首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternating the daily feeding of potato tuber moth (Phthorimaea operculella) larvae (PTM) between isogenic pairs of potato plants provides an effective experimental approach to simulate transgene pyramiding in a clonal crop. This involves an experimental design with all six possible pairwise combinations of two transgenic lines expressing different cry genes and the non‐transgenic control. In this manner, we have simulated the pyramiding of pairwise combinations of cry1Ac9, cry9Aa2 and cry1Ba1 genes in potato and evaluated how pairs of these three cry genes interact to influence the growth rate of PTM larvae. The results show that all combinations of the three cry genes were largely consistent with additive impacts on PTM larval growth, although results from the combination of the cry1Ac9 and cry9Aa2 genes were suggestive of slight synergistic effects. Pyramiding the cry1Ac9, cry9Aa2 and cry1Ba1 genes in potato could therefore provide a more effective strategy to control PTM compared to single cry gene transgenic plants.  相似文献   

2.
Alternative selection systems for plant transformation are especially valuable in clonal crops, such as potato (Solanum tuberosum L.), to pyramid transgenes into the same cultivar by successive transformation events. We have modified the pGPTV series of binary vectors to construct pMOA1 to pMOA5, resulting in a series of essentially identical binary vectors except for the presence of different selectable marker genes. These selectable marker genes are tightly inserted between the left and right T-DNA borders and confer resistance to kanamycin (nptII), hygromycin (hpt), methotrexate (dhfr), phosphinothricin (bar), or phleomycin (ble). The T-DNA of all the vectors is based on the minimal features necessary for plant transformation, with no extraneous DNA segments that may be unacceptable to regulatory authorities for general release of transgenic plants. A series of unique restriction sites exists between the right border and each selectable marker gene for subsequent insertion of useful genes. We have also developed improved culture procedures for potato transformation and used the pMOA1 to pMOA5 binary vectors to define stringent selection conditions for each marker gene. Combining these advances improved the frequency of recovering transformed potato plants while maintaining a low frequency of escapes. The relative efficiency of recovering transgenic potato lines with each selectable marker gene can be summarised as: kanamycin resistance>hygromycin resistance>phosphinothricin resistance>phleomycin resistance>methotrexate resistance.  相似文献   

3.
An important strategy for obtaining a safer transgenic plant may be the use of a spatial- or tissue-specific promoter, instead of a constitutive one. In this study, we have used a light-inducible maize PEPC promoter to regulate the cry1Ab gene, aiming to produce transgenic potatoes that are resistant to potato tuber moth (PTM) (Phthorimaea operculella, Zeller). Out of 60 regenerated lines having normal phenotypes, 55 lines were PCR-positive for both the cry1Ab and nptII genes. Southern analysis on three selected putative transgenic lines revealed that they have only a single intact copy of the cry1Ab gene. An investigation of the Cry1Ab protein in the leaves and light-exposed (LE) tubers of the transgenic lines demonstrated the presence of the protein in the foliage and green tubers but not in the light-not exposed (LNE) tubers. A bioassay analysis of excised leaves of nine randomly selected lines showed that eight lines had 100% PTM larval mortality. Confirming results were obtained in six selected lines using the whole plant bioassay in the greenhouse. LE transgenic tubers also exhibited 100% larval mortality; however, the levels of damage to the LNE transgenic tubers were high and statistically the same as those incurred by the non-transgenic ones. Based on the results, we believe that this spatial expression of Cry1Ab using the light-inducible PEPC promoter can control PTM infestation in the field and significantly reduce pollution transmission to storage potatoes.  相似文献   

4.
Minor modifications were made sequentially to the nucleotide sequence of truncated cry1Ac9 to produce cry1Ac9A (one nucleotide change) and then cry1Ac9B (seven nucleotide changes). The derivative genes under the control of the CaMV 35S promoter were transformed into Nicotiana tabacum in order to determine whether these modified genes conferred resistance on the resulting transgenic tobacco plants to larvae of the potato tuber moth (Phthorimaea operculella). Over two trials with PTM larvae on the transgenic plants expressing the cry 1Ac9b gene, lower larval growth, development and survival was evident for most of the lines compared to the control plants. In the second trial, for four of these lines (7, 25, 26 and 28) larval growth rates were very low (0.28, 0.3, 0.42 and 0.28, respectively) compared to the control growth rate (4.18) and leaf damage was minimal. Northern analysis and RT‐PCR analysis showed that higher levels of cry 1Ac9 mRNA were present in the transgenic tobacco lines containing cry 1Ac9b than in the tobacco lines containing cry 1Ac9a. These results suggest that certain minor modifications to the nucleotide sequence of cry 1 Ac9 are sufficient to improve the stability of its mRNA when expressed in tobacco and that this increase in steady state mRNA is sufficient to confer significant resistance to PTM larvae.  相似文献   

