首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Four hypervariable minisatellite loci were scored on a panel of 116 individuals of various geographical origins representing a large part of the diversity present in house mouse subspecies. Internal structures of alleles were determined by minisatellite variant repeat mapping PCR to produce maps of intermingled patterns of variant repeats along the repeat array. To reconstruct the genealogy of these arrays of variable length, the specifically designed software MS_Align was used to estimate molecular divergences, graphically represented as neighbor-joining trees.  相似文献   

2.

Background  

Moller and Cuervo report a significant trend between minisatellite mutation rate and the frequency of extra-pair copulations in birds. This is interpreted as evidence that the high rate of evolution demanded by sexual selection has itself selected for a higher mutation rate in species where selection is strongest. However, there are good a priori reasons for believing that their method of calculating minisatellite mutation rates will be highly error prone and a poor surrogate measure of the evolutionary rate of genes. I therefore attempted to replicate their results using both their data and an independent data set based on papers they failed to locate.  相似文献   

3.
《Gene》1998,216(2):245-254
Minisatellite tandem repeat elements are well known components of vertebrate genomes, but have not yet been extensively characterized in lower eukaryotes. We describe two unusual, AT-rich minisatellites of the protozoan parasite Theileria parva whose sequences are unrelated to the G/C-rich `chi minisatellite superfamily' of vertebrate and plant genomes. The T. parva tandem repeats, one with a conserved sequence T2-5ACACA (6–17 copies), and the other with a 6-bp core sequence of either ACTATA or TATACT associated with additional variable sequences in repeats of 10–17 bp (3–7 copies), were closely linked at more than 20 sites in the T. parva genome, separated by 390, 510 and 660 bp at three loci analysed in detail. Such linkage is without precedent in minisatellites so far analysed in other organisms. The minisatellite loci were widely dispersed on 13 out of 33 genomic SfiI fragments, on all four T. parva chromosomes and did not exhibit a telomeric bias in their distribution. Analysis of flanking sequences revealed no obvious conserved sequences between the five loci, or other multicopy repeat sequences outside the minisatellite regions. The T2-5 ACACA minisatellite was highly effective as a multilocus fingerprinting probe for discrimination of T. parva isolates. Analysis of two individual minisatellite loci revealed variation between the genomic DNAs of two T. parva isolates in the copy number of the constituent repeats within the array, similar to that typical of vertebrate minisatellites.  相似文献   

4.

Background  

Currently available reference methods for the molecular epidemiology of the Mycobacterium tuberculosis complex either lack sensitivity or are still too tedious and slow for routine application. Recently, tandem repeat typing has emerged as a potential alternative. This report contributes to the development of tandem repeat typing for M. tuberculosis by summarising the existing data, developing additional markers, and setting up a freely accessible, fast, and easy to use, internet-based service for strain identification.  相似文献   

5.

Background  

Identifying all protein complexes in an organism is a major goal of systems biology. In the past 18 months, the results of two genome-scale tandem affinity purification-mass spectrometry (TAP-MS) assays in yeast have been published, along with corresponding complex maps. For most complexes, the published data sets were surprisingly uncorrelated. It is therefore useful to consider the raw data from each study and generate an accurate complex map from a high-confidence data set that integrates the results of these and earlier assays.  相似文献   

6.

Background  

Tandem repeat variation in protein-coding regions will alter protein length and may introduce frameshifts. Tandem repeat variants are associated with variation in pathogenicity in bacteria and with human disease. We characterized tandem repeat polymorphism in human proteins, using the UniGene database, and tested whether these were associated with host defense roles.  相似文献   

7.
In the class of repeated sequences that occur in DNA, minisatellites have been found polymorphic and became useful tools in genetic mapping and forensic studies. They consist of a heterogeneous tandem array of a short repeat unit. The slightly different units along the array are called variants. Minisatellites evolve mainly through tandem duplications and tandem deletions of variants. Jeffreys et al. (1997) devised a method to obtain the sequence of variants along the array in a digital code and called such sequences maps. Minisatellite maps give access to the detail of mutation processes at work on such loci. In this paper, we design an algorithm to compare two maps under an evolutionary model that includes deletion, insertion, mutation, tandem duplication, and tandem deletion of a variant. Our method computes an optimal alignment in reasonable time; and the alignment score, i.e., the weighted sum of its elementary operations, is a distance metric between maps. The main difficulty is that the optimal sequence of operations depends on the order in which they are applied to the map. Taking the maps of the minisatellite MSY1 of 609 men, we computed all pairwise distances and reconstructed an evolutionary tree of these individuals. MSY1 (DYF155S1) is a hypervariable locus on the Y chromosome. In our tree, the populations of some haplogroups are monophyletic, showing that one can decipher a microevolutionary signal using minisatellite maps comparison.  相似文献   

8.

Background  

All bacterial genomes contain repetitive sequences which are members of specific DNA families. Such repeats may occur as single units, or found clustered in multiple copies in a head-to-tail configuration at specific loci. The number of clustered units per locus is a strain-defining parameter. Assessing the length variability of clusters of repeats is a versatile typing methodology known as multilocus variable number of tandem repeat analysis (MLVA).  相似文献   

9.

