首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of taurine on the serum and liver cholesterol and triglyceride levels was studied in rats fed cholesterol plus cholic acid. Four groups of 4 weeks old rats were fed control diet, hypercholesterolemic diet (HCD), HCD + 1% taurine or HCD + 2% taurine for 8 weeks. Addition of taurine in HCD diet showed a significant reduction not only in serum total cholesterol and triglyceride levels but also in liver total cholesterol, lipid and triglyceride contents compared to the animals fed HCD alone. Histological examination of organs of these animals showed severe fatty vacuolation in livers and signet ring type vacuolation in kidneys of rats fed HCD. Taurine showed ameliorating effect on these abnormalities. The animals fed taurine in HCD also showed increased bile and sterol excretion in faeces compared to rats fed HCD alone. Taurine showed significant hypocholesterolemia in rats probably by enhancing the catabolism of cholesterol and reducing the absorption of dietary cholesterol.  相似文献   

2.
Synthesis of fatty acids in the perfused mouse liver   总被引:6,自引:3,他引:3       下载免费PDF全文
1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of (3)H from (3)H(2)O (1-7mumol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-(14)C]lactic acid and [U-(14)C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of (3)H(2)O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12-16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with (3)H(2)O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.  相似文献   

3.
1. The synthesis of long-chain fatty acids de novo was measured in the liver and in regions of adipose tissue in intact normal and genetically obses mice throughout the daily 24h cycle. 2. The total rate of synthesis, as measured by the rate of incorporation of 3H from 3H2O into fatty acid, was highest during the dark period, in liver and adipose tissue of lean or obese mice. 3. The rate of incorporation of 14C from [U-14C]glucose into fatty acid was also followed (in the same mice). The 14C/3H ratios were higher by a factor of 5-20 in parametrial and scapular fat than that in liver. This difference was less marked during the dark period (of maximum fatty acid synthesis). 4. In normal mice, the total rate of fatty acid synthesis in the liver was about twofold greater than that in all adipose tissue regions combined. 5. In obese mice, the rate of fatty acid synthesis was more rapid than in lean mice, in both liver and adipose tissue. Most of the extra lipogenesis occurred in adipose tissue. The extra hepatic fatty acids synthesized in obese mice were located in triglyceride rather than phospholipid. 6. In adipose tissue of normal mice, the rate of fatty acid synthesis was most rapid in the intra-abdominal areas and in brown fat. In obese mice, all regions exhibited rapid rates of fatty acid synthesis. 7. These results shed light on the relative significance of liver and adipose tissue (i.e. the adipose 'organ') in fatty acid synthesis in mice, on the mino importance of glucose in hepatic lipogenesis, and on the alterations in the rate of fatty acid synthesis in genetically obese mice.  相似文献   

4.
Non-alcoholic fatty liver disease is prevalent in human obesity and type 2 diabetes, and is characterized by increases in both hepatic triglyceride accumulation (denoted as steatosis) and expression of pro-inflammatory cytokines such as IL-1β. We report here that the development of hepatic steatosis requires IL-1 signaling, which upregulates Fatty acid synthase to promote hepatic lipogenesis. Using clodronate liposomes to selectively deplete liver Kupffer cells in ob/ob mice, we observed remarkable amelioration of obesity-induced hepatic steatosis and reductions in liver weight, triglyceride content and lipogenic enzyme expressions. Similar results were obtained with diet-induced obese mice, although visceral adipose tissue macrophage depletion also occurred in response to clodronate liposomes in this model. There were no differences in the food intake, whole body metabolic parameters, serum β-hydroxybutyrate levels or lipid profiles due to clodronate-treatment, but hepatic cytokine gene expressions including IL-1β were decreased. Conversely, treatment of primary mouse hepatocytes with IL-1β significantly increased triglyceride accumulation and Fatty acid synthase expression. Furthermore, the administration of IL-1 receptor antagonist to obese mice markedly reduced obesity-induced steatosis and hepatic lipogenic gene expression. Collectively, our findings suggest that IL-1β signaling upregulates hepatic lipogenesis in obesity, and is essential for the induction of pathogenic hepatic steatosis in obese mice.  相似文献   