5.
Transgenic radiata pine (Pinus radiata D. Don) plants containing a Bacillus thuringiensis (Bt) toxin gene, crylAc, were produced by means of biolistic transformation of embryogenic tissue. Using the selectable marker gene nptII and corresponding geneticin selection, 20 independent transgenic lines from five genotypes were established. Over 200 plants regenerated from ten transgenic lines were successfully transferred to soil. The integration and expression of the introduced genes in transgenic tissue and/or plants were confirmed by PCR, Southern hybridisation and neomycin phosphotransferase II (NPTII) and Bt ELISA assays. Bioassays with larvae of the painted apple moth, Teia anartoides, demonstrated that transgenic plants displayed variable levels of resistance to insect damage, with one transgenic line being highly resistant to feeding damage.  相似文献   

6.
Resistance to antibiotics mediated by selectable marker genes remains a powerful selection tool for transgenic event production. However, regulatory agencies and consumer concerns favor these to be eliminated from food crops. Several excision systems exist but none have been optimized or shown to be functional for clonally propagated crops. The excision of the nptII gene conferring resistance to kanamycin has been achieved here using a gene construct based on a heat-inducible cre gene producing a recombinase that eliminates cre and nptII genes flanked by two loxP sites. First-generation regenerants with the Cre-loxP system were obtained by selection on kanamycin media. Following a heat treatment, second generation regenerants were screened for excision by PCR using nptII, cre, and T-DNA borders primers. Excision efficiency appeared to be at 4.7% depending on the heat treatment. The footprint of the excision was shown by sequencing between T-DNA borders to correspond to a perfect recombination event. Selectable marker-free sprouts were also obtained from tubers of transgenic events when submitted to similar heat treatment at 4% frequency. Spontaneous excision was not observed out of 196 regenerants from untreated transgenic explants. Biosafety concerns are minimized because the expression of cre gene driven by the hsp70 promoter of Drosophila melanogaster was remarkably low even under heat activation and no functional loxP site were found in published Solanum sequence database. A new plant transformation vector pCIP54/55 was developed including a multiple cloning site and the self-excision system which should be a useful tool not only for marker genes in potato but for any gene or sequence removal in any plant.  相似文献   

7.

A major pest of chickpea, Helicoverpa armigera, can be controlled by expressing genes from the bacterium Bacillus thuringiensis as an environmentally compatible option. Here we show that transgenic chickpeas containing a cry1Ac gene conferred a high degree of resistance to H. armigera. The Agrobacterium binary vector contained the nptII gene as the selectable marker and cry1Ac gene driven by the Arabidopsis rubisco small subunit gene (ats1A) promoter. We generated 54 and 47 independent transgenic lines using truncated (trcry1Ac) and full-length versions of the cry1Ac (flcry1Ac) gene, respectively. Of these lines, twelve transmitted the trcry1Ac transgene to the next generation at a 3:1 ratio, while only 8 flcry1Ac lines segregated in a 3:1 ratio. Five lines expressed trCry1Ac protein > 50 μg/g fresh weight, however, only one line accumulated about 30 μg/g flCry1Ac protein. Such high levels of trCry1Ac protein have not been reported before in chickpea. When trCry1Ac lines were challenged to whole plant bioassays in the greenhouse, lowest pod damage was observed in BS100B (1.4%) followed by BS81P (4.4%), and BS100E (6.2%) compared to the parental line (49.9%). The phenotypes of the lines expressing high levels of Cry1Ac protein were indistinguishable from their null segregants and controls. Thus, trCry1Ac lines could be suitable for crossing with our existing Cry2Aa lines for generation of a pyramided Bt chickpea for enhanced insect resistance management in the field.

