首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water quality, diatom species composition and biomass estimates were performed in the Gharasou River in western Iran. Five sites along the River Gharasou were sampled every month from April to September 2005. Physical and chemical factors (pH, NO3–N, PO4–P, dissolved oxygen, total suspend solids, total dissolved solids, conductivity, turbidity, chemical oxygen demand and biological oxygen demand) were measured along with biological properties of the periphyton including biomass, ash-free dry mass, chlorophyll-a concentration and the taxonomic composition diatom assemblages. Information from the diatom assemblage was used to calculate the Trophic Diatom Index and biovolume. The TDI was significantly correlated with measures of human disturbance at the sites (e.g. PO4–P, NO3–N and dissolved oxygen) as well as to biomass measures (chlorophyll a, ash-free dry mass and biovolume). The sensitivity of the TDI and its component metrics to environmental stressors supports the use of this index for monitoring ecological conditions in streams in Iran and to aid diagnosis of the cause of their impairment. Handling editor: L. Naselli-Flores  相似文献   

2.
Seasonal and spatial variations in water quality parameters, such as nutrients [NH4 +–N, NO2–N, NO3–N, PO43−–P, total nitrogen (TN) and total phosphorus (TP)], Secchi disc depth, salinity, dissolved oxygen, chlorophyll a, primary productivity and phytoplankton standing stock, were studied in Chilika Lagoon (from 27 sampling locations) during 2001–2003 to assess the present ecological status. The study was undertaken after a major hydrological intervention in September 2000, which connected the lagoon body and the Bay of Bengal via a manmade opening (new mouth). Current and old data on water quality were also compared to establish the changes that had occurred after the hydrological intervention. Multivariate techniques and gridding methods were used to investigate the spatial and seasonal variability of the data and to characterize the trophic evolution of the basin. Results of principal component analysis (PCA) indicated that the 27 stations can be classified into five groups based on similarities in the temporal variation of nutrients, chlorophyll a concentration, salinity, and other physicochemical parameters. The tributaries and the exchange of lagoon water with the Bay of Bengal most probably determine the water quality and the dynamics of the ecosystem. Hydrodynamics of the lagoon, weed coverage, input of urban sewage through tributaries and agricultural runoff are probably the key factors controlling the trophic conditions of the lagoon. An increase in salinity and total phosphorus was noted after the new mouth was opened, while the total suspended sediment load, the water column depth, and nitrogenous nutrients decreased. The new mouth opening also brought changes in the phytoplankton species composition.  相似文献   

3.
The Mary River, in the Australian wet/dry tropics, flows seasonally. When the river ceases flowing in the dry season, a series of isolated lakes remain along the river’s main floodplain channel. The limnology of a channel lake, which is 14 km long and 6-9 m deep in the dry season, was examined between April and December 2000. Four hydraulic phases were identified, these being (1) riverine (April), (2) riverine to lake transition (May), (3) lake (June–late-November), and (4) lake to riverine transition (late-November–December). These phases differ with respect to their duration and flow direction from lakes located on tropical floodplains of perennially flowing rivers. Despite the variable hydraulic conditions, the main channel remained thermally stratified, with only infrequent and short-lived deep mixing events, and sufficient light for photosynthesis in the diurnal mixed layer. During the period of isolation and in contrast to floodplain lakes in tropical South America, the depth of the Mary River channel lake always exceeded, by at least 2-fold, the depth of the diurnal mixed layer. The water quality (conductivity, dissolved oxygen, pH, Si and water clarity) and phytoplankton assemblage of the channel lake was primarily driven by its hydraulics, though this was not evident for the channel’s nutrient concentrations. Dissolved oxygen concentrations during lentic conditions were double values during the riverine and transition phases. This was attributed to the cessation of inflowing waters with a high biological oxygen demand, and enhanced photosynthetic activity of higher concentrations of phytoplankton retained under lentic conditions. The channel’s phytoplankton assemblage reflected the channel’s hydraulics, with the most common phytoplankton throughout the study period belonging to functional groups Lo(Peridinium inconspicuum), W1 (euglenoids), W2 (Trachelmonas) and Y (Cryptopmonas, Rhodomonas), with groups A (Acanthoceras) and D (Nitzschia agnita, Synedra alna) prominent during the lentic phase. Despite persistent stratification under lentic conditions, there was no clear evidence of autogenic succession or domination by any single phytoplankton functional group.  相似文献   

