首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined effects of fibroblasts of different origin on long-term maintenance of xenotransplanted human epidermal keratinocytes. A suspension of cultured epidermal cells, originating from adult human trunk skin, was injected into double mutant immunodeficient (BALB/c nu/scid) mice subcutaneously, with or without cultured fibroblastic cells of different origin. At one week after transplantation, the epidermal cells generated epidermoid cysts consisting of human epidermis-like tissue. When the epidermal cells were injected alone or together with fibroblastic cells derived from human bone marrow, muscle fascia, or murine dermis, organized epidermoid cysts regressed within 6 weeks. In contrast, when the epidermal cells were injected together with human dermal fibroblasts, generated epidermoid cysts were maintained in vivo for more than 24 weeks. Histological examination showed that the reorganized epidermis, after injection of both epidermal keratinocytes and dermal fibroblasts, retained normal structures of the original epidermis during 6 to 24 weeks after transplantation. The results indicate that human dermal fibroblasts facilitate the long-term maintenance of the reorganized epidermis after xenotransplantation of cultured human epidermal keratinocytes by supporting self renewal of the human epidermal tissue in vivo.  相似文献   

2.
Localization of sex steroid receptors in human skin   总被引:10,自引:0,他引:10  
Sex steroid hormones are involved in regulation of skin development and functions as well as in some skin pathological events. To determine the sites of action of estrogens, androgens and progestins, studies have been performed during the recent years to accurately localize receptors for each steroid hormone in human skin. Androgen receptors (AR) have been localized in most keratinocytes in epidermis. In the dermis, AR was detected in about 10% of fibroblasts. In sebaceous glands, AR was observed in both basal cells and sebocytes. In hair follicles, AR expression was restricted to dermal papillar cells. In eccrine sweat glands, only few secretory cells were observed to express AR. Estrogen receptor (ER) alpha was poorly expressing, being restricted to sebocytes. In contrast, ERbeta was found to be highly expressed in the epidermis, sebaceous glands (basal cells and sebocytes) and eccrine sweat glands. In the hair follicle, ERbeta is widely expressed with strong nuclear staining in dermal papilla cells, inner sheath cells, matrix cells and outer sheath cells including the buldge region. Progesterone receptors (PR) staining was found in nuclei of some keratinocytes and in nuclei of basal cells and sebocytes in sebaceous glands. PR nuclear staining was also observed in dermal papilla cells of hair follicles and in eccrine sweat glands. This information on the differential localization of sex steroid receptors in human skin should be of great help for future investigation on the specific role of each steroid on skin and its appendages.  相似文献   

3.
Keratinocytes have the ability to adhere to extracellular matrix rapidly. With this in mind, in this study we isolated keratinocytes known as rapidly adhering (RA) cells. To compare epidermal regenerative abilities, skin substitutes were reconstructed by adding keratinocytes or RA cells to two groups of bioengineered dermis made by fibroblasts and hair follicle dermal cells respectively. After transplantation, the results illustrated that the skin substitutes including RA cells were integrated into the host tissue. Furthermore, with hair follicle dermal cells' influences, the RA cells could form structures very similar to normal hair follicles. These results indicate that RA cells are predominately comprised of epidermal stem cells. The results also demonstrated that besides the reciprocal interaction of epidermal stem cells with dermal cells, the interaction of epidermal stem cells with keratinocytes were critical in epidermis morphogenesis and self-renewal, and application of RA cells could optimize engineering of skin substitutes.  相似文献   

4.
Hair induction in the adult glabrous epidermis by the embryonic dermis was compared with that by the adult dermis. Recombinant skin, composed of the adult sole epidermis and the embryonic dermis containing dermal condensations (DC), was transplanted onto the back of nude mice. The epidermis of transplants formed hairs. Histology on the induction process demonstrated the formation of placode-like tissues, indicating that the transplant produces hair follicles through a mechanism similar to that underlying hair follicle development in the embryonic skin. An isolated adult rat sole skin piece, inserted with either an aggregate of cultured dermal papilla (DP) cells or an intact DP between its epidermis and dermis, was similarly transplanted. The transplant produced hair follicles. Histology showed that the epidermis in both cases surrounded the aggregates of DP cells. The epidermis never formed placode-like tissues. Thus, it was concluded that the adult epidermal cells recapitulate the embryonic process of hair follicle development when exposed to DC, whereas they get directly into the anagen of the hair cycle when exposed to DP. The expression pattern of Edar and Shh genes, and P-cadherin protein during the hair follicle development in the two types of transplants supported the above conclusion.  相似文献   