  相似文献   

8.
Leaf discs of grapevine cv. Seyval blanc originating from in vitro cultures were transformed with Agrobacterium tumefaciens strain LBA 4404 harbouring the vector pGJ42 carrying genes for chitinase and RIP (ribosome-inactivating protein) in an attempt to improve fungal resistance. The gene for neomycin phosphotransferase II (nptII) was used as the selectable marker gene. The explants were cocultivated for 2 days with recombinant Agrobacteria and then submitted to selection on NN69 medium containing 100 mg/l kanamycin. Successful regeneration and conversion of transgenic plantlets were obtained. Stable integration of foreign DNA was confirmed by PCR and Southern blot analyses, and protein expression was detected by Western blot. The regenerated transgenic plants were adapted to the greenhouse and showed no evidence of phenotypical alterations. The foreign genes introduced into the transformed plants did not effect the expected improvement in fungal disease resistance under field conditions for the major pests Uncinula necator and Plasmopara viticola.  相似文献   

9.
The presence of antibiotic-resistant genes in genetically engineered crops together with the target gene has generated a number of environmental and consumer concerns. In order to alleviate public concerns over the safety of food derived from transgenic crops, marker gene elimination is desirable. Marker-free transgenic tomato plants were obtained by using a salicylic-acid-regulated Cre–loxP-mediated site-specific DNA recombination system in which the selectable marker neomycin phosphotransferase nptII and cre genes were flanked by two directly oriented loxP sites. Upon induction by salicylic acid, the cre gene produced a recombinase that eliminated sequences encoding nptII and cre genes, sandwiched by two loxP sites from the tomato genome. Regenerant plants with the Cre–loxP system were obtained by selection on kanamycin media and polymerase chain reaction (PCR) screening. Transgenic plants were screened for excision by PCR using nptII, cre, and PR-1a promoter primers following treatment with salicylic acid. The footprint of the excision was determined by sequencing the T-DNA borders after a perfect recombination event. The excision efficiency was 38.7%. A new plant transformation vector, pBLNSC (Genbank accession number EU327497), was developed, containing six cloning sites and the self-excision system. This provided an effective approach to eliminate the selectable marker gene from transgenic tomato, thus expediting public acceptance of genetically modified tomato.  相似文献   

10.
A simple strategy to identify and isolate new promoters suitable for driving the expression of selectable marker genes is described. By employing a Brassica napus hypocotyl transformation protocol and a promoterless gus::nptII tagging construct, a series of 20 kanamycin-resistant tagged lines was produced. Most of the regenerated plants showed hardly any GUS activity in leaf, stem and root tissues. However, expression was readily restored in callus tissue induced on in vitro leaf segments. Genomic sequences upstream of the gus::nptII insertions were isolated via plasmid rescue. Three clones originating from single copy T-DNA lines were selected for further evaluation. The rescued plasmids were cloned as linear fragments in binary vectors and re-transformed to Brassica napus hypocotyl and Solanum tuberosum stem segments. The new sequences maintained their promoter activity, demonstrated by transient and stable GUS activity after transformation. Furthermore, the promoters provided sufficient expression of the nptII gene to yield transgenic plants when using kanamycin as selective agent. Database searching (BLASTN) revealed that the promoters have significant homology with three Arabidopsis BAC clones, one Arabidopsis cDNA and one Brassica napus cDNA. The results presented in this paper illustrate the strength of combined methods for identification, isolation and testing of new plant promoters.  相似文献   

11.
Antibiotic-resistance genes of bacterial origin are invaluable markers for plant genetic engineering. However, these genes are feared to pose possible risk to human health by horizontal gene transfer from transgenic plants to bacteria, potentially resulting in antibiotic-resistant pathogenic bacteria; this is a considerable regulatory concern in some countries. The Atwbc19 gene, encoding an Arabidopsis thaliana ATP-binding cassette transporter, has been reported to confer resistance to kanamycin specifically as an alternative to bacterial antibiotic-resistance genes. In this report, we transformed hybrid aspen (Populus canescens × P. grandidentata) with the Atwbc19 gene. Unlike Atwbc19-transgenic tobacco that was only resistant to kanamycin, the transgenic Populus plants also showed resistance to three other aminoglycoside antibiotics (neomycin, geneticin, and paromomycin) at comparable levels to plants containing a CaMV35S-nptII cassette. Although it is unknown why the transgenic Populus with the Atwbc19 gene is resistant to all aminoglycoside antibiotics tested, the broad utility of the Atwbc19 gene as a reporter gene is confirmed here in a second dicot species. Because the Atwbc19 gene is plant-ubiquitous, it might serve as an alternative selectable marker to current bacterial antibiotic-resistance marker genes and alleviate the potential risk for horizontal transfer of bacterial-resistance genes in transgenic plants.  相似文献   

