首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regeneration of new shoots in plant tissue culture is often associated with appearance of abnormally shaped leaves. We used the adventitious shoot regeneration response induced by decapitation (removal of all preformed shoot apical meristems, leaving a single cotyledon) of greenhouse-grown cotyledon-stage seedlings to test the hypothesis that such abnormal leaf formation is a normal regeneration progression following wounding and is not conditioned by tissue culture. To understand why shoot regeneration starts with defective organogenesis, the regeneration response was characterized by morphology and scanning electron and light microscopy in decapitated cotyledon-stage Cucurbita pepo seedlings. Several leaf primordia were observed to regenerate prior to differentiation of a de novo shoot apical meristem from dividing cells on the wound surface. Early regenerating primordia have a greatly distorted structure with dramatically altered dorsoventrality. Aberrant leaf morphogenesis in C. pepo gradually disappears as leaves eventually originate from a de novo adventitious shoot apical meristem, recovering normal phyllotaxis. Similarly, following comparable decapitation of seedlings from a number of families (Chenopodiaceae, Compositae, Convolvulaceae, Cucurbitaceae, Cruciferae, Fabaceae, Malvaceae, Papaveraceae, and Solanaceae) of several dicotyledonous clades (Ranunculales, Caryophyllales, Asterids, and Rosids), stems are regenerated bearing abnormal leaves; the normal leaf shape is gradually recovered. Some of the transient leaf developmental defects observed are similar to responses to mutations in leaf shape or shoot apical meristem function. Many species temporarily express this leaf development pathway, which is manifest in exceptional circumstances such as during recovery from excision of all preformed shoot meristems of a seedling.  相似文献   

2.
Networks in leaf development   总被引:6,自引:0,他引:6  
Shoots are characterized by indeterminate growth resulting from divisions of undifferentiated cells in the central region of the shoot apical meristem. These cells give rise to peripheral derivatives from which lateral organ initials are recruited. During initial stages of cell recruitment, the three-dimensional form of lateral organs is specified. Lateral organs such as leaves develop and differentiate along proximodistal (base-to-tip), dorsoventral (top-to bottom) and mediolateral (middle-to-margin) planes. Current findings are refining our knowledge of the genes and genetic interactions that regulate these early processes and are providing a picture of how these pathways may contribute to variation in leaf form.  相似文献   

3.
4.
? The CUP-SHAPED COTYLEDON (CUC)/NO APICAL MERISTEM (NAM) family of genes control boundary formation and lateral organ separation, which is critical for proper leaf and flower patterning. However, most downstream targets of CUC/NAM genes remain unclear. ? In a forward screen of the tobacco retrotransposon1 (Tnt1) insertion population in Medicago truncatula, we isolated a weak allele of the no-apical-meristem mutant mtnam-2. Meanwhile, we regenerated a mature plant from the null allele mtnam-1. These materials allowed us to extensively characterize the function of MtNAM and its downstream genes. ? MtNAM is highly expressed in vegetative shoot buds and inflorescence apices, specifically at boundaries between the shoot apical meristem and leaf/flower primordia. Mature plants of the regenerated null allele and the weak allele display remarkable floral phenotypes: floral whorls and organ numbers are reduced and the floral organ identity is compromised. Microarray and quantitative RT-PCR analyses revealed that all classes of floral homeotic genes are down-regulated in mtnam mutants. Mutations in MtNAM also lead to fused cotyledons and leaflets of the compound leaf as well as a defective shoot apical meristem. ? Our results revealed that MtNAM shares the role of CUC/NAM family genes in lateral organ separation and compound leaf development, and is also required for floral organ identity and development.  相似文献   