4.
Downstream from metropolitan Paris (France), a large amount of ammonium is discharged into the Seine River by the effluents of the wastewater treatment plant at Achères. To assess the extent of nitrification and denitrification in the water column, concentrations and isotopic compositions of ammonium (δ15N–NH4+) and nitrate (δ15N–NO3, δ18O–NO3) were measured during summer low-flow conditions along the lower Seine and its estuary. The results indicated that most of the ammonium released from the wastewater treatment plant is nitrified in the lower Seine River and its upper estuary, but there was no evidence for water-column denitrification. In the lower part of the estuary, however, concentration and isotopic data for nitrate were not consistent with simple mixing between riverine and marine nitrate. A significant departure of the nitrate isotopic composition from what would be expected from simple mixing of freshwater and marine nitrates suggested coupled nitrification and denitrification in the water, in spite of the apparent conservative behavior of nitrate. Denitrification rates of approximately 0.02 mg N/L/h were estimated for this part of the estuary.  相似文献   

5.
The N, P, and S cycles in pristine forests are assumed to differ from those of anthropogenically impacted areas, but there are only a few studies to support this. Our objective was therefore to assess the controls of N, P, and S release, immobilization, and transport in a remote tropical montane forest. The study forest is located on steep slopes of the northern Andes in Ecuador. We determined the concentrations of NO3-N, NH4-N, dissolved organic N (DON), PO4-P, dissolved organic P (DOP), SO4-S, dissolved organic S (DOS), and dissolved organic C (DOC) in rainfall, throughfall, stemflow, lateral flow (in the organic layer), litter leachate, mineral soil solution, and stream water of three 8–13 ha catchments (1900–2200 m a.s.l.). The organic forms of N, P, and S contributed, on average, 55, 66, and 63% to the total N, P, and S concentrations in all ecosystem fluxes, respectively. The organic layer was the largest source of all N, P, and S species except for inorganic P and S. Most PO4 was released in the canopy by leaching and most SO4 in the mineral soil by weathering. The mineral soil was a sink for all studied compounds except for SO4. Consequently, concentrations of dissolved inorganic and organic N and P were as low in stream water (TDN: 0.34–0.39 mg N l−1, P not detectable) as in rainfall (TDN: 0.39–0.48 mg N l−1, P not detectable), whereas total S concentrations were elevated (stream water: 0.04–0.15, rainfall: 0.01–0.07 mg S l−1). Dissolved N, P, and S forms were positively correlated with pH at the scale of soil peda except inorganic S. Soil drying and rewetting promoted the release of dissolved inorganic N. High discharge levels following heavy rainstorms were associated with increased DOC, DON, NO3-N and partly also NH4-N concentrations in stream water. Nitrate-N concentrations in the stream water were positively correlated with stream discharge during the wetter period of the year. Our results demonstrate that the sources and sinks of N, P, and S were element-specific. More than half of the cycling N, P, and S was organic. Soil pH and moisture were important controls of N, P, and S solubility at the scale of individual soil peda whereas the flow regime influenced the export with stream water.  相似文献   