12.
The full-modified Bacillus thuringiensis cry3a (cry3aM) gene was designed and synthesized for effective expression in plants. A plant expression vector pC29RBCS-leader-cry3aM–licBM2 was constructed for potato transformation. In this vector, the cry3aM sequence was fused in reading frame with a new reporter gene (licBM2) and a leader sequence for the rbcs gene. The reporter gene encoded thermostable lichenase and the leader sequence encoded a signal peptide for transporting protein product to chloroplasts. The vector contained the light-inducible promoter for rbcs gene isolated from Arabidopsis thaliana. Transgenic plants were obtained by Agrobacterium mediated transformation using microtuber explants. Transgenic plantlets were selected by kanamycin resistance and confirmed as transgenic by PCR with specific primers, evaluation of lichenase activity, and bioassay of Colorado potato beetle neonate larvae. Promoter activity assays under light induction (kinetic analysis) using lichenase activity and bioassay both showed high and stable expression of hybrid genes in transgenic plantlets. Furthermore, the presence of lichenase as a reporter protein in the composition of hybrid protein was shown to facilitate selection and analysis of the expression level of hybrid genes in transgenic plants.  相似文献   

13.
A biolistic particle delivery system was used to genetically transform embryogenic tissue of Pinus radiata. The introduced DNA contained a uidA reporter gene under the control of either the tandem CaMV 35S or the artificial Emu promoter, and the npt II selectable marker controlled by the CaMV 35S promoter. The average number of stable, geneticin-resistant lines recovered was 0.5 per 200 mg fresh weight bombarded tissue. Expression of the uidA reporter gene was detected histochemically and fluorimetrically in transformed embryogenic tissue and in derived mature somatic embryos and regenerated plants. The integration of uidA and npt II genes into the Pinus radiata genome was demonstrated using PCR amplification of the inserts and Southern hybridisation analysis. The expression of both genes in transformed tissue was confirmed by Northern hybridisation analysis. More than 150 transgenic Pinus radiata plants were produced from 20 independent transformation experiments with four different embryogenic clones. Received: 9 May 1997 / Revision received: 18 September 1997 / Accepted: 18 October 1997  相似文献   

14.
Zhao  Yang  Kim  Jae Y.  Karan  Ratna  Jung  Je H.  Pathak  Bhuvan  Williamson  Bruce  Kannan  Baskaran  Wang  Duoduo  Fan  Chunyang  Yu  Wenjin  Dong  Shujie  Srivastava  Vibha  Altpeter  Fredy 《Plant molecular biology》2019,100(3):247-263
Key message

A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination.

Abstract

Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.

  相似文献   

15.
 An effective method has been developed for the stable transformation and regeneration of Cavendish banana (Musa spp. AAA group) cv 'Grand Nain' by microprojectile bombardment. Embryogenic cell suspensions were initiated using immature male flowers as the explant. Cells were co-bombarded with the neomycin phosphotransferase (nptII) selectable marker gene under the control of a banana bunchy top virus (BBTV) promoter or the CaMV 35S promoter, and either the β-glucuronidase (uidA) reporter gene or BBTV genes under the control of the maize polyubiquitin promoter. Plants were regenerated, under selection with kanamycin, that were co-transformed with nptII and either the uidA or BBTV genes. Molecular characterisation of transformants demonstrated that the transgenes had been stably integrated into the banana genome. Received: 22 June 1998 / Revision received: 29 March 1999 / Accepted 1 May 1999  相似文献   

16.
The timing of excision of maize transposable element Ac was studied using visual histochemical assay based on Ac excision restoring activity of -glucuronidase (GUS). The Solanum tuberosum L. cv. Bintje was used for Agrobacterium-mediated transformation with pTT230 plasmid harbouring Ac-interrupted gus A gene and npt II gene as a selectable marker gene. Twenty-eight out of 72 kanamycin resistant calli did not express any GUS activity, 31 calli showed partial GUS expression and 13 out of assayed calli revealed strong expression of gus A gene. Plants were regenerated from calli without and/or with partial expression of gus A gene. The regenerated transformants which did not express GUS during the callus phase often contained many small GUS expressing spots on leaves. A phenotypic selection assay for excision of Ac has been also used. This non-detectable excision of Ac in callus tissue could be followed by a "late" timing excision during leaf development. After transformation with pTT224 plasmid harbouring Ac-interrupted hpt II gene and npt II gene transgenic calli containing Ac within the hygromycin resistance gene were derived and hygromycin sensitive plants were regenerated from them. Protoplasts isolated from leaves of transgenic regenerated plants were selected on hygromycin. Hygromycin resistant minicalli showed to harbour multiple copies of Ac and mark out low uniqueness of integration sites.  相似文献   