5.
PURPOSE OF REVIEW: Fish oils rich in n-3 fatty acids reduce serum triglyceride levels. This well known effect has been shown to be caused by decreased very low-density lipoprotein triglyceride secretion rates in kinetic studies in humans. Animal studies have explored the biochemical mechanisms underlying this effect. Triglyceride synthesis could be reduced by n-3 fatty acids in three general ways: reduced substrate (i.e. fatty acids) availability, which could be secondary to increase in beta-oxidation, decreased free fatty acids delivery to the liver, decreased hepatic fatty acids synthesis; increased phospholipid synthesis; or decreased activity of triglyceride-synthesizing enzymes (diacylgylcerol acyltranferase or phosphatidic acid phosphohydrolase). RECENT FINDINGS: Rarely were experimental conditions used in rat studies physiologically relevant to the human situation in which 1.2% energy as n-3 fatty acids lowers serum triglyceride levels. Nevertheless, the most consistent effect of n-3 fatty acids feeding in rats is to decrease lipogenesis. Increased beta-oxidation was frequently, but not consistently, reported with similar numbers of studies reporting increased mitochondrial compared with peroxisomal oxidation. Inhibition of triglyceride-synthesizing enzymes was only occasionally noted. SUMMARY: As the vast majority of studies fed unphysiologically high doses of n-3 fatty acids, these findings in rats must be considered tentative, and the mechanism by which n-3 fatty acids reduce triglyceride levels in humans remains speculative.  相似文献   

6.
The serum lipid composition and the fatty-acid profiles of the major lipid fraction (triglycerides, esterified cholesterol, and phospholipid) of liver and serum were examined 6 weeks after both 50% and 75% distal small bowel resection (DSBR). Total serum lipid content did not modify after DSBR. Esterified cholesterol and phospholipid levels of the serum did not significantly change after the operation. However, a significant increase in both free cholesterol and triglyceride levels was observed after DSBR. Different fatty acid changes in the liver and serum lipid fractions were found after DSBR, with the greatest differences in the hepatic esterified cholesterol fraction. These results suggest that DSBR affects both the lipid composition and the fatty acid composition of major lipid fraction of liver and serum.  相似文献   

7.
De novo lipogenesis and dietary fat uptake are two major sources of fatty acid deposits in fat of obese animals. To determine the relative contribution of fatty acids from these two sources in obesity, we have determined the distribution of c16 and c18 fatty acids of triglycerides in plasma, liver, and epididymal fat pad of Zucker diabetic fatty (ZDF) rats and their lean littermates (ZL) under two isocaloric dietary fat conditions. Lipogenesis was also determined using the deuterated water method. Conversion of palmitate to stearate and stearate to oleate was calculated from the deuterium incorporation by use of the tracer dilution principle. In the ZL rat, lipogenesis was suppressed from 70 to 24%, conversion of palmitate to stearate from 86 to 78%, and conversion of stearate to oleate from 56 to 7% in response to an increase in the dietary fat-to-carbohydrate ratio. The results suggest that suppression of fatty acid synthase and stearoyl-CoA desaturase activities is a normal adaptive mechanism to a high-fat diet. In contrast, de novo lipogenesis, chain elongation, and desaturation were not suppressed by dietary fat in the ZDF rat. The lack of ability to adapt to a high-fat diet resulted in a higher plasma triglyceride concentration and excessive fat accumulation from both diet and de novo synthesis in the ZDF rat.  相似文献   

8.
Methionine-choline-deficient (MCD) diets cause steatohepatitis in rodents and are used to study the pathophysiology of fatty liver disease in human beings. The most widely used commercial MCD formulas not only lack methionine and choline but also contain excess sucrose and fat. The objective of this study was to determine whether dietary sucrose in the MCD formula plays a role in the pathogenesis of MCD-related liver disease. We prepared two custom MCD formulas, one containing sucrose as the principal carbohydrate and the other substituting sucrose with starch. Mice fed the sucrose-enriched formula developed typical features of MCD-related liver disease, including hepatic steatosis, hepatocellular apoptosis, alanine aminotransferase elevation, lipid peroxidation, and hepatic inflammation. In contrast, mice fed MCD-starch were significantly protected against liver injury. MCD-sucrose and MCD-starch mice displayed identical diet-related abnormalities in hepatic fatty acid uptake and triglyceride secretion. Hepatic de novo lipogenesis and triglyceride synthesis, however, were 2 times higher in MCD-sucrose mice than MCD-starch mice (P < 0.01). Hepatic lipid analysis revealed accumulation of excess saturated fatty acids in MCD-sucrose mice that correlated with hepatocellular injury. Overall, the results indicate that dietary sucrose is critical to the pathogenesis of MCD-mediated steatohepatitis. They suggest that saturated fatty acids, which are products of de novo lipogenesis, are mediators of hepatic toxicity in this model of liver disease.  相似文献   