6.
Brenner RE  Boone RD  Jones JB  Lajtha K  Ruess RW 《Oecologia》2006,148(4):602-611
Floristic succession in the boreal forest can have a dramatic influence on ecosystem nutrient cycling. We predicted that a decrease in plant and microbial demand for nitrogen (N) during the transition from mid- to late-succession forests would induce an increase in the leaching of dissolved inorganic nitrogen (DIN), relative to dissolved organic nitrogen (DON). To test this, we examined the chemistry of the soil solution collected from within and below the main rooting zones of mid- and late-succession forests, located along the Tanana River in interior Alaska. We also used a combination of hydrological and chemical analyses to investigate a key assumption of our methodology: that patterns of soil water movement did not change during this transition. Between stands, there was no difference in the proportion of DIN below the rooting zone. 84–98% of DIN at both depths consisted of nitrate, which was significantly higher in the deeper mineral soil than at the soil surface (0.46±0.12 mg NO 3 –N l−1 vs 0.17±0.12 mg NO 3 –N l−1, respectively), and 79–92% of the total dissolved N consisted of DON. Contrary to our original assumption that nutrients were primarily leached downward, out of the rooting zone, we found much evidence to suggest that the glacially-fed Tanana River (>200 m from these stands) was contributing to the influx of water and nutrients into the soil active layer of both stands. Soil water potentials were positively correlated with river discharge; and ionic and isotopic (δ18O of H2O) values of the soil solution closely matched those of river water. Thus, our ability to elucidate biological control over ecosystem N retention was confounded by riverine nutrient inputs. Climatic warming is likely to extend the season of glacial melt and increase riverine nutrient inputs to forests along glacially-fed rivers.  相似文献   

7.
The relationships of the halocline to both water quality and phytoplankton composition in Lake Obuchi, a shallow brackish lake in northern Japan, were investigated from April 2001 to December 2004. The halocline in this lake became stronger in summer (July–September, mean maximum density gradient 4.3–5.8 ρtm−1) but weaker in spring, fall, and winter (1.9–3.3 ρtm−1). Although the difference in water quality between the upper and lower layers separated by the halocline was high in summer, nutrients (PO43−-P and NH4+-N) were eluted from the bottom sediment as levels of dissolved oxygen decreased in the bottom layer because of the strong stratification caused by the halocline formed over the long term. Moreover, phytoplankton taxa composition also differed between the upper and lower layers in summer, but was similar in other seasons. The dominant phytoplankton taxa in the upper layer in summer were Skeletonema costatum and Cyclotella spp., whereas in the lower layer, Gymnodinium spp. (Dinophyceae) and Chlorophyceae, which prefer eutrophic and low dissolved oxygen conditions, dominated. This suggests that the halocline was related to differentiations in both water quality and ecosystem components between the upper and lower layers in the brackish lake water.  相似文献   

8.
The growth, biofiltering efficiency and uptake rates of Ulva clathrata were studied in a series of outdoor tanks, receiving waste water directly from a shrimp (Litopenaeus vannamei) aquaculture pond, under constant aeration and two different water regimes: (1) continuous flow, with 1 volume exchange a day (VE day-1) and (2) static regime, with 1 VE after 4 days. Water temperature, salinity, pH, dissolved inorganic nitrogen (DIN), phosphate (PO4), chlorophyll-a (chl-a), total suspended solids (TSS), macroalgal biomass (fresh weight) and tissue nutrient assimilation were monitored over 12 days. Ulva clathrata was highly efficient in removing the main inorganic nutrients from effluent water, stripping 70–82% of the total ammonium nitrogen (TAN) and 50% PO4 within 15 h. Reductions in control tanks were much lower (Tukey HSD, P < 0.05). After 3 days, the mean uptake rates by the seaweed biomass under continuous flow were 3.09 mg DIN g DW day−1 (383 mg DIN m−2 day−1) and 0.13 mg PO4 g DW day−1 (99 mg PO4 m−2 day−1), being significantly higher than in the static regime (Tukey HSD, P < 0.05). The chl-a decreased in seaweed tanks, suggesting that U. clathrata inhibited phytoplankton growth. Correlations between the cumulative values of DIN removed from the water and total nitrogen assimilated into the seaweed biomass (r = 0.7 and 0.8, P < 0.05), suggest that nutrient removal by U. clathrata dominated over other processes such as phytoplankton and bacterial assimilation, ammonia volatilization and nutrient precipitation.  相似文献   

