首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free‐living amoebae are ubiquitous protozoa commonly found in water. Among them, Acanthamoeba and Vermamoeba (formerly Hartmannella) are the most represented genera. In case of stress, such as nutrient deprivation or osmotic stress, these amoebae initiate a differentiation process, named encystment. It leads to the cyst form, which is a resistant form enabling amoebae to survive in harsh conditions and resist disinfection treatments. Encystment has been thoroughly described in Acanthamoeba but poorly in Vermamoeba. Our study was aimed to follow the encystment/excystment processes by microscopic observations. We show that encystment is quite rapid, as mature cysts were obtained in 9 h, and that cyst wall is composed of two layers. A video shows that a locomotive form is likely involved in clustering cysts together during encystment. As for Acanthamoeba, autophagy is likely active during this process. Specific vesicles, possibly involved in ribophagy, were observed within the cytoplasm. Remarkably, mitochondria rearranged around the nucleus within the cyst, suggesting high needs in energy. Unlike Acanthamoeba and Naegleria, no ostioles were observed in the cyst wall suggesting that excystment is original. During excystment, large vesicles, likely filled with hydrolases, were found in close proximity to cyst wall and digest it. Trophozoite moves inside its cyst wall before exiting during excystment. In conclusion, Vermamoeba encystment/excystment displays original trends as compare to Acanthamoeba.  相似文献   

2.
包囊游仆虫包囊形成和解脱过程中纤毛器的分化   总被引:13,自引:1,他引:12  
顾福康  张作人 《动物学报》1991,37(3):287-292
包囊游仆虫(Euplotes encysticus)形成包囊时,各类纤毛器中的纤毛杆被部分地或全部地吸收,毛基体被保留下来。休眠包囊中,背纤毛器的定位无明显变化,但原腹面纤毛器中的口围带和波动膜、额腹棘毛和横棘毛,以及左、右尾棘毛都按序陷入在细胞质内深处,并相互汇聚在一起。脱包囊时,纤毛结构在原毛基体上再分化,新纤毛器按口围带、横棘毛、额腹棘毛和左、右尾棘毛的顺序从细胞内显露出来。  相似文献   

3.
包囊游仆虫包囊形成和解脱过程中大、小核的研究   总被引:9,自引:1,他引:9  
顾福康  张作人 《动物学报》1992,38(2):208-213
包囊游仆虫形成包囊时大核除经历形态大小的变化外,大核DNA含量也低于正常大核水平;细胞脱包囊前,在大核一端或两端发生染色质粗浓集,是大核DNA复制的结果;染色质粒在整个大核内浓集时,大核DNA含量已达到正常大核水平,此时DNA复制结束,细胞脱包囊。小核在游仆虫形成包囊和脱包囊过程中,其形态大小、DNA含量等无明显变化。  相似文献   

4.
SYNOPSIS. The structure and cytochemistry of encystment and excystment of Blepharisma stoltei Isquith are described. The encystment process may be subdivided into 4 stages: (i) in the precystic stage the buccal apparatus overlaps about the posterior, (ii) in early encystment, the buccal apparatus is resorbed and an ectocyst is secreted, (iii) an interwall space, endocyst, and plug are secreted during late encystment, and (iv) the resting cyst stage typically has disc-like structures on the ectocyst, and a vacuole in the macronucleus. In excystment, 6 distinct stages may be defined: (i) partial kineties are formed in early excystment, (ii) permanent kineties give rise to anlagen of the buccal apparatus during stomatogenesis, (iii) the organism elongates and reforms the vegetative shape in late excystment, (iv) some cysts then divide, (v) the redeveloped organism is liberated thru the plug pore, and (vi) the postcystic stage resembles the vegetative form except for its size and lack of pigmentation. Cortical structures, extracellular membranes, and the macronuclear membrane are composed of protein-lipids. Unbound protein and RNA are found in the cytoplasm thruout the cystic cycle. DNA is present only in the nuclei. Polysaccharides, 1st found in the cytoplasm, are shifted to the plug in encystment. The plug material disappears during excystment, while PAS positive granules appear in the cytoplasm.  相似文献   

5.
作为微型浮游动物的重要组成部分,海洋浮游纤毛虫是连接微食物环和经典食物链的重要中介。有些浮游纤毛虫在生活周期中会形成包囊,条件适宜时包囊会萌发,这对纤毛虫种群动态有重要的意义。目前国际上对于浮游纤毛虫生态学的研究主要集中在其营养期细胞,浮游纤毛虫包囊的研究尚少,中国还没有这方面的研究。本文对浮游纤毛虫包囊研究进展进行概述,包括包囊的形态、沉积物中包囊的丰度、包囊形成的环境因素、包囊萌发过程及环境因素对包囊萌发的影响等方面,希望对国内开展浮游纤毛虫包囊的研究有所裨益。  相似文献   