9.
Nonalcoholic fatty liver disease is the most common reason for abnormal liver chemistries in the United States. The factors that lead from benign steatosis to nonalcoholic steatohepatitis are poorly understood. Transthyretin-Abcb11 (TTR-Abcb11) transgenic mice overexpress the bile salt transporter Abcb11 and hypersecrete biliary lipids. Thus the aim of this study is to employ feeding of the methionine-choline-deficient (MCD) diet to TTR-Abcb11 transgenic mice to further determine the mechanisms responsible for the development of steatohepatitis. FVB/NJ and TTR-Abcb11 mice were fed control or MCD diets for up to 30 days. Serum aminotransferase levels, serum and hepatic triglyceride content, cytokines, markers of oxidative stress, and expression of selective genes were examined. MCD diet-fed TTR-Abcb11, but not wild-type, mice have elevated serum aminotransferase levels when compared after 7 days. They also have significantly lower hepatic triglyceride levels at all time points studied. After 14 days on the MCD diet, TTR-Abcb11 mice have 3-fold increases in TNF-alpha mRNA and 3.9-fold increases in IL-6 mRNA compared with FVB/NJ mice. TTR-Abcb11 mice also had a greater increase in cytochrome P-450 2E1 expression. A greater decrease in sterol regulatory element binding protein-1c and fatty acid synthase mRNA expression was also seen in TTR-Abcb11 compared with wild-type mice fed an MCD diet. They also have enhanced TNF-alpha, IL-6, and cytochrome P-450 2E1 expression. We conclude that TTR-Abcb11 mice develop a more rapid hepatitis with less steatosis.  相似文献   

10.
Various studies on the effects of thyroid status on hepatic fatty acid synthesis have produced conflicting results. Several variables (e.g., plasma free fatty acid and glucose concentrations) are altered simultaneously by thyroid status and can affect fatty acid synthesis. To evaluate the effects of these variables, hepatic fatty acid synthesis (lipogenesis) was studied in isolated perfused livers from normal and triiodothyronine-treated rats. Livers were perfused with media containing either 5.5 or 25 mM glucose without fatty acid, or 5.5 mM glucose and 0.7 mM oleate. Rates of lipogenesis were determined by measurement of incorporation of 3H2O into fatty acids. Lipogenesis in livers from hyperthyroid animals exceeded that of controls, when perfused with 5.5 mM glucose with or without oleate. Perfusion with 25 mM glucose increased lipogenesis in both euthyroid and hyperthyroid groups to the same level, abolishing this difference between them. Perfusion with oleate reduced rates of lipogenesis by livers from euthyroid and hyperthyroid rats to a similar extent, but stimulated secretion of radioactive fatty acid in phospholipid and free fatty acid fractions. Oleate increased ketogenesis by livers from normal and triiodothyronine-treated rats, with higher rates of ketogenesis in the triiodothyronine-treated group. When oleate was omitted, ketogenesis in the presence of 5.5 mM glucose by the hyperthyroid group was similar to that of euthyroid controls, while ketogenesis was decreased in the hyperthyroid group relative to controls when perfused with 25 mM glucose. About 30% of the radioactivity incorporated into the total fatty acid of both groups was recovered in palmitate, with the remainder in longer chain saturated and unsaturated fatty acids. In both euthyroid and hyperthyroid groups, the ratio of triacylglycerol:phospholipid fatty acid radioactivity was not only less than predicted (based on synthetic rates of PL and TG) but also was decreased in perfusions with exogenous oleate compared to perfusions without oleate. In perfusions with oleate, both groups incorporated twice as much radioactivity into phospholipid as into triacylglycerol. The data suggest the following concepts: while hepatic fatty acid synthesis and oxidation are increased simultaneously in the hyperthyroid state, de novo synthesized fatty acids seem to be poorer substrates for oxidation than are exogenous fatty acids, and are preferentially incorporated into phospholipid, while exogenous fatty acids are better substrates for oxidation and esterification to triacylglycerol. The preferential utilization of de novo synthesized fatty acid for phospholipid synthesis may be an important physiologic adaptation insuring a constant source of fatty acid for membrane synthesis.  相似文献   

11.
Changes in the specific activities of acetyl-CoA-carboxylase (ACX), malic enzyme (ME) and glucose-6-phosphate dehydrogenase (G-6-PD) were compared to changes in de novo lipogenesis measured by in vivo incorporation of [3H] of tritiated water into fatty acids of liver and of perirenal and dorsal subcutaneous adipose tissues. In the adipose tissues, the specific activities of the three enzymes rather closely followed fluctuations in the rate of fatty acid synthesis. In the liver, ACX and especially ME activities were satisfactory indicators of de novo lipogenesis; G-6-PD activity did not depend on de novo lipogenesis.  相似文献   

