCK8. When combined with 1 nM CCK8, A23187 or carbamylcholine did not further inhibit PC synthesis. Furthermore, W-7 or W-5, a calmodulin antagonist, reversed the inhibition by CCK8 of PC synthesis, suggesting that a Ca(2+)-calmodulin-dependent pathway may be involved in CCK-induced inhibition of PC synthesis in acini. By contrast, neither cAMP-dependent secretagogues such as secretin and dibutyryl cAMP nor a phorbol ester had any effect on PC synthesis in acini. Staurosporine or H-7, a protein kinase C inhibitor, did not affect the inhibition by CCK of PC synthesis. The analysis of enzyme activity involved in PC synthesis via CDP-choline pathway showed that CCK treatment of acini reduced CTP:phosphocholine cytidylyltransferase activity in both cytosolic and particulate fraction, a finding consistent with the delayed disappearance of phosphocholine induced by CCK in pulse-chase study. By contrast, CCK treatment of acini did not alter the activities of choline kinase and phosphocholine transferase in acini. The extent of inhibition by CCK of cytidylyltransferase activity became much larger when subcellular fractions of acini were prepared in the presence of phosphatase inhibitors. In addition, W-7 reversed the inhibitory effect of CCK treatment on cytidylyltransferase activity in acini. When acini were labeled with [3H]myristic acid and chased, CCK8 (1 nM) reduced the synthesis of [3H]myristic acid-labeled PC to 27% of control after a 60-min chase period. This inhibition of PC synthesis induced by CCK was accompanied by a delayed disappearance of [3H]diacylglycerol, the radioactivity of which was 225% of control at 60 min. These results indicate that CCK inhibits PC synthesis by inducing both the reduction of choline uptake into acini and the inhibition of CTP:phosphocholine cytidylyltransferase activity. Furthermore, the results suggest the possibility that the activation of Ca(2+)-calmodulin-dependent kinase in response to CCK may phosphorylate cytidylyltransferase thereby decreasing this enzyme activity in pancreatic acinar cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Phosphatidylcholine and phosphatidylethanolamine are the two main phospholipids in eukaryotic cells comprising ~50 and 25% of phospholipid mass, respectively. Phosphatidylcholine is synthesized almost exclusively through the CDP-choline pathway in essentially all mammalian cells. Phosphatidylethanolamine is synthesized through either the CDP-ethanolamine pathway or by the decarboxylation of phosphatidylserine, with the contribution of each pathway being cell type dependent. Two human genes, CEPT1 and CPT1, code for the total compliment of activities that directly synthesize phosphatidylcholine and phosphatidylethanolamine through the CDP-alcohol pathways. CEPT1 transfers a phosphobase from either CDP-choline or CDP-ethanolamine to diacylglycerol to synthesize both phosphatidylcholine and phosphatidylethanolamine, whereas CPT1 synthesizes phosphatidylcholine exclusively. We show through immunofluorescence that brefeldin A treatment relocalizes CPT1, but not CEPT1, implying CPT1 is found in the Golgi. A combination of coimmunofluorescence and subcellular fractionation experiments with various endoplasmic reticulum, Golgi, and nuclear markers confirmed that CPT1 was found in the Golgi and CEPT1 was found in both the endoplasmic reticulum and nuclear membranes. The rate-limiting step for phosphatidylcholine synthesis is catalyzed by the amphitropic CTP:phosphocholine cytidylyltransferase alpha, which is found in the nucleus in most cell types. CTP:phosphocholine cytidylyltransferase alpha is found immediately upstream cholinephosphotransferase, and it translocates from a soluble nuclear location to the nuclear membrane in response to activators of the CDP-choline pathway. Thus, substrate channeling of the CDP-choline produced by CTP:phosphocholine cytidylyltransferase alpha to nuclear located CEPT1 is the mechanism by which upregulation of the CDP-choline pathway increases de novo phosphatidylcholine biosynthesis. In addition, a series of CEPT1 site-directed mutants was generated that allowed for the assignment of specific amino acid residues as structural requirements that directly alter either phospholipid head group or fatty acyl composition. This pinpointed glycine 156 within the catalytic motif as being responsible for the dual CDP-alcohol specificity of CEPT1, whereas mutations within helix 214-228 allowed for the orientation of transmembrane helices surrounding the catalytic site to be definitively positioned.  相似文献   

17.
The effect of both lipolytic and antilipolytic hormones on the turnover of phosphatidylcholine in freshly isolated rat adipocytes was investigated. Treatment of adipocytes with agonists such as glucagon or isoprenaline that stimulate lipolysis through a cyclic AMP-dependent mechanism caused an increase in the incorporation of [Me-3H]choline into phosphatidylcholine. Pulse-chase studies indicated that the stimulation was due to an increase in the conversion of choline into phosphatidylcholine, which was both time- and dose-dependent. The stimulatory effect of isoprenaline was inhibited in a dose-dependent manner by oxytocin or insulin. Oxytocin inhibited the incorporation of [Me-3H]choline into phosphatidylcholine in both the presence and the absence of isoprenaline, whereas in the absence of isoprenaline insulin increased the incorporation of [Me-3H]choline into phosphatidylcholine. The effects of isoprenaline, oxytocin and insulin on the incorporation of [3H]choline into phosphatidylcholine were paralleled by changes in the activity of CTP:phosphocholine cytidylyltransferase.  相似文献   