6.
During encystment of Oxytricha fallax, a wall composed of 4 distinct layers, each derived from a different kind of endoplasmic vesicle, is formed between the 2 unit membranes that cover the vegetative cell. Numerous autophagic vacuoles arise in the endoplasm and later (during excystment undergo internal changes comparable to those characteristic of food vacuoles. Mitochondria aggregate into a band. The 2 macronuclei fuse and their nucleoli become homogeneous. Except for the 2 cell membranes, all visible cortical structures, including cilia, kinetosomes, and microtubules, disappear. Despite the absence of visible ciliature in the mature cyst, the various primordia of the normal vegetative ciliature arise during excystment in the same positional relations to one another as is characteristic of developments during cell division.  相似文献   

7.
Summary The differentiation of resting cysts of the algaPolytomella agilis was examined by electron microscopy. During encystment the free-swimming, quadriflagellate unicells lose their flagella, sink to the bottom of the culture, and form a thick cell wall. Populations of cells at various stages of encystment were collected on microscope slides placed at the bottom of the culture flasks. The mature cyst wall consists of four layers which are laid down sequentially next to the plasma membrane. Freeze-etching has shown that the first layer of wall deposited consists of fibrils which are formed partly embedded within the plasma membrane. A proliferation of rough endoplasmic reticulum and Golgi bodies is seen in early stages of encystment followed by a reduction in size or number of these organelles and of plastids in the maturing cyst. Microtubular structures, including the basal bodies, dedifferentiate and are not observed in the later stages of encystment. The redifferentiation of the swimming cell during excystment is described in the companion paper.This work was supported by grant A6353 from the National Research Council of Canada to D. L.Brown and by the Inland Waters Directorate of Environment Canada.  相似文献   

8.
Aspects of the external morphology of Azotobacter vinelandii cells during encystment and germination processes were observed with scanning electron microscopy. Most of the vegetative cells have a smooth surface but some have warty surfaces. The intact cysts have wrinkled surfaces and occasional small heaves. Mucoid materials are present on the surface of the cysts. During the encystment process, an extensive peeling-off of coat materials was noted, then the excretion and aggregation of new capsular materials was immediately followed. The germination process was initiated by an expansion of the central body (the cell), then the emerging of this cell from the cyst coats was observed.  相似文献   

9.
Cyst formation in a freshwater strain of the colonial freshwater choanoflagellate Desmarella moniliformis Kent (Protozoa: Choanoflagellida) has been studied with light and electron microscopy for the first time. Batch cultures inoculated with motile vegetative cells start to produce cysts within 3 days during the exponential phase of growth. Cyst production proceeds until in late stationary phase there is a preponderance of cysts. Transfer of cysts to fresh medium results in limited excystment. Encystment involves the production of electron-dense fibrillar wall material, firstly around the neck of the cell and then around the posterior end. As the wall material is deposited the neck of the cell elongates and the dictyosome rotates from the horizontal to vertical plane. The number of mitochondrial profiles seen in individual sections of cells increases. Finally the neck of the cell is retracted, the flagellum and collar tentacles are withdrawn, and the bottom of the neck of the cyst wall is sealed with a diaphragm of wall material. Excystment, which has not been observed directly, appears to involve the disruption of the wall at the base of the neck, the remainder of the cyst wall remains intact. Comparisons are made between encystment in Desmarella and cyst development in other protists.  相似文献   

10.
11.
The ultrastructural organization of the primary (1°) and secondary (2°) cysts of Aphanomyces astaci and A. laevis is extremely similar, and similar to that of the 1° and 2° cysts of A. eutekhes as presented earlier by Hoch and Mitchell. Synchronous populations of 2° cysts can be induced by mechanical shock and encystment appears to be essentially instantaneous. The cyst coat–wall appears to be formed extremely rapidly from material from the peripheral vesicles with flocculent content. After encystment the microtubule cytoskeleton found in the zoospore is maintained in the 1° and 2° cyst (i.e. the single microtubules which extend along the pyriform nucleus from the ki–netosomes–centrioles and the bundles of closely appressed microtubules are retained). The peripheral vesicles with granular content found in the zoospore are not seen in the 1° or 2° cyst. Multivesicular bodies and lomasomes are observed in the 1° and 2° cyst which are not found in the zoospore. The peripheral cisternae of the zoospore are lost upon encystment and may be formed from dictyosome–derived vesicles during excystment of the 1° and 2° cyst. The U–body of A. astaci has a paracrystalline content while the U–body of A laevis and A eutekhes has a tubular content. A microbody–lipid body complex (sensu Powell) is found in the 1° and 2° cysts of A laevis but not in A astaci or A eutekhes. The significance of the presence of a microbody–lipid body complex in a biflagellate zoospore is discussed.  相似文献   