9.
Soil salinization and alkalinization frequently co-occur in naturally saline and alkaline soils. To understand the characteristics of mixed salt-alkali stress and adaptive response of Medicago ruthenica seedlings to salt-alkali stress, water content of shoots, growth and photosynthetic characteristics of seedlings under 30 salt-alkaline combinations (salinity 24–120 mM and pH 7.03–10.32) with mixed salts (NaCl, Na2SO4, NaHCO3, and Na2CO3) were examined. The indices were significantly affected by both salinity and pH. The interactive effects between salt and alkali stresses were significant, except for photosynthetic pigments. Water content of shoots, relative growth rates of shoots and roots and pigment concentrations showed decreasing trends with increasing salinity and alkalinity. The root activity under high alkalinity and salinity treatments gradually decreased, but was stimulated by the combined effects of low alkalinity and salinity. The survival rate decreased with increased salinity, except at pH 7.03–7.26 when all plants survived. Net photosynthetic rate, stomatal conductance and intercellular CO2 concentration decreased with increased salinity and pH. M. ruthenica tolerated the stress of high salt concentration when alkali concentration was low, and the synergistic effects of high alkali and high salt concentrations lead to the death of some or all seedlings. M. ruthenica appeared to be saltalkali tolerant. Reducing the salt concentration or pH based on the salt components in the soil may be helpful to abate damage from mixed salt-alkaline stress.  相似文献   

10.
Zeekoevlei is the largest freshwater lake in South Africa and has been suffering from hyper-eutrophic conditions since last few decades. We have used total P (TP), dissolved phosphate (PO4 3−), organic P (OP), calcium (Ca) and iron (Fe) bound P fractions to investigate the relevant physical, chemical and biological processes responsible for sedimentation and retention of P and to study phosphorus (P) dynamics in this shallow lake. In addition, redox proxies (V/Cr and Th/U ratios) are used to study the prevailing redox conditions in sediments. Adsorption by CaCO3 and planktonic assimilation of P are found to control P sedimentation in Zeekoevlei. Low concentration of the labile OP fraction in surface sediments restricts the release of P by bacterial remineralisation. Low molar Ca/P and Fe/P ratios indicate low P retention capacity of sediments, and P is most likely released by desorption from wind-induced resuspended sediments and mixing of pore water with the overlying water column. Handling editor: J. Saros  相似文献   

11.
A two-year study of radium in the Suwannee River has shown that groundwater discharge, via springs, is a very important source of radium both to the river and to offshore Gulf of Mexico waters. Dissolved radium is maintained within relatively narrow limits in the river by uptake into suspended particles. In the estuary, dissolved radium versus salinity profiles show distinctive nonconservative behavior with radium in significant excess of its linear mixing value at mid-salinities. Unlike the situation in many other estuaries, however, desorption of radium from particles cannot account for most of the observed excess. Thus, the anomalously high radium characteristic of much of the west Florida shelf apparently does not have a riverine source. Direct effusion of high-radium groundwater into these coastal waters is thought to be the major supplier of radium, and perhaps other elements as well.  相似文献   

12.
A two-year study of radium in the Suwannee River has shown that groundwater discharge, via springs, is a very important source of radium both to the river and to offshore Gulf of Mexico waters. Dissolved radium is maintained within relatively narrow limits in the river by uptake into suspended particles. In the estuary, dissolved radium versus salinity profiles show distinctive nonconservative behavior with radium in significant excess of its linear mixing value at mid-salinities. Unlike the situation in many other estuaries, however, desorption of radium from particles cannot account for most of the observed excess. Thus, the anomalously high radium characteristic of much of the west Florida shelf apparently does not have a riverine source. Direct effusion of high-radium groundwater into these coastal waters is thought to be the major supplier of radium, and perhaps other elements as well.  相似文献   

