共查询到20条相似文献,搜索用时 0 毫秒
1.
Compaction of controlled-release coated pellets into tablets is challenging because of the fusion of pellets and the rupturing
of coated film. The difficulty in compaction intensifies with the use of extremely water-soluble drugs. Therefore, the present
study was conducted to prepare and compact pellets containing pseudoephedrine hydrochloride as an extremely water-soluble
model drug. The pellets were produced using an extrusion–spheronization technique. The drug-loaded pellets were coated to
extend the drug release up to 12-h employing various polymers, and then they were compressed into tablets using microcrystalline
cellulose Ceolus KG-801 as a novel tabletting excipient. The in vitro drug release studies of coated pellets and tablets were undertaken using the USP basket method in dissolution test apparatus
I. The amount of drug released was analyzed at a wavelength of 215 nm. The combined coatings of hydroxypropyl methylcellulose
and Kollicoat SR-30D yielded 12-h extended-release pellets with drug release independent of pH of dissolution medium following
zero-order kinetics. The drug release from the tablets prepared using inert Celous KG-801 granules as tabletting excipient
was found faster than that of coated pellets. However, a modification in drug release rate occurred with the incorporation
of inert Ceolus KG-801 pellets. The drug dissolution profile from tablets containing 40% w/w each of coated pellets and inert
granules along with 20% w/w inert pellets was found to be closely similar to that of coated pellets. Furthermore, the friability,
tensile strength, and disintegration time of the tablets were within the USP specifications. 相似文献
2.
Yang Liu Hanyang Xiao Jin Xie Zengzhu Zhang Yueqin Ma Pengfei Yue Ming Yang 《AAPS PharmSciTech》2018,19(6):2488-2498
To elucidate the compaction behavior of drug nanocrystals based composite particles (NP) during tabletting, the compaction behavior of binary mixtures of microcrystalline cellulose (MCC) and nanocrystal particles was investigated. The force-displacement correlation of mixtures containing different ratios of MCC and micronized NP was studied in order to explain the nature on densification of NP during compaction, and the resultant compaction curves (pressure as function of in-die thickness) were systemically analyzed to elucidate the most important mechanisms of volume reduction for MCC and NP in different stages of compaction. The results showed that the close compaction of individual MCC was relatively quickly achieved, and the drug NP particles could slide into the intrinsic void spaces between MCC microparticles. This was the reason that the particles size of MCC used in this study was significantly larger compared to that of drug NP. This interstitial rearrangement phenomenon of NP occurred on a typical time scale and was strongly dependent on the speed of compaction. This migration behavior occurred on void spaces of MCC inter-particles might be identified as an elastic stress relaxation mechanism and be helpful to dissolution of NP. MCC can effectively shield the NP from significant aggregation during compaction process. 相似文献
3.
The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug’s release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the water-soluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics. 相似文献
4.
Golam Kibria Monzurul Amin Roni Mohammad Shahriarul Absar Reza-ul Jalil 《AAPS PharmSciTech》2008,9(4):1240-1246
The present study was designed to investigate the effect of two plasticizers, i.e., triethyl citrate (TEC) and polyethylene
glycol 6000 (PEG 6000) on the in vitro release kinetics of diclofenac sodium from sustained-release pellets. Ammonio methacrylate copolymer type B (Eudragit RS
30 D) is used as the release-retarding polymer. Both plasticizers were used at 10% and 15% (w/w) of Eudragit RS 30 D. Pellets were prepared by powder layering technology and coated with Eudragit RS 30 D by air suspension
technique. Thermal properties of drug and drug-loaded beads were studied using differential scanning calorimeter (DSC). DSC
thermogram represented the identity of raw materials and exhibited no interaction or complexation between the active and excipients
used in the pelletization process. Dissolution study was performed by using USP apparatus 1. No significant difference was
observed among the physical properties of the coated pellets of different batches. When dissolution was performed as pure
drug, about 8.22% and 90% drug was dissolved at 2 h in 0.1 N HCl and at 30 min in buffer (pH 6.8), respectively. From all
formulations, the release of drug in acid media was very negligible (maximum 1.8 ± 0.08% at 2 h) but in buffer only 12% and
30% drug was released at 10 h from coated pellets containing TEC and PEG 6000, respectively, indicating that Eudragit RS 30
D significantly retards the drug release rate and that drug release was varied according to the type and amount of plasticizers
used. The amount of TEC in coating formulation significantly effected drug release (p < 0.001), but the effect of PEG 6000 was not significant. Formulations containing PEG 6000 released more drug (98.35 ± 2.35%)
than TEC (68.01 ± 1.04%) after 24 h. Different kinetic models like zero order, first order, and Higuchi were used for fitting
drug release pattern. Zero order model fitted best for diclofenac release in all formulations. Drug release mechanism was
derived with Korsmeyer equation. 相似文献
5.