12.
EXOCYTOSIS OF LATEX BEADS DURING THE ENCYSTMENT OF ACANTHAMOEBA   总被引:1,自引:0,他引:1  
Cells of Acanthamoeba castellanii (Neff) are known to form mature cysts characterized by a cellulose-containing cell wall when transferred to a nonnutrient medium. Amebas which engulfed latex beads before encystment formed mature cysts essentially devoid of bead material. The encystment of bead-containing cells appeared to be similar to that of control cells since no important differences between the two were observed with respect to cellular levels of glycogen or protein, cellulose synthetase activity, the amount of cyst wall polysaccharide formed, or the percentage of cysts formed. Actinomycin D and cycloheximide inhibited encystment as well as bead expulsion. Ultrastructural analysis revealed that the beads, which initially were contained in phagocytic vesicles, were released from the cell by fusion of vesicular membranes with the plasma membrane. Exocytosis was observed in cells after 3 hr of encystment, with most of the beads being lost before cyst wall formation. Each bead-containing vesicle involved in expulsion was conspicuously demarcated by an area of concentrated cytoplasm, which was more homogeneously granular than the surrounding cytoplasm. Beads were not observed in the cytoplasm of mature cysts but were occasionally found in the cyst wall.  相似文献   

13.
SYNOPSIS. During starvation-induced encystment, Colpoda steinii loses some 30% of its nitrogen before synthesizing a glutamic acid-rich protein coat, which after 24 hr accounts for 18% of the cyst protein. Settling cells contain 29 ± 2 pg/cell of glutamic acid (free acid plus that released on hydrolysis) whilst encysted cells contain 51 ± 3 pg/cell, the coat glutamic acid being adequate to account for the increase. Thus substantial glutamic acid and protein biosynthesis occur during starvation. Assayed in homogenates, some relevant enzymes appeared to decrease rather than increase in activity as encystment proceeded. Intra-cellular proteolytic activity showed little alteration but ribonuclease, acid phosphatase, L-alanine: 2-oxoglutarate aminotransferase (E.C.2.6.1.2) and L-glutamate:NAPD oxidoreductase (E.C.1.4.1.4) were considerably reduced. The total carbohydrate content of the cell also increased during starvation.  相似文献   

14.
Summary C.rufescens excystment, experimentally induced, corresponds to a general metabolism recovery of the cell, previously in a resting phase. The cytoplasm changes without any polarity, and organelles like gullet and flagella redifferentiate. The thylakoids develop mainly from the stored lipidic compounds which then disappear. Phycoerythrin immediately fills the intrathylakoidal lumen. Pigment synthesis seems closely associated with the development of membranes. The activated cell divides and the cyst wall breaks down. The destruction of the wall begins in the median layer and is followed by a mechanical rupture of the external and internal layers. Each germinative cyst releases two or four fully differentiated cells. There is an exact symmetry between excystment and encystment, all the transformations of theC. rufescens cell being reversible.  相似文献   

15.
Ciliate cryptobiosis: a microbial strategy against environmental starvation   总被引:4,自引:0,他引:4  
This review outlines the main features of ciliate resting-cyst formation or encystment. It represents a strategy against several environmental stresses (such as starvation), which involves a highly gene-regulated cell differentiation process and originates a more resistant, differentiated form or resting cyst. This process is mainly characterized by drastic cytoplasmic dehydration that induces a general metabolic rate decrease, intense autophagic activity, the formation of a permeable cyst wall protecting the cell against the adverse environmental conditions, and a gene-silencing mechanism after opening the specific encystment genes.  相似文献   

