首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A METHOD FOR MEASURING BRAIN PROTEIN SYNTHESIS RATES IN YOUNG AND ADULT RATS   总被引:19,自引:14,他引:5  
The injection of large quantities of radioactive amino acid precursor is proposed as a technique for determining rates of cerebral protein synthesis in vivo. In this way the specific radioactivity of the amino acid precursor in the brain is maintained at a relatively constant level for at least 2 h. Injections of 10–15 μ mol of valine per g body weight result in nearly constant rates of incorporation of radioactivity and do not appear to inhibit cerebral protein synthesis in adult or young (2–6 day old) rat brain. Similar rates were obtained in young rat brain with lysine and histidine. Rates of protein synthesis in cerebral hemisphere were for 2-day-olds 2·1 per cent replacement of protein bound amino acid per h and for adult 0·62 per cent per h. Advantages and disadvantages of the procedure are discussed.  相似文献   

2.
MEASUREMENTS OF RATES OF PROTEIN SYNTHESIS IN RAT BRAIN SLICES   总被引:7,自引:7,他引:0  
The use of tracer concentrations of labelled amino acids to measure incorporation in incubated slices of brain results in wide fluctuations with time in the specific activity of the precursor. Using concentrations of about 1 mm of labelled amino acid facilitates the accurate measurement of rates of synthesis. These higher precursor levels in the medium decrease the fluctuations in free amino acid specific activity due to dilution by endogenous amino acid and the production of amino acid by protein degradation, and decrease the lag in incorporation due to transport phenomena. Concentrations of 1 mm amino acid in the medium did not inhibit protein synthesis; with valine, leucine, phenylalanine, lysine and histidine, incorporation rates were similar when measured at trace concentrations and at 1 mm medium levels. The source of amino acid for protein synthesis appears to be intracellular. No evidence could be found for the preferential use of extracellular medium amino acid. The rate of incorporation of amino acids in incubated slices of rat brain was 0.087 per cent of the protein amino acid/h.  相似文献   

3.
The state of aggregation and the activity of polyribosomes as well as the activity of the pH 5 enzyme fraction were studied at two stages of postnatal brain development, 9 and 50 days after birth. When the polyribosomes were prepared at 0°C in the presence of 5 mm -Mg2+, more than 85 per cent of the polyribosome material exhibited a sedimentation coefficient higher than 110 S. High Mg2+ concentrations are, therefore, unnecessary to obtain highly aggregated brain polyribosomes. The basal amino acid incorporating activity of both 9- and 50-day-old rat brain preparations is at least equal to that of rat liver. When prepared by the same procedure as above, 9-day-old rat brain polyribosomes seem to be more active (20 per cent) than those of adult brain. However, this difference in activity depends on the presence of a non-ribosomal inactive contaminant which is always present in higher amounts in adult brain preparations. When purified from this contaminant, the preparations do not differ in activity. High Mg2+ concentrations are also not necessary for optimal protein synthetic activity and, in fact, are inhibitory. When assayed with both types of highly aggregated polyribosomes, the pH 5 enzyme fraction from adult brain is clearly less active than that of 9-day-old rats. These results suggest that the loss of brain protein synthesis during development does not depend on the stability of the messenger RNA-ribosome complex but only on the soluble pH 5 enzyme fraction.  相似文献   

4.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY l-DOPA   总被引:1,自引:2,他引:1  
Abstract— A study has been made of the effect of a single intraperitoneal dose of l -DOPA on the in vivo metabolism of [14C]leucine and [14C]lysine by the brain, and on their uptake into brain protein. Administration of 500 mg DOPA/kg to 40-g rats raised the concentrations of several free amino acids; the only amino acid which underwent a statistically significant increment was alanine. Intracisternally-injected [U-14C]leucine was rapidly metabolized to other labelled compounds; DOPA administration did not influence significantly the rate of its metabolism. No similar metabolic change was observed after administering [U-14C]lysine intracisternally.
Incorporation of [14C]leucine and [14C]lysine into total brain protein was significantly reduced 45 min after DOPA administration. There was also depression of the uptake of labelled amino acid into a supernatant fraction, obtained by high speed centrifugation of the brain homogenate, and into brain microtubular protein (tubulin). Reduced amino-acid incorporation into brain proteins observed 45 min after l -DOPA injection coincided with extensive disaggregation of brain polyribosomes. At 120 min after DOPA treatment, disaggregation was no longer significant and there was a smaller depression in labelled amino aicd incorporation, which disappeared completely 240 min after l -DOPA injection. It is concluded that disaggregation of brain polysomes following DOPA treatment is an accurate reflection of a change in the intensity of brain protein synthesis in vivo.  相似文献   