Polyelectrolyte multilayer (PEM) film formed due to the electrostatic interaction between oppositely charged polyelectrolytes is of considerable interest because of their potential applications as both drug carriers and surface-modifying agents. In this study, in vitro studies were carried out on polyelectrolyte complexes formulated with Eudragit E (EE) and hypromellose acetate succinate (HPMCAS). The complexes of EE and HPMCAS were formulated by non-stoichiometric method. The prepared IPCs were investigated using Fourier transform infrared spectroscopy. Diclofenac sodium (DS) tablets were prepared and were coated with polymer solution of HPMCAS and EE to achieve pH-dependent and sustained-release tablets. Tablets were evaluated for their physical characteristics and in vitro drug release. The results of pharmacokinetic studies in rabbits showed that the selected formulation (F6) exhibited a delayed peak plasma concentration and marked sustained-release effect of drug in the in vivo drug release in comparison with marketed tablet. The suitable combination of PEM film based on EE and HPMCAS demonstrated potential candidate for targeted release of DS in the lower part of the gastrointestinal (GI) tract. 相似文献
6.
Madan Mohan Kamila Nita Mondal Lakshmi Kanta Ghosh Bijan Kumar Gupta 《AAPS PharmSciTech》2009,10(3):887-899
A multiunit floating drug delivery system of rosiglitazone maleate has been developed by encapsulating the drug into Eudragit® RS100 through nonaqueous emulsification/solvent evaporation method. The in vitro performances of microspheres were evaluated by yield (%), particle size analysis, drug entrapment efficiency, in vitro floating behavior, surface topography, drug–polymer compatibility, crystallinity of the drug in the microspheres, and drug release studies. In vitro release was optimized by a {3, 3} simplex lattice mixture design to achieve predetermined target release. The in vivo performance of the optimized formulation was evaluated in streptozotocin-induced diabetic rats. The results showed that floating microspheres could be successfully prepared with good yields (69–75%), high entrapment (78-97%), narrow size distribution, and desired target release with the help of statistical design of experiments from very small number of formulations. In vivo evaluation in albino rats suggested that floating microspheres of rosiglitazone could be a promising approach for better glycemic control. 相似文献
7.
The purpose of the present investigation was to elucidate the influence of curing on different physical properties of Eudragit NE and RS coating systems. Increased curing times resulted in decreased drug release rates from Eudragit NE-coated beads. However, an increase in drug release rates was noticed at longer curing times and higher temperatures for the Eudragit RS coating system. The surface morphological changes of the film-coated beads revealed that there were no visible macroscopic changes as a result of curing. The absence of any ibuprofen melting peak in the DSC thermograms of cured NE and RS coated beads confirmed that there was no surface crystallization of ibuprofen. These results indicated that the increase in drug release rates from RS coated pellets, when subjected to long curing times, resulted from loss of plasticizer. Free films of Eudragit NE exhibited an increase in tensile strength with increased curing times, whereas Eudragit RS free films showed a decrease in tensile strength beyond 4 h of curing at 70 and 90 degrees C. The film thicknesses and weights of free films of Eudragit RS prepared with triethyl citrate plasticizer were found to change more dramatically with curing than did free films of Eudragit RS prepared with ibuprofen as the plasticizer. An increase in pore volume was also observed with increased curing times for Eudragit RS free films. Such changes with curing were shown to be due to the loss of plasticizer molecules, leading to the formation of molecular-scale voids and channels. 相似文献
8.