18.
1. Adult rat hepatocytes were isolated by collagenase perfusion and were maintained in monolayer culture for 24h. 2. Choline metabolism and phosphatidylcholine biosynthesis were studied in these cells by performing pulse-chase studies at physiological concentrations (1-40 microM) of (Me-3H)-labelled or unlabelled choline in the culture medium. 3. During the 15 min pulse incubation, choline entering the cells was rapidly phosphorylated to phosphocholine or oxidized to betaine. Low concentrations of choline in the medium decreased the relative amount of choline oxidized. 4. During the 3 h chase period, the radioactivity in the phosphocholine pool was transferred to phosphatidylcholine. Very little radioactivity was associated with CDP-choline. These results provide good evidence that the rate-limiting step for phosphatidylcholine biosynthesis in these cultured hepatocytes is the conversion of phosphocholine into CDP-choline. Similar results were obtained for all concentrations of choline in the culture medium. 5. Cellular concentrations of phosphocholine were unaffected by the concentration of choline (1-40 microM) in the medium. 6. The majority of the label associated with betaine was secreted into the culture medium during the chase incubation. 7. From the pulse-chase studies, and the cellular phosphocholine concentrations, it was possible to estimate the rate of phosphatidylcholine biosynthesis (2.2, 2.8, 3.1 and 3.7 nmol/min per g wet weight of cells cultured in 1, 5, 10 and 40 microM-choline respectively for up to 4.25 h).  相似文献   

19.
The agonist stimulation of a variety of cells results in the induction of specific lipid metabolism in nuclear membranes, supporting the hypothesis of an important role of the lipids in nuclear signal transduction. While the existence of a phosphatidylinositol cycle has been reported in cellular nuclei, little attention has been given to the metabolism of phosphatidylcholine in nuclear signaling. In the present study the metabolism of phosphatidylcholine in the nuclei of neuro-blastoma cells LA-N-1 was investigated. The incubation of LA-N-1 nuclei with radioactive choline, phosphocholine or CDP-choline led to the production of labelled phosphatidylcholine. The incorporation of choline and phosphocholine but not CDP-choline was enhanced in nuclei of TPA treated cells. Moreover the presence of choline kinase, phosphocholine cytidylyltransferase and phosphocholine transferase activities were detected in the nuclei and the TPA treatment of the cells stimulated the activity of the phosphocholine cytidylyltransferase. When cells prelabelled with [3H]palmitic acid were stimulated with TPA in the presence of ethanol, an increase of labelled diacylglycerol and phosphatidylethanol in the nuclei was observed. Similarly, an increase of labelled diacylglycerol and phosphatidic acid but not of phosphatidylethanol occurred in [3H]palmitic acid prelabelled nuclei stimulated with TPA in the presence of ethanol. However the production of phosphatidylethanol was observed when the nuclei were treated with TPA in the presence of ATP and GTPS. The stimulation of [3H]choline prelabelled nuclei with TPA also generated the release of free choline and phosphocholine. The results indicate the presence of PLD and probably PLC activities in LA-N-1 nuclei and the involvement of phosphatidylcholine in the production of nuclear lipid second messengers upon TPA stimulation of LA-N-1 cells. The correlation of the disappearance of phosphatidylcholine, the production of diacylglycerol and phosphatidic acid with the stimulation of phosphatidylcholine synthesis in nuclei of TPA treated LA-N-1 suggests the existence of a phosphatidylcholine cycle in these nuclei.  相似文献   

20.
The effect of expression of the Harvey-ras oncogene on phosphatidylcholine metabolism in C3H10T1/2 mouse fibroblast cells was examined. There were multiple changes in the CDP-choline pathway for phosphatidylcholine biosynthesis in the ras-expressing cells. The activity of the first enzyme in the pathway, choline kinase, was stimulated 1.9-fold, while the activity of the second enzyme, CTP:phosphocholine cytidylyltransferase, was decreased by one-half. High levels of intracellular phosphocholine measured in the ras cells were consistent with the altered activities of choline kinase and cytidylyltransferase. The overall rate of phosphatidylcholine synthesis appeared to be increased because the turnover rate of phosphocholine from the intracellular pool was higher in the ras-transfected cells. There also appeared to be an increased rate of phosphatidylcholine degradation in ras-expressing C3H10T1/2 cells. Very high levels of glycerophosphocholine (6-fold increased over control cells) suggested that phospholipase A was activated in these cells. These results indicate that the ras oncogene product directly or indirectly causes an increased turnover of phosphatidylcholine in C3H10T1/2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号