12.
Although omega-3 (n-3) fatty acids negatively regulate triglyceride biosynthesis, the mechanisms mediating this effect are poorly understood, and emerging evidence suggests that stearoyl-CoA desaturase (Scd1) is required for de novo triglyceride biosynthesis. To investigate this mechanism, we determined the effects of perinatal n-3 deficiency and postnatal repletion on rat liver Scd1 mRNA expression and activity indices (liver 16:1/16:0 and 18:1/18:0 ratios), and determined relationships with postprandial (non-fasting) plasma triglyceride levels. Rats were fed conventional diets with or without the n-3 fatty acid precursor α-linolenic acid (ALA, 18:3n-3) during perinatal development (E0-P100), and a subset of rats fed the ALA- diet were switched to the ALA+ diet post-weaning (P21-P100, repletion). Compared with controls, rats fed the ALA- diet exhibited significantly lower liver long-chain n-3 fatty acid compositions and elevations in monounsaturated fatty acid composition, both of which were normalized in repleted rats. Liver Scd1 mRNA expression and activity indices (16:1/16:0 and 18:1/18:0 ratios) were significantly greater in n-3 deficient rats compared with controls and repleted rats. Among all rats, liver Scd1 mRNA expression was positively correlated with liver 18:1/18:0 and 16:1/16:0 ratios. Plasma triglyceride levels, but not glucose or insulin levels, were significantly greater in n-3 deficient rats compared with controls and repleted rats. Liver Scd1 mRNA expression and activity indices were positively correlated with plasma triglyceride levels. These preclinical findings demonstrate that n-3 fatty acid status is an important determinant of liver Scd1 mRNA expression and activity, and suggest that down-regulation of Scd1 is a mechanism by which n-3 fatty acids repress constitutive triglyceride biosynthesis.  相似文献   

13.
An acute intraperitoneal injection of ethanol (0.7 or 2.1g/kg body wt.) causes the reversible, dose-dependent accumulation of hepatic triglyceride in rats. By using a pulse of [14C]palmitate injected into a tail vein, it was found that ethanol (2.1g/kg)had no effect on the flux of unesterified fatty acid of serum (4.3mumol/min per 100g body wt.). However, either dose increased the fraction of the total flux going to liver from 0.16 to0.27 as rapidly as could be measured (30s), and it remained elevated until all ethanol had been cleared from the blood. The fraction of the total radioactivity in lipids of liver that was in triglyceride increased linearly for 1 h from 30 to 50% and there was a simultaneous decrease in phospholipid from 60 to 40%. The rate of synthesis of hepatic triglyceride derived directly from unesterified fatty acid of serum was calculated by using the flux rate of unesterified fatty acid in serum, the fractional hepatic uptake of this flux, and the percentage of liver fatty acid esterified to triglyceride. This contribution is related to the total synthetic rate of hepatic triglyceride (rate of accumulation+rate of release) to determine quantitatively how much of the developing fatty liver is attributable to increased uptake of unesterfied fatty acid of serum. At the higher dose of ethanol, about half of the accumulating triglyceride is derived from this source, whereas with the lower dose of ethanol it can account for all of the build-up.  相似文献   

14.
The rates of glycolysis and lipogenesis in isolated perfused liver of well-fed rats were studied. When liver was allowed to synthesize [14C]glycogen prior to perfusion, no more than 9% of the degraded [14C]glycogen was recovered in lactate and 6% in lipid. Addition of glucose, fructose and sorbitol enhanced concomitantly the formation of lactate and pyruvate and the rate of release of triglyceride and free fatty acid. Glucose was less efficient than fructose or sorbitol. The incorporation of 14C from these 14C-labelled substrates into lactate, pyruvate and lipids confirmed their role as carbon sources. Incorporation of 14C into the glycerol moiety of neutral lipid exceeded that found in the fatty acids, suggesting that these substrates contributed largely to the esterification of fatty acids. The total rate of de novo fatty acid synthesis was correlated with the formation of lactate and pyruvate. It is concluded that increased rates of aerobic glycolysis are related to increased rates of lipogenesis.  相似文献   