Yuli Wang Jingjing Dai Xinyi Chang Meiyan Yang Ruifang Shen Li Shan Yong Qian Chunsheng Gao 《AAPS PharmSciTech》2015,16(1):35-44
The objective of the present study was to evaluate the feasibility of using model drug metoprolol succinate (MS) as a pore former to modify the initial lag phase (i.e., a slow or non-release phase in the first 1–2 h) associated with the drug release from coated pellets. MS-layered cores with high drug-layering efficiency (97% w/w) were first prepared by spraying a highly concentrated drug aqueous solution (60% w/w, 70°C) on non-pareils without using other binders. The presence of MS in ethylcellulose (EC) coating solution significantly improved the coating process by reducing pellets sticking, which often occurs during organic coating. There may be a maximum physical compatibility of MS with EC, and the physical state of the drug in the functional coating layer of EC/MS (80:20) was simultaneously crystalline and non-crystalline (amorphous or solid molecule solution). The lag phase associated with hydroxypropylcellulose (HPC) as a pore former was not observed when MS was used as a pore former. The drug release from EC/MS-coated pellets was pH independent, inversely proportional to the coating levels, and directly related to the pore former levels. The functional coating layer with MS as a pore former was not completely stabilized without curing. Curing at 60°C for 1 day could substantially improve the stability of EC/MS-coated pellets. The physical state of the drug in the free film of EC/MS (85:15) changed partially from amorphous to crystal when cured at 60°C for 1 day, which should be attributed to the incompatibility of the drug with EC.KEY WORDS: coated pellets, curing treatment, lag phase, metoprolol succinate, pore former 相似文献
9.
The aim of study was to develop self-nanoemulsifying pellets (SNEP) for oral delivery of poorly water soluble drug, repaglinide (RPG). Solubility of RPG in oily phases and surfactants was determined to identify components of self-nanoemulsifying drug delivery system (SNEDDS). The surfactants and cosurfactants were screened for their ability to emulsify oily phase. Ternary phase diagrams were constructed to identify nanoemulsification area for the selected systems. SNEDDS formulations with globule size less than 100 nm were evaluated for in vivo anti-hyperglycemic activity in neonatal streptozotocin rat model. A significant reduction in glucose levels was produced by optimized SNEDDS formulation in comparison to the control group. The optimized SNEDDS formulations were pelletized via extrusion/spheronization technique using microcrystalline cellulose and lactose. SNEP were characterized by X-ray powder diffraction and scanning electron microscopy. X-ray diffraction study indicated loss of crystallinity of RPG in SNEP. The SNEP exhibited good flow properties, mechanical strength and formed nanoemulsion with globule size less than 200 nm. SNEP showed in vitro release of more than 80% RPG in 10 min which was significantly higher than RPG containing reference pellets. In conclusion, our studies illustrated that RPG, a poorly water soluble drug can be successfully formulated into SNEP which can serve as a promising system for the delivery of poorly water soluble drugs. 相似文献
10.
Two groups of fluconazole mucoadhesive buccal discs were prepared: (a) Fluconazole buccal discs prepared by direct compression
containing bioadhesive polymers, namely, Carbopol 974p (Cp), sodium carboxymethyl cellulose (SCMC), or sodium alginate (SALG)
in combination with hydroxypropyl methylcellulose (HPMC) or hydroxyethyl cellulose (HEC). (b) Fluconazole buccal discs prepared
by freeze drying containing different polymer combinations (SCMC/HPMC, Cp/HPMC, SALG/HPMC, and chitosan/SALG). The prepared
discs were evaluated by investigating their release pattern, swelling capacity, mucoadhesion properties, and in vitro adhesion time. In vivo evaluation of the buccal disc and in vivo residence times were also performed. Fluconazole salivary concentration after application of fluconazole buccal systems to
four healthy volunteers was determined using microbiological assay and high-performance liquid chromatography. SCMC/HPMC buccal
disc prepared by direct compression could be considered comparatively superior mucoadhesive disc regarding its in vitro adhesion time, in vivo residence time, and in vitro/in vivo release rates of the drug. Determination of the amount of drug released in saliva after application of the selected fluconazole
disc confirmed the ability of the disc to deliver the drug over a period of approximately 5 h and to reduce side effects and
possibility of drug interaction encountered during systemic therapy of fluconazole, which would be beneficial in the case
of oral candidiasis. 相似文献
11.