Background

Tandem repeat variation in protein-coding regions will alter protein length and may introduce frameshifts. Tandem repeat variants are associated with variation in pathogenicity in bacteria and with human disease. We characterized tandem repeat polymorphism in human proteins, using the UniGene database, and tested whether these were associated with host defense roles.

Results

Protein-coding tandem repeat copy-number polymorphisms were detected in 249 tandem repeats found in 218 UniGene clusters; observed length differences ranged from 2 to 144 nucleotides, with unit copy lengths ranging from 2 to 57. This corresponded to 1.59% (218/13,749) of proteins investigated carrying detectable polymorphisms in the copy-number of protein-coding tandem repeats. We found no evidence that tandem repeat copy-number polymorphism was significantly elevated in defense-response proteins (p = 0.882). An association with the Gene Ontology term 'protein-binding' remained significant after covariate adjustment and correction for multiple testing. Combining this analysis with previous experimental evaluations of tandem repeat polymorphism, we estimate the approximate mean frequency of tandem repeat polymorphisms in human proteins to be 6%. Because 13.9% of the polymorphisms were not a multiple of three nucleotides, up to 1% of proteins may contain frameshifting tandem repeat polymorphisms.

Conclusion

Around 1 in 20 human proteins are likely to contain tandem repeat copy-number polymorphisms within coding regions. Such polymorphisms are not more frequent among defense-response proteins; their prevalence among protein-binding proteins may reflect lower selective constraints on their structural modification. The impact of frameshifting and longer copy-number variants on protein function and disease merits further investigation.  相似文献   

10.
Polymorphic minisatellites, also known as variable number of tandem repeats (VNTRs), are tandem repeat regions that show variation in the number of repeat units among chromosomes in a population. Currently, there are no general methods for predicting which minisatellites have a high probability of being polymorphic, given their sequence characteristics. An earlier approach has focused on potentially highly polymorphic and hypervariable minisatellites, which make up only a small fraction of all minisatellites in the human genome. We have developed a model, based on available minisatellite and VNTR sequence data, that predicts the probability that a minisatellite (unit size > or = 6 bp) identified by the computer program Tandem Repeats Finder is polymorphic (VNTR). According to the model, minisatellites with high copy number and high degree of sequence similarity are most likely to be VNTRs. This approach was used to scan the draft sequence of the human genome for VNTRs. A total of 157,549 minisatellite repeats were found, of which 29,224 are predicted to be VNTRs. Contrary to previous results, VNTRs appear to be widespread and abundant throughout the human genome, with an estimated density of 9.1 VNTRs/Mb.  相似文献   

11.
12.

Background  

Short tandem repeat polymorphisms (STRPs) are powerful tools for gene mapping and other applications. A STRP genome scan of 10 cM is usually adequate for mapping single gene disorders. However mapping studies involving genetically complex disorders and especially association (linkage disequilibrium) often require higher STRP density.  相似文献   

13.

Background  

Recently duplicated genes are often subject to genomic rearrangements that can lead to the development of novel gene structures. Here we specifically investigated the effect of variations in internal tandem repeats (ITRs) on the gene structure of human paralogs located in segmental duplications.  相似文献   

14.
中国明对虾基因组小卫星重复序列分析   总被引:4,自引:0,他引:4  
高焕  孔杰 《动物学报》2005,51(1):101-107
通过对中国明对虾基因组随机DNA片断的测序 ,我们获得了总长度约 6 4 10 0 0个碱基的基因组DNA序列 ,从中共找到 172 0个重复序列。其中 ,小卫星序列的数目为 398个 ,占重复序列总数目的 2 3 14 %。这些小卫星序列的重复单位长度为 7- 16 5个碱基 ,集中分布于 7- 2 1个碱基范围内 ,其中以重复单位长度为 12个碱基的重复序列数目最多 ,为 5 8个 ,占小卫星重复序列总数目的 14 5 7%。不同拷贝数目所对应的重复序列的数目情况为 :拷贝数目为 2的重复单位所组成的重复序列数目最多 ,为 137个 ;其次是拷贝数目为 3的重复序列 ,为12 2个 ,且随着拷贝数目的增加 ,由其所组成的重复序列的数目呈递减的趋势。其中一部分序列见GeneBank数据库 ,登录号为AY6 990 72 -AY6 990 76。 398个重复序列分别由 398种重复单位所组成 ,因而小卫星重复序列的类型很多 ,我们初步分成三类 :两种碱基组成类别、三种碱基组成类别和四种碱基组成类别 ,并进一步根据各个重复序列中所含有的碱基种类的数量从大到小排列这些碱基而分成若干小类。从这些分类中可以看出 ,中国明对虾基因组中的小卫星整体上是富含A T的重复序列 ,并具有一定的“等级制度” ,揭示了其与微卫星重复序列之间的关系 ,即一部分小卫星重复序列可能起源于微卫星  相似文献   

15.