15.
16.
We investigated the effect of tumor necrosis factor-alpha (TNF-alpha), a member of the proinflammatory cytokine family, on steatosis of the mouse liver by analyzing morphological changes and hepatic triglyceride content in response to TNF-alpha. We also examined expression of the sterol regulatory element binding protein-1c gene. Intraperitoneal injection of TNF-alpha acutely and dramatically accelerated the accumulation of fat in the liver, as evidenced by histological analysis and hepatic triglyceride content. This treatment increased liver weight, increased serum levels of free fatty acids, and increased fatty acid synthase and sterol regulatory element binding protein-1c mRNA expression. Furthermore, intraperitoneal injection of lipopolysaccaride (LPS) to induce TNF-alpha expression also accelerated hepatic fat accumulation. Pretreatment with anti-TNF-alpha antibody attenuated the development of LPS-induced fatty change in the liver. Antibody pretreatment not only decreased sterol regulatory element binding protein-1c expression in LPS-treated mice but also attenuated the expression of suppressors of cytokine signaling-3 mRNA. This study suggests that TNF-alpha, acting downstream of LPS, increases intrahepatic fat deposition by affecting hepatic lipogenetic metabolism involving sterol regulatory element binding protein-1c.  相似文献   

17.
We assessed – by a lipidomic approach – the differential incorporation of EPA and DHA into hepatic lipids, after prolonged feeding of rats with fish oil. We also evaluated their effect on lipogenesis and its related enzymes. Rats were administered 100 mg/kg/d fish oil, by oral gavage, for 30 days. The fatty acid profile of total liver lipids was determined by gas–liquid chromatography coupled to mass spectrometry. Individual phospholipid classes and their molecular species were quantified by ESI-MS/MS. Omega 3 fatty acids readily incorporated into hepatic phospholipids, decreased stearoyl-CoA desaturase 16, stearoyl-CoA desaturase, delta 6 desaturase, and delta 5 desaturase activities (calculated as product/substrate ratio) and decreased the “lipogenesis index”, i.e., the proportion of fatty acids endogenously synthesized in the liver and not provided with the diet. Our results show that long-chain omega 3 fatty acids selectively incorporate into hepatic phospholipids, inhibit de novo lipogenesis and change the hepatic fatty acid profile via reduced desaturases' activity in the non-steatotic liver. In addition to corroborating advice to consume adequate amounts of omega 3 fatty acids for overall health, these data contribute mechanistic insights to the clinical observations that provision of omega 3 fatty acids decreases hepatic fat and ameliorates NAFLD prognosis.  相似文献   

18.
1. Male chickens (Gallus domesticus) were treated with a single intramuscular injection of oestradiol-17 beta, then changes in the liver and plasma levels of triacylglycerol, phospholipid, nonesterified fatty acids and in the hepatic activities of acetyl-CoA carboxylase and fatty acid synthetase were measured at various times after injection. 2. The results suggest that the initial phase (less than 20 hr) of oestrogen-induced hyperlipidaemia occurs in the absence of changes in the hepatic activities of the major enzymes of fatty acid biosynthesis, but a subsequent increase in these enzyme activities may contribute to the later phase (greater than 20 hr) of oestrogen-induced lipogenesis in avian liver.  相似文献   

19.
20.
Tumor cells have increased metabolic requirements to maintain rapid growth. In particular, a highly lipogenic phenotype is a hallmark of many tumor types, including prostate. Cancer cells also have increased turnover of nicotinamide adenine dinucleotide (NAD(+)), a coenzyme involved in multiple metabolic pathways. However, a specific role for NAD(+) in tumor cell lipogenesis has yet to be described. Our studies demonstrate a novel role for the NAD(+)-biosynthetic enzyme Nicotinamide phosphoribosyltransferase (Nampt) in maintaining de novo lipogenesis in prostate cancer (PCa) cells. Inhibition of Nampt reduces fatty acid and phospholipid synthesis. In particular, short chain saturated fatty acids and the phosphatidylcholine (PC) lipids into which these fatty acids are incorporated were specifically reduced by Nampt inhibition. Nampt blockade resulted in reduced ATP levels and concomitant activation of AMP-activated protein kinase (AMPK) and phosphorylation of acetyl-CoA carboxylase (ACC). In spite of this, pharmacological inhibition of AMPK was not sufficient to fully restore fatty acid synthesis. Rather, Nampt blockade also induced protein hyperacetylation in PC-3, DU145, and LNCaP cells, which correlated with the observed decreases in lipid synthesis. Moreover, the sirtuin inhibitor Sirtinol, and the simultaneous knockdown of SIRT1 and SIRT3, phenocopied the effects of Nampt inhibition on fatty acid synthesis. Altogether, these data reveal a novel role for Nampt in the regulation of de novo lipogenesis through the modulation of sirtuin activity in PCa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号