16.
The encystment flux of Peridinium bipes f. occulatum (Dinophyceae) was investigated with sediment traps from 1968 to 1990 in Lake Kazki. Cysts of P. bipes were formed throughout the blooms, Encystment flux of P. bipes in the pelagic zone was usually lower than those at shallow sites, and the density of P. bipes cysts in lake sediment was higher in the shallow region than in the pelagic zone. However, in the shallower region, The concentration of P. bipes cysts varied widely, possibly due to high rates of encystment and excystment. Peridinium bipes encystment occurred between 15° and 25° C in the laboratory, with very little cyst formation below 10°C. Though cyst formation was observed in continous darkness, the rate increased with irradiance. Under continuous darkness, no excystment was observed at any temperature from 5° to 25° C. Eighty-one percent of the cysts illuminated at 105 μE m?2 s?1 excysted after 13 days incubation at 15° C, and lower irradiances decreased germination success. Results from laboratory experiments suggest that light is a critical factor in the germination of P. bipes cysts. Bottom depth thus can have a significant effect on germination because cysts only can excyst from depths where light is sufficient. The shallow region of the lake is thus very important as a seed bed for P. bipes during early spring. Cyst deposited in deeper waters may not ever germinate unless they are resuspended and transported to shallow areas where light reaches the bottom.  相似文献   

17.
Schizopyrenus russelli, a free-living soil ameba, grows and encysts in the presence of bacteria. The encystment occurs with decline in the division rate. This is accompanied by incorporation of [U-14C] glucose into cyst cellulose. The degree of multiplication (but not of encystment) is a function of bacterial concentration. Berenil, a trypanocidal drug, while allowing excystment, completely inhibited multiplication of emerged amebae and their encystment. Addition of this drug after 24 hr, when amebae had gone into a phase of active division failed to check encystment, although it still inhibited further multiplication of the amebae. The findings suggest that a phase of cell division may be a prerequisite for encystment.  相似文献   

18.
Encystment of Azotobacter vinelandii (ATCC 12837) in modified Burk nitrogen-free medium (pH 7.0) containing 0.2 percent beta-hydroxybutyrate occurs optimally in 0.37 to 0.44 mM solutions of calcium ions. Suspension of cells in media deficient in calcium results in abortive encystment characterized by the release of viscous cyst coat material. Mature cysts rupture in ethylene glycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid, suggesting that calcium is a structural component of the cyst coat. Maximal stimulation of encystment by calcium ions occurs prior to the completion of the cyst exine or outer coat. The uronic acid composition of cyst components is dependent on calcium levels in the medium. Uronic acids account for 31.7 percent of the intine (inner coat) and 13 percent of the exine dry weight, and only mannuronic and guluronic acids are present in these fractions. These can be extracted as homo- and heteropolymeric sequence "blocks" characteristic of alginic acids. The polyuronic acid fraction of both the cyst coats contain approximately equal amounts of heteropolymeric (mannuronic acid/guluronic acid) blocks. The exine, however, is richer in polyguluronic acid and the intine is richer in polymannuronic acid. As a result, the mannuronic acid/guluronic acid ratio of the exine is lower than that of the intine. Slimes that form in abortive encystment are rich in polymannuronic acid and have a high mannuronic acid/guluronic acid ratio. A polymannuronic acid 5-epimerase is active in the mature cyst central body and the encystment culture fluid.  相似文献   

19.
M R?nne  H A B?ye 《Cytobios》1977,19(75-76):159-170
Scanning electron microscopy and freeze-etching/cleaving have been employed to examine events in the synchronized development of gametophytic germlings of the aquatic Phycomycete Allomyces macrogynus. Motile spores were induced to start synchronized development and the sequence of surface changes associated with the encystment process was studied. Time course studies show that small vesicles (apparently blebbed off from the gamma-particles) start to accumulate on the surface of the plasma membrane after 6 min of synchronized growth at the same time as the first cell wall material can be detected. The vesicles increase in number during encystment. After 15 min of synchronized growth the number of vesicles decrease and after 20 min of growth no vesicle can be observed on the cell surface. During this period the cell surface appears increasingly smooth, probably due to cell wall formation. In freeze-etching/cleaving electron micrographs from this period, both intact and what appear to be ruptured vesicles outside the cell surface, can be observed. The intact vesicle has a characteristic surface pattern presumably of membrane particles. This surface view of the encystment processes supports the hypothesis that the gamma-particles through gamma vesicle formation participate in the cell wall synthesis during encystment in Allomyces.  相似文献   

20.
The lipids of Cryptomonas rufescens (Skuja) cells have been analyzed. Quantitative changes of polar and neutral lipids were observed during cell encystment, induced by cultures in a nitrogen-deficient medium. During encystment, thylakoids disappeared while unsaturated galactolipids, characteristics of chloroplast membranes, decreased and neutral lipids accumulated in the cytoplasm. When excystment was induced, the reversal of the phenomenon was observed while thylakoids containing galactolipids were formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号