5.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY d-AMPHETAMINE   总被引:1,自引:1,他引:0  
Abstract— Between 1 and 4 h after rats received a single injection of d-amphetamine (15 mg/kg)(when brain polysomes are known to be disaggregated), the in vivo incorporation of [14C]lysine into trichloroacetic acid-precipitable brain protein was reduced by 28–48%. Incorporation of the 14C label into the protein present in a 100,000 g supernatant extract of whole brain was similarly reduced (by 44%). Amphetamine administration suppressed protein synthesis in rat cerebral cortex, cerebellum, hypothalamus, striatum, and brainstem to an equivalent extent. The drug did not significantly affect lysine pool sizes measured in these brain regions; thus the reduced incorporation of labeled lysine was not the result of an isotope dilution effect. We therefore conclude that the brain polysome disaggregation resulting from amphetamine administration is associated with decreased in vivo synthesis of some brain proteins.  相似文献   

6.
神经营养素3(NT-3)和脑源性神经生长因子(BDNF)是神经生长因子(NGF)的同源物,体外实验表明NT-3和BDNF能促进感觉神经元和交感神经元的存活,但是NT-3和BDNF在脊髓中的生物学作用和定位分布还不十分清楚。本用免疫组化ABC法观察了NT-3和BDNF的免疫阳性反应物在大鼠脊髓中的分布。结果表明:呈NT-3样免疫阳性反应的胶质细胞分布于脊髓的后索、侧索和前索中;免疫反应阳性的神经元主要见于脊髓前角,少数见于脊髓后角。BDNF位于大鼠的脊髓前角动物神经元;在脊髓Ⅱ板层中还可见较多的BDNF免疫反应阳性的神经终末。提示NT-3和BDNF在维持脊髓神经元和胶质细胞的生理功能中可能起重要作用。  相似文献   

7.
Abstract— Protein synthesis rates have been determined quantitatively in several regions of the nervous system of rats of various ages. The developmental changes in these regions are generally similar with a high rate maintained from several days before birth to about 4 days of age (1.9–2.1% h−1). A decline in the rate ensues thereupon which continues till approx 30 days of age, whence the curve flattens though continuing slowly downward with increasing age. In the young three regions, cerebellum, pineal and pituitary, exhibit exceptionally higher rates (40–50%) than the cerebral hemispheres, pons-medulla, mid brain or cord, which all display curves of similar magnitude and shape. While the rate in the cerebellum eventually declines with age to within 10% of the rate in cerebral hemisphere, rates in the pineal and pituitary though decreasing remain far above (100%) rates in cerebral hemisphere even in adults.
The rate in vitro for slices of cerebellum follows a pattern similar to that shown previously for cerebral hemispheres: in the very young rates are 70–80% of the in vivo value but decline much more rapidly with age and in adult represent only 10–15% of the rate in vivo.
A markedly different pattern is seen in whole (unsliced) pituitaries wherein in vitro rates parallel in vivo rates with increasing age at approx 70–80% of the in vivo rate. Pineals appear to follow a similar pattern.  相似文献   

8.
  • 1 A method has been developed for the estimation of organelle number in subcellular fractions and applied to the estimation of the mitochondrial content of brain and liver from new-born and adult rats.
  • 2 The respiratory enzyme content per mitochondrion of the adult brain was 3·5 times greater than that of the neonate. This increase in enzyme content was not correlated with an increase in the mean size of the organelle.
  • 3 The succinate dehydrogenase activity per mitochondrion of the livers from neonatal and adult rats showed no obvious change. There was, however, an increase in the mean size of the organelle.
  • 4 These findings are discussed with reference to the development of the brain and to the development of mitochondria.
  相似文献   

9.
Subacute methyl mercury (MeHg) intoxication was induced in adult rats following the daily intragastric administration of 1 mg MeHg/100 g body weight. Decreased [14C]leucine incorporation into cerebral and cerebellar slice protein was found. Weight loss occurred during the latent and neurotoxic phases but pair feeding did not reveal a significant defect in amino acid incorporation into slice protein. There was no decline in synaptosome protein synthesis in vitro during the latent phase but a significant decline in cerebellar and cerebral synaptosome synthesis was found during the neurotoxic phase. MeHg in vitro inhibited cerebral slice and synaptosome protein synthesis at half maximal concentrations of 7.5 and 12.5 μM respectively. Inhibition of synthesis in synaptosomes was non-competitive with K1 of 4 × 10?6M. MeHg had no effect on [14C]leucine or [14C]proline uptake into synaptosomes. There was no significant inhibition of synaptosome basal ATPase or Na + K ATPase at concentrations of MeHg (12 μM) giving half maximal inhibition of protein synthesis. No preferential inhibition of the chloramphenicol (55S) or cycloheximide sensitive components of synaptosome fraction protein synthesis was found, suggesting that the inhibition is common to both mitochondrial and extramitochondrial protein synthesizing systems. Addition of nucleotides and/or atractylate failed to influence protein synthesis and did not reverse the MeHg inhibition. Mannitol, as a replacement for the predominant cation species of the incubation medium, gave 40% inhibition of protein synthesis in the control but protected against further inhibition by MeHg.  相似文献   