Background

The Candida parapsilosis complex species has emerged as an important cause of human disease. The molecular identification of C. parapsilosis isolates at the species level can be helpful for epidemiological studies and then for the establishment of appropriate therapies and prophylactic measures.

Methods

The present study was undertaken to analyze 13 short tandem repeat (STR) markers (7 minisatellites and 6 microsatellites) in a global set of 182 C. parapsilosis complex isolates from different origins including invasive and superficial clinical sites.

Results

Upon the analysis of 182 strains of C. parapsilosis complex species, 10–17 haplotypes were detected for each minisatellite marker. The combination of 7 minisatellite markers yielded 121 different genotypes with a 0.995 D value. Upon the analysis of 114 isolates (68 from invasive infections and 46 from superficial infections), 21–32 genotypes were detected for each microsatellite marker. The combination of all 13 markers yielded 96 different genotypes among 114 isolates with a high degree of discrimination (0.997 D value).The same multilocus genotype was shared by isolates recovered from some patients and from the hand of theirs correspondent healthcare worker. For another patient, the same multilocus genotype of C. metapsilosis was detected in blood and skin confirming that candidemia usually arises as an endogenous infection following prior colonization.

Conclusions

These STR markers are a valuable tool for the differentiation of C. parapsilosis complex strains, to support epidemiological investigations especially studies of strain relatedness and pathways of transmission.
  相似文献   

16.
This study shows for the first time that the tandemly repeated icosapeptide of human MUC1 underlies a genetic sequence polymorphism at three positions (underlined): PDTRPAPGSTAPPAHGVTSA. The concerted replacement DT-->ES (sequence variation 1) and the single replacements P-->Q (sequence variation 2), P-->A (sequence variation 3), and P-->T (sequence variation 4) were identified by sequencing of polymerase chain reaction products and studied by minisatellite variant repeat analysis for their incidence and topology in the 5' and 3' peripheral regions of the variable number of tandem repeats domain. Minisatellite variant repeat analyses were performed with 27 individual samples of genomic DNA from human cells and tissues covering 30-60% of the domain. Within the peripheral regions, sequence variations 1-4 occur at high incidence and show a nearly constant repeat topology in all individual normal and tumor samples. Also, individuals who were non-Caucasian or of different ethnic background were found to have the same set of replacements with identical topology. The repeat variant 1 replacing the established tumor target motif DTR with ESR was found in all individuals and appears predominantly in repeat clusters (diads and triads). The largely constant topology of variant repeats is interpreted by the assumption that the variable number of tandem repeats domain has evolved as a recent expansion of sequence variable super-repeats.  相似文献   

17.
Hypermutable minisatellites,a human affair?   总被引:6,自引:0,他引:6  
Bois PR 《Genomics》2003,81(4):349-355
Minisatellites are a class of highly polymorphic GC-rich tandem repeats. They include some of the most variable loci in the human genome, with mutation rates ranging from 0.5% to >20% per generation. Structurally, they consist of 10- to 100-bp intermingled variant repeats, making them ideal tools for dissecting mechanisms of instability at tandem repeats. Distinct mutation processes generate rare intra-allelic somatic events and frequent complex conversion-like germline mutations in these repeats. Furthermore, turnover of repeats at human minisatellites is controlled by intense recombinational activity in DNA flanking the repeat array. Surprisingly, whereas other mammalian genomes possess minisatellite-like sequences, hypermutable loci have not been identified that suggest human-specific turnover processes at minisatellite arrays. Attempts to transfer minisatellite germline instability to the mouse have failed. However, yeast models are now revealing valuable information regarding the mechanisms regulating instability at these tandem repeats. Finally, minisatellites and tandem repeats provide exquisitely sensitive molecular tools to detect genomic insults such as ionizing radiation exposure. Surprisingly, by a mechanism that remains elusive, there are transgenerational increases in minisatellite instability.  相似文献   

18.

Background

The etiology of more than half of all patients with X-linked intellectual disability remains elusive, despite array-based comparative genomic hybridization, whole exome or genome sequencing. Since short read massive parallel sequencing approaches do not allow the detection of larger tandem repeat expansions, we hypothesized that such expansions could be a hidden cause of X-linked intellectual disability.

Methods

We selectively captured over 1800 tandem repeats on the X chromosome and characterized them by long read single molecule sequencing in 3 families with idiopathic X-linked intellectual disability.

Results

In male DNA samples, full tandem repeat length sequences were obtained for 88–93% of the targets and up to 99.6% of the repeats with a moderate guanine-cytosine content. Read length and analysis pipeline allow to detect cases of >?900?bp tandem repeat expansion. In one family, one repeat expansion co-occurs with down-regulation of the neighboring MIR222 gene. This gene has previously been implicated in intellectual disability and is apparently linked to FMR1 and NEFH overexpression associated with neurological disorders.

Conclusions

This study demonstrates the power of single molecule sequencing to measure tandem repeat lengths and detect expansions, and suggests that tandem repeat mutations may be a hidden cause of X-linked intellectual disability.
  相似文献   

19.

Background

Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data.

Results

Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution.

Conclusions

While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号