Pornsak Sriamornsak Jurairat Nunthanid Kamonrak Cheewatanakornkool Somkamol Manchun 《AAPS PharmSciTech》2010,11(3):1315-1319
Drug-loaded calcium pectinate gel (CaPG) beads were prepared by either mixing, absorption, or swelling method. The effects of drug loading method as well as the drug loading factors (i.e., drug concentration, soaking time in drug solution, type of solvent) on drug content and drug release were investigated. The amount of drug uptake (i.e., drug content) into CaPG beads increased as the initial drug concentration increased and varied depending on the loading method. The in vitro release studies in 0.1 N hydrochloric acid (HCl) and pH 6.8 buffer indicated that the drug loading method affected drug release and release parameter, time for 50% of drug release (T 50). The mixing method provided a faster drug release and lower T 50 than the absorption method and swelling method, respectively. This is probably due to higher drug content in CaPG beads. The increased concentration of drug in soaking solution and soaking time resulted in higher drug content and thus faster drug release (lower in T 50 values). When using 0.1 N HCl as solvent for soaking instead of water, the drug release was slower owing to the increase in molecular tortuosity of CaPG beads. The drug release was also affected by pH of the release medium in which drug release in 0.1 N HCl was faster than in pH 6.8 buffer. 相似文献
12.
Michelle J. Serapiglia Bruce S. Dien Akwasi A. Boateng Michael D. Casler 《Bioenergy Research》2017,10(2):377-387
Switchgrass (Panicum virgatum L.) is a native North American prairie grass being developed for bioenergy production in the central and eastern USA. The objective of this study was to identify the impacts of harvest time and switchgrass cultivar had on sugar release variables determined through enzymatic hydrolysis. Previously, we reported that delaying harvest of switchgrass until after frost and until after winter resulted in decreased yields of switchgrass but it reduced the amount of ash and nutrients in the biomass. The current study used near-infrared reflectance spectroscopy (NIRS) to broaden an existing set of calibration equations designed to predict composition and sugar release variables of switchgrass. These updated calibrations were then applied to the full set of samples from a multi-year and multi-location switchgrass harvest-management study. Composition and processor sugar yields were significantly affected by location, year, cultivar, and harvest time, of which the time of harvest was the most important. Delaying the time of harvest until after frost or post-winter increased the concentration of structural carbohydrates from 500 to over 570 g kg?1 in the biomass and lignin content from 160 to over 200 g kg?1. Conversely, delaying harvest time lowered the amounts of ash and soluble sugars. The later harvest times also yielded more sugars following processing with yields increasing over 20% from the first harvest. Increased sugar yields are attributable to both increased concentration of sugars in the biomass upon harvest and reduced biomass recalcitrance. Based upon processed sugar yields, it is estimated that a biorefinery producing 76 million liters of ethanol per year would require 229–373 km2 of land cultivated with switchgrass. 相似文献
13.
The objective of this study was to develop a solid dispersion based controlled release system for drug substances that are poorly soluble in water. A wax-based disintegration mediated controlled release system was designed based on the fact that an amorphous drug can crystallize out from hydrophilic matrices. For this study, cilostazol (CIL) was selected as the model drug, as it exhibits poor aqueous solubility. An amorphous solid dispersion was prepared to assist the drug to attain a supersaturated state. Povidone was used as carrier for solid dispersion (spray drying technique), hydrogenated vegetable oil (HVO) as wax matrix former, and sodium carboxymethyl cellulose (NaCMC) as a disintegrant. The extreme vertices mixture design (EVMD) was applied to optimize the designed and developed composition. The optimized formulation provided a dissolution pattern which was equivalent to the predicted curve, ascertaining that the optimal formulation could be accomplished with EVMD. The release profile of CIL was described by the Higuchi’s model better than zero-order, first-order, and Hixson-Crowell’s model, which indicated that the supersaturation state of CIL dominated to allow drug release by diffusion rather than disintegration regulated release as is generally observed by Hixson-Crowell’s model. The optimized composition was evaluated for disintegration, dissolution, XRD, and stability studies. It was found that the amorphous state as well as the dissolution profile of CIL was maintained under the accelerated conditions of 40°C/75% RH for 6 months.KEY WORDS: cilostazol, controlled release, disintegration-mediated controlled release (DMCR), extreme vertices mixture design (EVMD), solid dispersion 相似文献
14.