10.
—The conversion of plasma glucose into brain proteins in vivo was measured in rats after various periods of food deprivation. Rates of flow of glucose carbon into both soluble and insoluble brain proteins were calculated from the curve representing the decrease of plasma [14C]-glucose specific activity with time, and from the specific activity of brain protein 180 min after intravenous injection of a tracer dose of d -[14C]-glucose. Compared to the post-absorptive rats, food deprivation for 72 h caused a 30 per cent reduction in the rate of flow of glucose carbon into soluble brain proteins but did not affect the flow into insoluble proteins. Results of experiments in which the soluble brain proteins were separated by isoelectric focusing suggest that prolonged fasting in adult rats causes substantial differences in the conversion of glucose to different proteins.  相似文献   

11.
NUCLEAR PROTEINS IN BRAIN OF 7-DAY-OLD AND ADULT RATS   总被引:1,自引:0,他引:1  
Abstract— The incorporation of radioactive leucine into proteins of rat brain was considerably higher in the 7-day-old than in the adult rat. The greatest difference in the rate of protein synthesis between these two stages of development occurs in the mitochondrial fraction. Among the nuclear proteins the largest variation was in the histones. The only difference in the relative content of nuclear proteins between 7-day-old and adult brain was in the acidic deoxyribonucleoproteins which was higher in the younger animal. The electrophoretic profile of these proteins changed during brain development.  相似文献   

12.
Abstract— Studies were carried out to identify the minimum levels of protein (casein) needed in the diet in order to prevent or reverse the deficits in brain enzymes previously found with protein deficiency. Groups of weanling albino rats were fed diets containing variable amounts of protein (5, 8, 10, 15 or 20 per cent in experiment I, and 5, 6, 7, 8 or 20 per cent in experiment II) for 5 or 10 weeks. Deficits in brain wt and brain glutamate dehydrogenase and decarboxylase were found to be prevented by a diet containing 8 per cent or more of protein, although for optimum growth 15 per cent protein in the diet was found to be necessary. Groups of rats were fed a 5 or 20% protein diet for 10 weeks after which the 5% protein animals were either continued on the diet for another 10 weeks or changed to one containing 8, 10, 15 or 20% protein. The brain enzyme deficits found with the 5% protein diet were found to be fully reversed by feeding a 10% protein diet during rehabilitation.  相似文献   

13.
We have tested the hypothesis that the turnover of phosphatidylcholine in subcellular fractions of rat brain is a function of the age at which this lipid is deposited. Rats, 60 days of age, were injected intracranially with [2-3H]glycerol and either [methyl-14C]choline (to label the base moiety) or [U-14C]glucose (to label acyl moieties). Littermates were killed up to 90 days after injection and brain microsomes and myelin isolated. Lipids were extracted and the phosphatidylcholine was isolated by 2-dimensional TLC and hydrolyzed to its constituent moieties. The 3H in the glycerol backbone and 14C in the choline or acyl residues was quantitated. The microsomal and myelin 3H/14C ratios decreased with time with either set of precursors, indicating that labeled choline and acyl moieties were reutilized more efficiently than the glycerol backbone. The various precursors exhibited first order decay curves with half-lives for the glycerol backbone of 6 and 11 days for the microsomal and myelin fractions respectively. These results contrast with those previously obtained with identical experimental procedures when 17-day-old animals were injected. In that study, although much of the phosphatidylcholine turned over rapidly as for the older animals, by 2 weeks after injection most of the remaining phosphatidylcholine was turning over more slowly with a half-life of 13 and 25 days for microsomes and myelin respectively (Miller et al., 1977). The base and acyl moieties also had a corresponding shorter half-life in older animals relative to the slow turnover phase in younger rats.  相似文献   

14.
以氮分子激光脉冲(40μJ Pulse 3HZ)为激发光通过石英光导纤维,导入大白鼠脑皮层;使脑内一些辅酶类物质(二核苷酸类和喋呤类)受激而发射出的荧光脉冲也由同一根光导纤维引出,以弱荧光检测技术对发射荧光脉冲进行检测.同时,还记录了激光诱发皮层电位,利用高效液相色谱法分析了六个脑区内的二核苷酸和喋呤物质的浓度.结果表现异戍巴比妥麻醉的动物与清醒动物相比激光——荧光脉冲波幅显著增高,但激光诱发皮层电位(N_(200)波和P_(300)波)的波幅则显著降低.在皮层、间脑和海马中黄素辅酶(FAD)的浓度显著增高,皮层、尾状核和脑干内的主物喋呤含量降低;脑干中喋呤的含量(?)显著降低.  相似文献   