13.
Nutrient concentrations, chlorophyll-a, bacterial biomass and relative activity of denitrifying organisms were investigated from ice-core, brine and underlying water samples in February 1998 in the Gulf of Bothnia, Baltic Sea. Examined sea ice was typical for the Baltic Sea; ice bulk salinity varied from 0.1 to 1.6 psu, and in underlying water salinity was from 4.2 to 4.7 psu. In 2- to 3-months-old sea ice (thickness 0.4–0.6 m), sea-ice communities were at the winter stage; chl-a concentrations were generally below 1 mg m−3 and heterotrophic organisms composed 7–20% of organism assemblage. In 1-month-old ice (thickness 0.2–0.25 m), an ice spring bloom was already developing and chl-a concentrations were up to 5.6 mg m−3. In relation to low salinity, high concentrations of NH+ 4, NO 2, PO3+ 4 and SiOH4 were found in the ice column. The results suggest that the upper part of ice accumulates atmospheric nutrient load during the ice season, and nutrients in the upper 10–20 cm of ice are mainly of atmospheric origin. The most important biological processes controlling the sea-ice nutrient status are nutrient regeneration, nutrient uptake and nitrogen transformations. Nutrient regeneration is specially active in the middle parts of the 50- to 60-cm-thick ice and subsequent accumulation of nutrients probably enhances the ice spring bloom. Nitrite accumulation and denitrifying activity were located in the same ice layers with nutrient regeneration, which together with the observed significant correlation between the concentrations of nitrogenous nutrients points to active nitrogen transformations occurring in the interior layers of sea ice in the Baltic Sea. Accepted: 12 June 2000  相似文献   

14.
Salinization is one of the most important factors affecting agricultural land in the world. Salinization occurs naturally in arid and semiarid regions where evaporation is higher than rainfall. Sugar beet yield declines with an increase in salinity, but the sensitivity to salts varies with salt composition in water and sugar beet growth stage. The aim of this study was to determine the effect of water salinity levels and salt composition on germination and seedling root length of four sugar beet cultivars (PP22, IC2, PP36, and 7233). The experiments were undertaken with irrigation water with two salt compositions (NaCl alone and mixture of MgSO4 + NaCl + Na2SO4 + CaCl2) in three replicates. Thirteen salinity levels with electrical conductivity (EC) of the irrigation water ranging from 0 to 30 dS/m were applied to each cultivar in both experiments. Seed germination percentage and seedling root length growth were determined in 13 days. Statistical analysis revealed that germination and root length were significantly affected by salt composition, cultivars and salinity levels. Regardless of salt composition, seed germination and seedling root length were significantly affected by the irrigation water with EC up to 8 dS/m and 4 dS/m, respectively. Except for cultivar PP22, the adverse effect of salinity of the irrigation water on seed germination and seedling root length was higher for NaCl alone than for the salt mixture, which refers to lower salt stress in field conditions with natural salt composition. Presented at the International Conference on Bioclimatology and Natural Hazards, Poľana nad Detvou, Slovakia, 17–20 September 2007.  相似文献   

15.
This paper investigated the spatio-temporal variability of water quality parameters (transparency, salinity, dissolved oxygen, nutrients viz. NH3-N, NO2-N, NO3-N, PO43-P, total nitrogen, total phosphorous and chlorophyll-a) in Chilika lagoon during 2001–2003 in order to better understand its ecological characteristics. Marked spatial and seasonal variations were detected with respect to almost all parameters studied. Northern sector of the lagoon is more affected by the anthropogenic stress from the catchments than the southern sector. Addition of nitrogen and phosphorous compounds to the lagoon mainly occurred through the drainage from agricultural lands and river run off during the early months of paddy cultivating seasons. Phytoplankton productivity of the lagoon was nitrogen limited, as suggested by nitrogen to phosphorous ratio. Processes affecting the water quality of the lagoon system included agricultural drainage, sewage intrusion, macrophyte litter fall and exchange of water between lagoon and the sea (Bay of Bengal). Further in depth study pertaining to quantification of exogenous material input and their disposal is recommended to ensure proper management of the lagoon and its resources.  相似文献   