目的:以角蛋白作为药物载体材料,制备智能响应性药物递送系统,研究其药物装载和释放性能。方法:利用去溶剂法制备角蛋白纳米颗粒(KNP),以罗丹明B(RB)和姜黄素(Cur)为亲水性和疏水性模式药物,制备载药KNP。利用钨灯丝扫描电镜(SEM)、动态光散射(DLS)、傅里叶变换红外光谱(FTIR)和药物体外释放实验等对KNP的尺寸、形貌、结构、载药和释药性能进行研究。结果:成功制备出粒径均一、约为300 nm 的KNP,能够装载亲水性和疏水性药物。载药颗粒在体外释放研究中表现出pH和氧化还原双重响应性。结论:利用去溶剂法,简便、安全地制备了分散性良好且具有pH和氧化还原双重响应性释放特性的角蛋白载药纳米颗粒,为角蛋白作为智能响应型药物递送载体的研究和应用提供了参考。 相似文献
15.
Praveen Sher Ganesh Ingavle Surendra Ponrathnam Pankaj Poddar Atmaram P. Pawar 《AAPS PharmSciTech》2009,10(2):547-558
The purpose of this research work was to explore an application of uncoated porous drug carrier prepared by single-step drug
adsorption for a delivery system based on integration of floating and pulsatile principles intended for chronotherapy. This
objective was achieved by utilizing 32 factorial design, solvent volume (X
1) and drug amount (X
2) as selected variables, for drug adsorption using solvents, methanol, and dichloromethane (DCM), of varying polarity. Nitrogen
adsorption (N2), scanning electron microscopy of cross-sections, and atomic force microscopy were done to study adsorption patterns and
their effect on release pattern. Drug release study was customized by performing for 6 h in acidic environment to mimic gastroretention
followed by basic environment akin to transit phase. Correlation between porous data from mercury and N2 adsorption was probably studied for the first time. Observed regression analysis values for pore volume, surface area, and
drug release indicated the influence of selected variables. Total release range in acidic medium was 12.77–24.57% for methanol,
8.79–15.26% for DCM, and final release of 69.45–92.23% for methanol, and 60.16–99.99% for DCM influenced by varying internal
geometries was observed. Present form of drug delivery system devoid of any additives/excipients influencing drug release
shows distinct behavior from other approaches/technologies in chronotherapy by (a) observing desired low drug release (8%)
in acidic medium, (b) overcoming the limitations of process variables caused by multiple formulation steps and different characteristic
polymers, (c) reducing time consumption due to single step process, and (d) extending as controlled/extended release. 相似文献
16.
Huang Jinheng Lin Huaqing Peng Bingxin Huang Qianfeng Shuai Fangzhou Xie Yanxian 《AAPS PharmSciTech》2018,19(5):2144-2154
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f2) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile. 相似文献
17.
Stephen R. Decker Robert W. Sykes Geoffrey B. Turner Jason S. Lupoi Crissa Doepkke Melvin P. Tucker Logan A. Schuster Kimberly Mazza Michael E. Himmel Mark F. Davis Erica Gjersing 《Journal of visualized experiments : JoVE》2015,(103)
The conversion of lignocellulosic biomass to fuels, chemicals, and other commodities has been explored as one possible pathway toward reductions in the use of non-renewable energy sources. In order to identify which plants, out of a diverse pool, have the desired chemical traits for downstream applications, attributes, such as cellulose and lignin content, or monomeric sugar release following an enzymatic saccharification, must be compared. The experimental and data analysis protocols of the standard methods of analysis can be time-consuming, thereby limiting the number of samples that can be measured. High-throughput (HTP) methods alleviate the shortcomings of the standard methods, and permit the rapid screening of available samples to isolate those possessing the desired traits. This study illustrates the HTP sugar release and pyrolysis-molecular beam mass spectrometry pipelines employed at the National Renewable Energy Lab. These pipelines have enabled the efficient assessment of thousands of plants while decreasing experimental time and costs through reductions in labor and consumables. 相似文献
18.