5.
Itoh JI  Kitano H  Matsuoka M  Nagato Y 《The Plant cell》2000,12(11):2161-2174
The mechanism regulating the pattern of leaf initiation was analyzed by using shoot organization (sho) mutants derived from three loci (SHO1, SHO2, and SHO3). In the early vegetative phase, sho mutants show an increased rate of leaf production with random phyllotaxy. The resulting leaves are malformed, threadlike, or short and narrow. Their shoot apical meristems are relatively low and wide, that is, flat shaped, although their shape and size are highly variable among plants of the same genotype. Statistical analysis reveals that the shape of the shoot meristem rather than its size is closely correlated with the variations of plastochron and phyllotaxy. Rapid and random leaf production in sho mutants is correlated with the frequent and disorganized cell divisions in the shoot meristem and with a reduction of expression domain of a rice homeobox gene, OSH1. These changes in the organization and behavior of the shoot apical meristems suggest that sho mutants have fewer indeterminate cells and more determinate cells than wild type, with many cells acting as leaf founder cells. Thus, the SHO genes have an important role in maintaining the proper organization of the shoot apical meristem, which is essential for the normal initiation pattern of leaf primordia.  相似文献   

6.
G Chuck  C Lincoln    S Hake 《The Plant cell》1996,8(8):1277-1289
Plant development depends on the activity of apical meristems, which are groups of indeterminate cells whose derivatives elaborate the organs of the mature plant. Studies of knotted1 (kn1) and related gene family members have determined potential roles for homeobox genes in the function of shoot meristems. The Arabidopsis kn1-like gene, KNAT1, is expressed in the shoot apical meristem and not in determinate organs. Here, we show that ectopic expression of KNAT1 in Arabidopsis transforms simple leaves into lobed leaves. The lobes initiate in the position of serrations yet have features of leaves, such as stipules, which form in the sinus, the region at the base of two lobes. Ectopic meristems also arise in the sinus region close to veins. Identity of the meristem, that is, vegetative or floral, depends on whether the meristem develops on a rosette or cauline leaf, respectively. Using in situ hybridization, we analyzed the expression of KNAT1 and another kn1-like homeobox gene, SHOOT MERISTEMLESS, in cauliflower mosaic virus 35S::KNAT1 transformants. KNAT1 expression is strong in vasculature, possibly explaining the proximity of the ectopic meristems to veins. After leaf cells have formed a layered meristem, SHOOT MERISTEMLESS expression begins in only a subset of these cells, demonstrating that KNAT1 is sufficient to induce meristems in the leaf. The shootlike features of the lobed leaves are consistent with the normal domain of KNAT1's expression and further suggest that kn1-related genes may have played a role in the evolution of leaf diversity.  相似文献   

7.
8.
Apical meristems play a central role in plant development. Self-renewing cells in the central region of the shoot meristem replenish the cell population in the peripheral region, where organ primordia emerge in a predictable pattern, and in the underlying rib meristem, where new stem tissue is formed. While much is known about how organ primordia are initiated and their lateral boundaries established, development at the interface between the stem and the meristem or the lateral organs is poorly understood. Here, we show that the BELL-type ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1) is required for proper development of the boundary between the stem and both vegetative and reproductive organs and that this role partially overlaps with that of CUP-SHAPED COTYLEDON genes. During the vegetative phase, ATH1 also functions redundantly with light-activated genes to inhibit growth of the region below the shoot meristem. Consistent with a role in inhibiting stem growth, ATH1 is downregulated at the start of inflorescence development and ectopic ATH1 expression prevents growth of the inflorescence stem by reducing cell proliferation. Thus, ATH1 modulates growth at the interface between the stem, meristem, and organ primordia and contributes to the compressed vegetative habit of Arabidopsis thaliana.  相似文献   

9.
Formation of lateral organ primordia from the shoot apical meristem creates boundaries that separate the primordium from surrounding tissue. Morphological and gene expression studies indicate the presence of a distinct set of cells that define the boundaries in the plant shoot apex. Cells at the boundary usually display reduced growth activity that results in separation of adjacent organs or tissues and this morphological boundary coincides with the border of different cell identities. Such morphogenetic and patterning events and their spatial coordination are controlled by a number of boundary-specific regulatory genes. The boundary may also act as a reference point for the generation of new meristems such as axillary meristems. Many of the genes involved in meristem initiation are expressed in the boundary. This review summarizes the cellular characters of the shoot organ boundary and the roles of regulatory genes that control different aspects of this unique region in plant development.  相似文献   