5.
For skin gene therapy, introduction of a desired gene into keratinocyte progenitor or stem cells could overcome the problem of achieving persistent gene expression in a significant percentage of keratinocytes. Although keratinocyte stem cells have not yet been completely characterized and purified for gene targeting purposes, lentiviral vectors may be superior to retroviral vectors at gene introduction into these stem cells, which are believed to divide and cycle slowly. Our initial in vitro studies demonstrate that lentiviral vectors are able to efficiently transduce nondividing keratinocytes, unlike retroviral vectors, and do not require the lentiviral accessory genes for keratinocyte transduction. When lentiviral vectors expressing green fluorescent protein (GFP) were directly injected into the dermis of human skin grafted onto immunocompromised mice, transduction of dividing basal and nondividing suprabasal keratinocytes could be demonstrated, which was not the case when control retroviral vectors were used. However, flow cytometry analysis demonstrated low transduction efficiency, and histological analysis at later time points provided no evidence for progenitor cell targeting. In an alternative in vivo method, human keratinocytes were transduced in tissue culture (ex vivo) with either lentiviral or retroviral vectors and grafted as skin equivalents onto immunocompromised mice. GFP expression was analyzed in these human skin grafts after several cycles of epidermal turnover, and both the lentiviral and retroviral vector-transduced grafts had similar percentages of GFP-expressing keratinocytes. This ex vivo grafting study provides a good in vivo assessment of gene introduction into progenitor cells and suggests that lentiviral vectors are not necessarily superior to retroviral vectors at introducing genes into keratinocyte progenitor cells during in vitro culture.  相似文献   

6.
Frozen human cadaver skin obtained from the skin bank was thawed and incubated in serum-free medium for 1–2 days, after which the original epidermis could be removed mechanically. Transmission electron microscopic observations showed that the dermal matrix remaining behind contained intact bundles of collagen fibrils but no live cells and that a continuous lamina densa persisted in the basement membrane region. Indirect immunofluorescence analyses demonstrated linear staining of the basement membrane region by antibodies against laminin and type IV collagen and discontinuous staining with antibodies against fibronectin. Scanning electron microscopic observations revealed a normal topographical arrangement of dermal matrix papilla and interspersed crypts on the surface of the matrix. Epidermal cells placed on the dermal matrix attached in 1–2 h and spread by 24 h. After 1 week of culture the epidermis was reconstituted, at which time approximately 30% of the epidermal cells were basal keratinocytes and the remainder were more differentiated keratinocytes. A high degree of differentiation of the reconstituted epidermis was shown by the formation of hemidesmosomes along the basement membrane, the formation of desmosomes characterized by intercellular dense lines, and the presence of a cell layer containing keratohyalin granules. At various times during epidermal reconstitution, cells were harvested and tested in short-term assays for adhesion to fibronectin substrata. During the first several days there was a transient activation of basal keratinocyte spreading analogous to the modulation of keratinocyte spreading that we have observed during epidermal reconstitution in vivo.  相似文献   

7.
Mice lacking the ubiquitously expressed lysosomal cysteine protease cathepsin L, show a complex skin phenotype consisting of periodic hair loss and epidermal hyperplasia with hyperproliferation of basal epidermal keratinocytes, acanthosis and hyperkeratosis. The recently identified human cathepsin L-like enzyme cathepsin V, which is also termed cathepsin L2, is specifically expressed in cornea, testis, thymus, and epidermis. To date, in mice no cathepsin V orthologue with this typical expression pattern has been identified. Since cathepsin V has about 75% protein sequence identity to murine cathepsin L, we hypothesized that transgenic, keratinocyte-specific expression of cathepsin V in cathepsin L knockout mice might rescue the skin and hair phenotype. Thus, we generated a transgenic mouse line expressing cathepsin V under the control of the human keratin 14 promoter, which mimics the genuine cathepsin V expression pattern in human skin, by directing it to basal epidermal keratinocytes and the outer root sheath of hair follicles. Subsequently, transgenic mice were crossed with congenic cathepsin L knockout animals. The resulting mice show normalization of epidermal proliferation and normal epidermal thickness as well as rescue of the hair phenotype. These findings provide evidence for keratinocyte-specific pivotal functions of cathepsin L-like proteolytic activities in maintenance of epidermis and hair follicles and suggest, that cathepsin V may perform similar functions in human skin.  相似文献   