17.
Aphid is one of the most serious, sap‐sucking insect pests which cause significant losses of crop yields. The aim of this study is to investigate whether transgenic plants expressing Zephyranthes candida agglutinin (ZCA) could confer enhanced resistance to aphids. Tobacco was transformed with a plasmid, pCAMBIAZCA, containing the marker genes nptII and gusA and the Zephyranthes candida agglutinin gene (zca) via Agrobacterium tumefaciens‐mediated transformation. Twenty‐six independent transgenic plants were regenerated. Western blot analysis revealed ZCA expression at various levels in transgenic plants. Insect bioassay tests showed that transgenic plants expressing a high level of ZCA significantly inhibited the growth of the population of peach potato aphids (Myzus persicae Sulzer). This is the first report in which transgenic plants expressing ZCA conferred enhanced resistance to aphids. Our study suggests the zca gene could be a useful candidate for genetic engineering strategies in plants to provide aphid resistance.  相似文献   

18.
Summary The Dutch potato cultivar Bintje has been transformed by Agrobacterium strain LBA1060KG, which contains two plasmids carrying three different DNAs (TL- and TR-DNA on the Agrobacterium rhizogenes plasmid and TKG-DNA on the pBI121 plasmid). Several transformed root clones were obtained after transformation of leaf, stem, and tuber segments, and plants were then regenerated from these root clones. The expression of the various marker genes [rol, opine, -glucuronidase (GUS), and neomycin phosphotransferase (NPTII)] was determined in several root clones and in regenerated plants. The selection of vigorously growing root clones was as efficient as selection for kanamycin resistance. In spite of the location of NPTII and GUS genes on the same T-DNA, 17% of the root clones did not show GUS activity. Nevertheless, Southern blot analysis showed that these root clones contained at least three copies of the GUS gene. Sixty-four per cent of the root clones contained opines. The expression of these genes, however, was negatively correlated with plant regeneration capacity and normal plant development. The differential expression of the marker genes in the transgenic potato tissues is discussed.  相似文献   

19.
Variation in the susceptibility of lepidopterous pest larvae of different ages to transgenic crops and the potential for survivors to reproduce could have important consequences for the development of resistance in such pests. Experiments were undertaken in the laboratory to determine if larvae of the potato tuber moth, Phthorimaea operculella, of different ages (0 (< 1 day old), 3, 5, 7 days) varied in their susceptibility to cry1Ac9–transgenic potato (Solanum tuberosum) foliage grown in the glasshouse or field. The survival and fecundity of larvae reared on transgenic tubers was also determined in the laboratory. There were no apparent differences in susceptibility of larvae of different ages to transgenic foliage. Larvae fed glasshouse or field‐grown non‐transgenic foliage had significantly larger relative growth indices and more larvae pupated, than those fed transgenic foliage, regardless of larval age. Eggs from a laboratory colony were placed on transgenic or non‐transgenic tubers to measure survival and fecundity. Between 6% and 15% of eggs placed on transgenic tubers developed into pupae for three of the four transgenic potato lines tested. On one transgenic line, only six adults emerged from 1300 eggs. In contrast, between 71% and 97% of the eggs placed on non‐transgenic tubers developed into pupae. Male and female pupae from transgenic lines weighed less than those from non‐transgenic lines. The fecundity of females from two of four transgenic lines was lower than from the non‐transgenic parent cultivar. Although larvae of different ages did not exhibit any overall age‐dependent pattern of increasing or decreasing susceptibility to transgenic foliage of glasshouse or field‐grown plants, the ability of larvae to survive and reproduce on transgenic tubers suggests this pest has the ability to evolve resistance to the transgenic plants used in the present study.  相似文献   

20.
Summary Transgenic plants of three Picea species were produced after coculture of embryogenic tissue with the disarmed strain of Agrobacterium tumefaciens C58/pMP90/pBIV10 and selection on medium containing kanamycin. In addition to the nptII selectable gene (conferring resistance to kanamycin), the vector carried the uidA (β-glucuronidase) marker gene. Transformation frequencies were dependent on the species, genotype, and post-cocultivation procedure. Of the three species tested, P. mariana was transformed at the highest frequency, followed by P. glauca and P. abies. The transgenic state of the embryogenic tissue was initially, confirmed by histochemical β-glucuronidase (GUS) assay followed by Southern hybridization. One to over five copies of T-DNA were detected in various transgenic lines analyzed. Transgenic plants were regenerated for all species using modified protocols for maturation and germination of somatic embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号