10.
Making leaves     
Leaves are determinate organs that develop from the flanks of the shoot apical meristem through founder cell recruitment, establishment of proximodistal, dorsoventral and mediolateral axes, and subsequent growth, expansion and differentiation along these axes. Maintenance of the shoot apical meristem and production of leaves requires balanced partitioning of cells between pluripotent and differentiation fates. Hormones have a significant role in this balance but it is becoming apparent that additional intrinsic and extrinsic inputs influence hormone signalling to control meristem function and leaf initiation. As leaves develop, temporal and spatial regulation of growth and maturation determines leaf shape and complexity. Remarkably genes involved in leaf development in the context of the shoot apical meristem are also involved in elaboration of the leaf shape to generate subtle marginal serrations, more prominent lobes or a dissected compound leaf. Potentially these common regulatory modules represent a fundamental means of setting up boundaries separating discrete zones of growth. Defining gene networks involved in leaf shape variation and exploring interspecies differences between such networks is enabling exciting insight into changes that contribute to natural variation of leaf form.  相似文献   

11.
12.
Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development   总被引:1,自引:0,他引:1  
Hawker NP  Bowman JL 《Plant physiology》2004,135(4):2261-2270
Meristems within the plant body differ in their structure and the patterns and identities of organs they produce. Despite these differences, it is becoming apparent that shoot and root apical and vascular meristems share significant gene expression patterns. Class III HD-Zip genes are required for the formation of a functional shoot apical meristem. In addition, Class III HD-Zip and KANADI genes function in patterning lateral organs and vascular bundles produced from the shoot apical and vascular meristems, respectively. We utilize both gain- and loss-of-function mutants and gene expression patterns to analyze the function of Class III HD-Zip and KANADI genes in Arabidopsis roots. Here we show that both Class III HD-Zip and KANADI genes play roles in the ontogeny of lateral roots and suggest that Class III HD-Zip gene activity is required for meristematic activity in the pericycle analogous to its requirement in the shoot apical meristem.  相似文献   

13.
14.
The shoot apex of Dennstaedtia cicutaria consists of three zones—a zone of surface initials, a zone of subsurface initials, and a cup-shaped zone that is subdivided into a peripheral region and central region. A diffuse primary thickening meristem, which is continuous with the peripheral region of the cup-shaped zone, gives rise to a broad cortex. The roots occurring on the rhizomes are initiated very near the shoot apex in the outer derivatives of the primary thickening meristem. The roots that occur on the leaf bases also differentiate from cortical cells. Eventually, those cortical cells situated between the newly formed root apical cell and the rhizome procambium (or leaf trace) differentiate into the procambium of the root trace, thus establishing procambial continuity with that of the rhizome or leaf trace. Parenchymatous root gaps are formed in the rhizome stele and leaf traces when a few of their procambial cells located directly above the juncture of the root trace procambium differentiate into parenchyma. As the rhizome procambium or leaf trace continues to elongate, the parenchyma cells of the gap randomly divide and enlarge, thus extending the gap.  相似文献   

15.
Wang JW  Schwab R  Czech B  Mica E  Weigel D 《The Plant cell》2008,20(5):1231-1243
Leaves of flowering plants are produced from the shoot apical meristem at regular intervals, with the time that elapses between the formation of two successive leaf primordia defining the plastochron. We have identified two genetic axes affecting plastochron length in Arabidopsis thaliana. One involves microRNA156 (miR156), which targets a series of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes. In situ hybridization studies and misexpression experiments demonstrate that miR156 is a quantitative, rather than spatial, modulator of SPL expression in leaf primordia and that SPL activity nonautonomously inhibits initiation of new leaves at the shoot apical meristem. The second axis is exemplified by a redundantly acting pair of cytochrome P450 genes, CYP78A5/KLUH and CYP78A7, which are likely orthologs of PLASTOCHRON1 of rice (Oryza sativa). Inactivation of CYP78A5, which is expressed at the periphery of the shoot apical meristem, accelerates the leaf initiation rate, whereas cyp78a5 cyp78a7 double mutants often die as embryos with supernumerary cotyledon primordia. The effects of both miR156-targeted SPL genes and CYP78A5 on organ size are correlated with changes in plastochron length, suggesting a potential compensatory mechanism that links the rate at which leaves are produced to final leaf size.  相似文献   