8.
Generation of skin appendages in engineered skin substitutes has been limited by lack of trichogenic potency in cultured postnatal cells. To investigate the feasibility and the limitation of hair regeneration, engineered skin substitutes were prepared with chimeric populations of cultured human keratinocytes from neonatal foreskins and cultured murine dermal papilla cells from adult GFP transgenic mice and grafted orthotopically to full-thickness wounds on athymic mice. Non-cultured dissociated neonatal murine-only skin cells, or cultured human-only skin keratinocytes and fibroblasts without dermal papilla cells served as positive and negative controls respectively. In this study, neonatal murine-only skin substitutes formed external hairs and sebaceous glands, chimeric skin substitutes formed pigmented hairs without sebaceous glands, and human-only skin substitutes formed no follicles or glands. Although chimeric hair cannot erupt readily, removal of upper skin layer exposed keratinized hair shafts at the skin surface. Development of incomplete pilosebaceous units in chimeric hair corresponded with upregulation of hair-related genes, LEF1 and WNT10B, and downregulation of a marker of sebaceous glands, Steroyl-CoA desaturase. Transepidermal water loss was normal in all conditions. This study demonstrated that while sebaceous glands may be involved in hair eruption, they are not required for hair development in engineered skin substitutes.  相似文献   

9.
RXR-alpha is the most abundant of the three retinoid X receptors (RXRs) in the epidermis. In this study, we have used Cre-mediated recombination to selectively disrupt the mouse gene for RXR-alpha in epidermal and hair follicle keratinocytes. We show that RXR-alpha is apparently dispensable for prenatal epidermal development, while it is involved in postnatal skin maturation. After the first hair pelage, mutant mice develop a progressive alopecia, histologically characterised by the destruction of hair follicle architecture and the formation of utriculi and dermal cysts in adult mice. Our results demonstrate that RXR-alpha plays a key role in anagen initiation during the hair follicle cycle. In addition, RXR-alpha ablation results in epidermal interfollicular hyperplasia with keratinocyte hyperproliferation and aberrant terminal differentiation, accompanied by an inflammatory reaction of the skin. Our data not only provide genetic evidence that RXR-alpha/VDR heterodimers play a major role in controlling hair cycling, but also suggest that additional signalling pathways mediated by RXR-alpha heterodimerised with other nuclear receptors are involved in postnatal hair follicle growth, and homeostasis of proliferation/differentiation of epidermal keratinocytes and of the skin's immune system.  相似文献   

10.
Skin appendages, such as hair, develop as a result of complex reciprocal signaling between epithelial and mesenchymal cells. These interactions are not well understood at the molecular level. Platelet-derived growth factor-A (PDGF-A) is expressed in the developing epidermis and hair follicle epithelium, and its receptor PDGF-Ralpha is expressed in associated mesenchymal structures. Here we have characterized the skin and hair phenotypes of mice carrying a null mutation in the PDGF-A gene. Postnatal PDGF-A-/- mice developed thinner dermis, misshapen hair follicles, smaller dermal papillae, abnormal dermal sheaths and thinner hair, compared with wild-type siblings. BrdU labeling showed reduced cell proliferation in the dermis and in the dermal sheaths of PDGF-A-/- skin. PDGF-A-/- skin transplantation to nude mice led to abnormal hair formation, reproducing some of the features of the skin phenotype of PDGF-A-/- mice. Taken together, expression patterns and mutant phenotypes suggest that epidermal PDGF-A has a role in stimulating the proliferation of dermal mesenchymal cells that may contribute to the formation of dermal papillae, mesenchymal sheaths and dermal fibroblasts. Finally, we show that sonic hedgehog (shh)-/- mouse embryos have disrupted formation of dermal papillae. Such embryos fail to form pre-papilla aggregates of postmitotic PDGF-Ralpha-positive cells, suggesting that shh has a critical role in the assembly of the dermal papilla.  相似文献   

11.
Corneal epithelium transdifferentiation into a hair-bearing epidermis provides a particularly useful system for studying the possibility that transient amplifying (TA) cells are able to activate different genetic programs in response to a change in their fibroblast environment, as well as to follow the different steps of rebuilding an epidermis from induced stem cells. Corneal stem and TA cells are found in different locations - stem cells at the periphery, in the limbus, and TA cells more central. Moreover, the TA cells already express the differentiating corneal-type keratin pair K3/K12, whereas the limbal keratinocytes express the basal keratin pair K5/K14. In contrast, suprabasal epidermal keratinocytes express keratin pair K1-2/K10, and basal keratinocytes the keratin pair K5/K14. The results of tissue recombination experiments show that adult central corneal cells are able to respond to specific information originating from embryonic dermis. First, the cells located at the base of the corneal epithelium show a decrease in expression of K12 keratin, followed by an increase in K5 expression; they then proliferate and form hair follicles. The first K10 expressing cells appear at the junction of the new hair follicles and the covering corneal epithelium. Their expansion finally gives rise to epidermal strata, which displace the corneal suprabasal keratinocytes. Corneal TA cells can thus be reprogrammed to form epidermal cells, first by reverting to a basal epithelial-type, then to hair pegs and probably concomitantly to hair stem cells. This confirms the role of the hair as the main reservoir of epidermal stem cells and raises the question of the nature of the dermal messages which are both involved in hair induction and stem cell specification.  相似文献   