Baracat MM Nakagawa AM Casagrande R Georgetti SR Verri WA de Freitas O 《AAPS PharmSciTech》2012,13(2):364-372
Controlled release of drugs is an important strategy to diminish the drug dose and adverse side effects. Aqueous mixtures of polysaccharides and proteins are usually unstable above a certain biopolymer concentration and phase separation occurs either because of repulsive (segregative) or attractive (associative) interactions. Herein, pectin/casein microcapsules were prepared by complex coacervation aiming at prolonged drug release. The morphological characteristics, particle size, distribution, and release kinetics of microcapsules were studied using as a model the hydrophilic drug acetaminophen. It was detected that complexation of pectin/casein particles occurs at pH values lower than 6, resulting in the formation of spherical particles after spray drying. Microcapsules had a mean diameter of 3.138 and 4.929 μm without drug, and of 4.680 and 5.182 μm with drug using USP and 8003 pectin, respectively. The in vitro release of acetaminophen from microcapsules was slow and the drug release mechanism was controlled by diffusion following first-order kinetics. There was greater release of acetaminophen in simulated gastric fluid than simulated intestinal fluid conditions. Concluding, the polymeric system present herein seemed to be appropriate for a prolonged release of acetaminophen throughout the gastrointestinal tract. Nevertheless, it is likely that it is a promising pectin/casein complex for lipossoluble drugs, which merits further investigation.KEY WORDS: casein, complex coacervation, microcapsules, pectin, release kinetics 相似文献
19.
Edward J. Wolfrum Nicholas J. Nagle Ryan M. Ness Darren J. Peterson Allison E. Ray Daniel M. Stevens 《Bioenergy Research》2017,10(2):478-487
In this work, we examined the behavior of feedstock blends and the effect of a specific feedstock densification strategy (pelleting) on the release and yield of structural carbohydrates in a laboratory-scale dilute acid pretreatment (PT) and enzymatic hydrolysis (EH) assay. We report overall carbohydrate release and yield from the two-stage PT-EH assay for five single feedstocks (two corn stovers, miscanthus, switchgrass, and hybrid poplar) and three feedstock blends (corn stover-switchgrass, corn stover-switchgrass-miscanthus, and corn stover-switchgrass-hybrid poplar). We first examined the experimental results over time to establish the robustness of the PT-EH assay, which limits the precision of the experimental results. The use of two different control samples in the assay enabled us to identify (and correct for) a small bias in the EH portion of the combined assay for some runs. We then examined the effect of variable pretreatment reaction conditions (residence time, acid loading, and reactor temperature) on the conversion of a single feedstock (single-pass corn stover, CS-SP) in order to establish the range of pretreatment reaction conditions likely to provide optimal conversion data. Finally, we applied the assay to the 16 materials (8 feedstocks in 2 formats, loose and pelleted) over a more limited range of pretreatment experimental conditions. The four herbaceous feedstocks behaved similarly, while the hybrid poplar feedstock required higher pretreatment temperatures for optimal results. As expected, the yield data for three blended feedstocks were the average of the yield data for the individual feedstocks. The pelleting process appears to provide a slightly positive effect on overall total sugar yield. 相似文献
20.
The crystal structures of active pharmaceutical ingredients and excipients should be strictly controlled because they influence pharmaceutical properties of products which cause the change in the quality or the bioavailability of the products. In this study, we investigated the effects of microcrystalline cellulose (MCC) crystallinity on the hydrophilic properties of tablets and the hydrolysis of active pharmaceutical ingredient, acetylsalicylic acid (ASA), inside tablets by using tablets containing 20% MCC as an excipient. Different levels of grinding were applied to MCC prior to tablet formulation, to intentionally cause structural variation in the MCC. The water penetration and moisture absorbability of the tablets increased with decreasing the crystallinity of MCC through higher level of grinding. More importantly, the hydrolysis of ASA inside tablets was also accelerated. These results indicate that the crystallinity of MCC has crucial effects on the pharmaceutical properties of tablets even when the tablets contain a relatively small amount of MCC. Therefore, controlling the crystal structure of excipients is important for controlling product qualities. 相似文献