16.
The shoot apex of Triticum aestivum cv. Ramona 50 was investigated histologically to describe cell lineages and events during leaf initiation. During histogenesis three periclinal divisions occurred in the first apical layer, with one or two divisions in the second apical layer. This sequence of cell divisions initially occurred in one region and spread laterally in both directions to encircle the meristem. Cells of the third apical layer were not involved in leaf histogenesis. Initially, young leaf primordia were produced from daughter cells of periclinal divisions in the two outer apical layers. Nuclear contents of protein, histone, and RNA in the shoot apex were evaluated as ratios to DNA by means of semiquantitative histochemistry. Daughter cells of periclinal divisions in the outer apical layer which produced the leaf primordia had higher histone/DNA ratios than cells of the remaining meristem. However, protein/DNA and RNA/DNA ratios were similar in both regions. Leaf initial cells had a higher 3H-thymidine labeling index, a higher RNA synthesis rate, and smaller nuclear volumes than cells of the residual apical meristem.  相似文献   

17.
Vegetative development in the Arabidopsis shoot apex follows both sequential and repetitive steps. Early in development, the young vegetative meristem is flat and has a rectangular shape with bilateral symmetry. The first pair of leaf primordia is radially symmetrical and is initiated on opposite sides of the meristem. As development proceeds, the meristem changes first to a bilaterally symmetrical trapezoid and then to a radially symmetrical dome. Vegetative development from the domed meristem continues as leaves are initiated in a repetitive manner. Abnormal development of the vegetative shoot apex is described for a number of mutants. The mutants we describe fall into at least three classes: (1) lesions in the shoot apex that do not show an apparent alteration in the shoot apical meristem, (2) lesions in the apical meristem that also (directly or indirectly) alter leaf primordia, and (3) lesions in the apical meristem that alter meristem size and leaf number but not leaf morphology. These mutations provide tools both to genetically analyze vegetative development of the shoot apex and to learn how vegetative development influences floral development.  相似文献   

18.
The mutually exclusive relationship between ARP and KNOX1 genes in the shoot apical meristem and leaf primordia in simple leaved plants such as Arabidopsis has been well characterized. Overlapping expression domains of these genes in leaf primordia have been described for many compound leaved plants such as Solanum lycopersicum and Cardamine hirsuta and are regarded as a characteristic of compound leaved plants. Here, we present several datasets illustrating the co-expression of ARP and KNOX1 genes in the shoot apical meristem, leaf primordia, and developing leaves in plants with simple leaves and simple primordia. Streptocarpus plants produce unequal cotyledons due to the continued activity of a basal meristem and produce foliar leaves termed “phyllomorphs” from the groove meristem in the acaulescent species Streptocarpus rexii and leaves from a shoot apical meristem in the caulescent Streptocarpus glandulosissimus. We demonstrate that the simple leaves in both species possess a greatly extended basal meristematic activity that persists over most of the leaf’s growth. The area of basal meristem activity coincides with the co-expression domain of ARP and KNOX1 genes. We suggest that the co-expression of ARP and KNOX1 genes is not exclusive to compound leaved plants but is associated with foci of meristematic activity in leaves.  相似文献   

19.
Formation and maintenance of the shoot apical meristem   总被引:16,自引:0,他引:16  
Development in higher plants is characterized by the reiterative formation of lateral organs from the flanks of shoot apical meristems. Because organs are produced continuously throughout the life cycle, the shoot apical meristem must maintain a pluripotent stem cell population. These two tasks are accomplished within separate functional domains of the apical meristem. These functional domains develop gradually during embryogenesis. Subsequently, communication among cells within the shoot apical meristem and between the shoot apical meristem and the incipient lateral organs is needed to maintain the functional domains within the shoot apical meristem.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号