12.
13.
In organotypic cultures, outer root sheath (ORS) cells of the human hair follicle develop into a stratified epithelium largely reminiscent of the epidermis; this apparently reflects their importance during wound healing. In the present study, ORS cells were grown inside a three-dimensional network of extracellular matrix proteins (Matrigel), together with different mesenchymal cells, in an attempt to mimic their follicular environment. Thus, inside Matrigel, ORS cells formed spheroids differentiating toward the center and showing all the markers of epidermal keratinization. Under identical conditions, normal epidermal keratinocytes developed similar spheroids, but of a significantly smaller size. Human dermal fibroblasts and dermal papilla cells, cocultured in the matrix, had a positive influence on both the proliferation and differentiation within both types of spheroids. Epidermal differentiation markers, such as suprabasal keratins, involucrin, filaggrin, gp80 and pemphigoid antigen, were readily expressed in ORS spheroids, whereas hard (hair) keratins were not detectable by immunostaining. Cells positive for an epithelial membrane antigen, strongly expressed in sebaceous glands, were seen in numerous spheroids. In contrast to organotypic “surface” epithelia, the expression and location of different integrin chains was normalized in ORS spheroids, indicating an enhanced mesenchymal influence in this in vitro system.  相似文献   

14.
The hair follicle: a paradoxical androgen target organ   总被引:3,自引:0,他引:3  
Androgens are the main regulator of normal human hair growth. After puberty, they promote transformation of vellus follicles, producing tiny, unpigmented hairs, to terminal ones, forming larger pigmented hairs, in many areas, e.g. the axilla. However, they have no apparent effect on the eyelashes, but can cause the opposite transformation on the scalp leading to the replacement of terminal hairs by vellus ones and the gradual onset of androgenetic alopecia. This paradox appears to be an unique hormonal effect. Hair follicles are mainly epithelial tissues, continuous with the epidermis, which project into the dermis. A mesenchyme-derived dermal papilla enclosed within the hair bulb at the base controls many aspects of follicle function. In the current hypothesis for androgen regulation, the dermal papilla is also considered the main site of androgen action with androgens from the blood binding to receptors in dermal papilla cells of androgen-sensitive follicles and causing an alteration of their production of paracrine factors for target cells e.g. keratinocytes. Studies of cultured dermal papilla cells from sites with different responses to androgens in vivo have confirmed the paradoxical responses. All dermal papilla cells from androgen-sensitive sites contain low capacity, high affinity androgen receptors. However, only some cells formed 5alpha-dihydrotestosterone, e.g. beard but not axillary cells, in line with hair growth in 5alpha-reductase deficiency. Incubation with androgens also stimulated the mitogenic capacity of beard cell media, but inhibited that produced by scalp cells. This suggests that the paradoxical differences are due to differential gene expression within hair follicles, presumably caused during embryogenesis.  相似文献   

15.
Nestin-expressing pluripotent stem cells have been found both in the bulge area (BA) as well as the dermal papilla (DP). Nestin-expressing stem cells of both the BA and DP have been previously shown to be able to form neurons and other non-follicle cell types. The nestin-expressing stem cells from the DP have been termed skin precursor or SKP cells. Both nestin-expressing DP and BA cells have been previously shown to effect repair of the injured spinal cord and peripheral nerve, with the BA being the greater and more constant source of the stem cells. The BA contains nestin-expressing stem cells throughout the hair cycle, whereas nestin-expressing dermal papillae stem cells were found in early and mid-anagen only. Our previous studies have shown that the nestin-expressing stem cells in the BA and DP have similar morphological features. The cells from both regions have a small body diameter of approximately 7 μm with long extrusions, as shown by 2-photon imaging. In the present study, using 2-photon imaging of whisker follicles from transgenic mice expressing nestin-driven green fluorescent protein (ND-GFP), we demonstrate that the BA is the source of the nestin-expressing stem cells of the hair follicle. The nestin-expressing stem cells migrate from the BA to the DP as well as into the surrounding skin tissues including the epidermis, and during wound healing, suggesting that the BA may be the source of the stem cells of the skin itself.  相似文献   