15.
—Acute hyperthermia produces in situ disaggregation of brain polyribosomes in infant rats, as determined by electron microscopy. Protein synthesis is inhibited in infant, but not weanling, rat brain by 45 min of hyperthermia; this inhibition is reversed during a 2 h recovery period at normothermic conditions. Hepatic protein synthesis was inhibited less than that of brain. Acute hyperthermia also leads to a profound loss of ornithine decarboxylase activity in brain; during recovery the activity of this enzyme overshoots to values greater than those of normothermic control rats. This increase is blocked by cycloheximide administration. In testis, a tissue with high ornithine decarboxylase activity, enzyme activity was not affected by hyperthermia and recovery, indicating tissue specificity for these effects.  相似文献   

16.
Abstract— Tracer experiments using [3H]thymidine have shown that a large proportion of the DNA synthesized in control and scrapie-affected mouse brain is metabolically unstable. Although the turnover of mitochondrial DNA contributed to the loss of radioactivity from whole brain, it has been shown that 70 per cent of the labelled nuclear DNA was removed between 1 and 21 days after injecting the isotopic precursor. Observations on developing mouse brain, where the rate of DNA synthesis is far higher than that in adult brain, also revealed the existence of metabolically unstable DNA. Similar studies on developing and adult brain using [14C]thymidine indicated that most of the radioactivity lost in vivo was not due to radiation damage to newly labelled DNA molecules. Hydroxyapatite chromatography of heat denatured and renatured DNA from adult brain showed that the rates of turnover of the poorly, moderately and highly reiterated species of nuclear DNA were similar. The results of some dissection experiments have further shown that the observed breakdown of DNA in adult brain was not specifically associated with the turnover of subependymal cells. It is suggested that a metabolically labile fraction of nuclear DNA is present in developing and adult mouse brain and that the amount of tracer incorporated into this fraction is increased in mice infected with scrapie.  相似文献   

17.
The hypoxic tolerance and the cerebral metabolic rates (CMR) of young adult mice (20 to 25 g, 4 to 5 weeks old) and adult mice (30 g and above, 6 to 7 weeks old), respectively, were determined and their interrelationship was evaluated. CMRs increased from 25 mmol - P/kg.min to 38 mmol/kg.min as the animals grew older from young to full adulthood. Concurrently the tolerance to aerogcnic hypoxia (5% O2-95%j N2) declined. The effects of hypoxia on the cerebral energy metabolism were greater in adult than in young adult animals. It is concluded that the full metabolic maturation of the brain is reached in adult animals only. They become more dependent on an adequate oxygen supply as the aerobic activity of the energy metabolism of the brain is further increasing. Hypoxic gasping occurred while the pool of cerebral energy reserves was still far from being depleted. A failure to utilize energy reserves rather than their exhaustion is suggested as the ultimate cause of death from hypoxia. An acid-soluble form of glycogen or related polyglucan was found in addition to the usual amounts of insoluble glycogen. It was utilizcd rapidly during hypoxia and ischaemic anoxia and it may, therefore, constitute an additional source of carbohydrate substrates in thc brain.  相似文献   

18.
A number of precursors of RNA are incorporated several-fold more readily into the RNA of brain slices from 10-day-old rats than into RNA of slices from adult animals. The brains of the young animals show moderately higher levels of some of the anabolic enzymes of RNA metabolism including RNA polymerase (nucleosidetriphosphate: RNA nucleotidyltransferase; EC 2.7.7.6) and substantially lower levels of the degradative enzymes, the nucleoside phosphorylases. The data suggest that all the enzymes work in a concerted fashion to produce an increased rate of synthesis in young animals rather than that any single controlling enzymic event is responsible.  相似文献   

19.
The rate of incorporation of [35S]methionine and the turnover rate of proteins in spinal motoneurons were studied in adolescent and old rats. The radioactivity of proteins was estimated by quantitative autoradiography and direct counting of beta radiation from samples of neurons isolated by free hand dissection. Both methods showed that the rate of incorporation into spinal motoneurons was significantly lower in old animals. By measuring the turnover rate of proteins in spinal motoneurons at least two protein components could be distinguished by their different turnover rates. The short-lived component had an average half-life of 2-2-2-8 days, the long-lived protein component had an average half-life of 27-38 days. Neither in the short-lived component, nor in the long-lived component was it possible to detect a significant difference between adolescent and old rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号