16.
The adult hair follicle has well-defined dermal and epithelial populations that display distinct developmental properties. The follicular dermal cells, namely the dermal papilla and dermal sheath, are derived from the same mesenchymal cells as dermal fibroblasts and therefore, we believed that follicular cells could be useful sources of interfollicular keratinocytes and fibroblast for skin wound repair. In this study, we evaluated the relative effect of various mesenchymal-derived cells on wound healing following skin injury. Human dermal cells, including two different follicular dermal cells and skin fibroblasts were cultured in collagen sponges and compared with respect to wound healing. Results indicated that there was no significant difference in wound contraction and angiogenesis among the cell types. Further, dermal sheath cells exhibited relatively poor results compared with other cells in new collagen synthesis. Finally, basement membrane reformation and new collagen synthesis for the dermal papilla cell grafts was superior to those of the dermal sheath cells or fibroblasts.  相似文献   

17.
The capacity of lower follicle dermal sheath to restore hair growth was tested by removing the lower halves of follicles, and then immediately implanting material containing dermal sheath cells from these bases, into the remaining upper epidermal follicle cavity. Over 60% of recipient follicles produced stout emergent vibrissa fibres and some operations resulted in multiple hair production from a single follicle. Histological examination revealed new dermal papillae within large bulb structures which were sited below the level of amputation--a feature that indicated that the new dermal papilla was derived from implanted material. For many follicles, the failure to produce emergent fibres could be accounted for after histological examination. These results provide clear evidence that lower follicle dermal sheath cells are capable of replacing those of the dermal papilla and it shows that they can do so in the context of the upper follicle. However, because elements of lower follicle epidermis were present in the implant material, the interactive sequence of events cannot be established. Dermal sheath cells have immense potential for papilla cell replacement: questions remain as to whether the distinction between sheath and papilla cells is one of context, or whether the transition requires specific external influences.  相似文献   

18.
19.
Distribution of neurofilament-immunoreactive nerve fibers in human skin   总被引:1,自引:0,他引:1  
Neurofilament immunoreactive nerve fibers were demonstrated in human skin using indirect immunohistochemical technique with antibodies to neurofilament polypeptides. Neurofilament-positive fibers were seen as free nerve endings in the epidermis and in dermal papilla, in Meissner's corpuscles and as fibers crossing in the dermis. Strongly fluorescent nerve fibers were also seen around hair follicles, sweat gland ducts and sometimes in relation to blood vessels. From the distribution pattern it was concluded that predominantly sensory nerve fibers were labelled and that this technique may be used to study reinnervation of cutaneous sensory nerves following traumatic injuries and surgical procedures.  相似文献   

20.
The skin consists of an outer epidermis, the dermis, and the hypodermis. It includes nerves, blood vessels, glands and hair follicles. Epidermis is a continually renewing, stratified squamous epithelium. It is populated by keratinocytes (80 %) and dendritic cells (20 %) : melanocytes, Langerhans and Merkel cells. In standard histology, keratinocytes are arranged in layers that represent different stages of their differentiation while melanocytes and Langerhans cells appear as clear cells respectively between the basal and the supra-basal cells of epidermis. The Merkel cells cannot be clearly identified. Dendritic processes of the dendritic cells can only be recognized by immunocytochemistry. At the dermal-epidermal junction, a PAS reactive basement membrane follows the contour of the basal cells. Dermis consists of collagenous and elastic fibers embedded into an amorphous ground substance. Fibroblasts, macrophages, mast cells and lymphocytes are its resident cells. Hypodermis is composed of adipocyte lobules defined by fibrous connective tissue septa. Hair follicle consists of 3 parts : the lower portion, from the base of the follicle including hair bulb to the insertion of the arrector pili muscle or buldge ; the isthmus, from the insertion of the arrector pili to the entrance of the sebaceous duct, and the infundibulum, from the entrance of the sebaceous duct to the follicular orifice. The lower portion is composed of the dermal hair papilla, the hair matrix, the hair, and the inner and the outer root sheaths. The hair matrix cells within hair bulb give rise to the hair and to the inner root sheath. With the electron microscope, one can obtain a more detailed view of the characteristic skin structures. Much of them can now be explained in terms of function and in many instances, in correlation with its biochemical composition. An attempt has been made in this paper to precisely give the location of molecules that are relevant in basic skin functions and understanding of auto-immune and genetic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号