16.
Short-term (daily) and seasonal variations in concentration and flux of dissolved organic carbon (DOC) were examined over 15 tidal cycles in a riverine mangrove wetland along Shark River, Florida in 2003. Due to the influence of seasonal rainfall and wind patterns on Shark River’s hydrology, samplings were made to include wet, dry and transitional (Norte) seasons. We used a flume extending from a tidal creek to a basin forest to measure vertical (vegetated soil/water column) and horizontal (mangrove forest/tidal creek) flux of DOC. We found significant (p < 0.05) variations in surface water temperature, salinity, conductivity, pH and mean concentration of DOC with season. Water temperature and salinity followed seasonal patterns of air temperature and rainfall, while mean DOC concentration was highest during the dry season (May), followed by the wet (October) and ‘Norte’ (December) seasons. This pattern of DOC concentration may be due to a combination of litter production and inundation pattern of the wetland. In contrast to daily (between tides) variation in DOC flux between the mangrove forest and tidal creek, daily variations of mean water quality were not significant. However, within-tide variation of DOC flux, dissolved oxygen content and salinity was observed. This indicated that the length of inundation and water source (freshwater vs. saltwater) variation across tidal cycles influenced water quality and DOC flux in the water column. Net DOC export was measured in October and December, suggesting the mangrove forest was a source of DOC to the adjacent tidal creek during these periods. Net annual export of DOC from the fringe mangrove to both the tidal creek and basin mangrove forest was 56 g C m−2 year−1. The seasonal pattern in our flux results indicates that DOC flux from this mangrove forest may be governed by both freshwater discharge and tidal range.  相似文献   

17.
Seasonal variation and interrelationships between environmental variables and salinity in the Vaal River at Balkfontein were investigated between 1985 and 1989. The salinity levels were high (min. 108, max. 1032, average 512 mg 1-1), and indications are that salinisation of the river water is continuing at a rate of 15 mg 1t-1 a-1. The concentration of major ions (mg 1-1 or meq 1-1) in the river water occurred in the proportions of cations, i.e. Ca2+ Na+ > Mg2+ > K+ and of anions, i.e. SO4 2- > HCO3 - > Cl-. The high S04 concentration (average 212 mg 1-1) indicated SO4 pollution at Balkfontein. High Ca concentrations (average 59 mg 1-1) evidently interfered with the solubility of phosphate (PO4) which could play an important role in the availability of PO4 to phytoplankton in the system. Measured electrical conductivity (EC) values can be used to estimate salinity (S, in mg 1-1) in the Vaal River, i.e. e. S = 7.13 * EC - 27.8 (from regression analysis) or S = 6.72 * EC (from TDS:EC ratio). Salinity in the river tends to be higher during the dry season, i.e. winter months. All the dissolved ions (except Si) showed decreased concentrations with increased run-off. The main importance of the high salinity in the Vaal River is evidently its influence on turbidity and the possible clarification of the water-column, which results in a deeper euphotic zone and thus more favourable conditions for photosynthesis followed by a biomass build-up of phytoplankton.  相似文献   

18.
This study evaluated the succession process of aquatic macrophytes after 150 years of alluviation in the Modern Yellow River Delta, China, and identified the roles of various environmental parameters that regulate vegetation succession. From 2007 to 2008, 214 quadrats were surveyed and 19 environmental parameters were measured, including elevation, plot distance from the seashore, 10 water parameters, and 7 soil parameters. Forty-six aquatic macrophytes belonging to 20 families and 34 genera were identified across the entire delta. Emergent and submerged plants were the most frequent species, accounting for 58.7 and 34.8 % of all species, respectively. Detrended canonical correspondence analysis showed that the presence of aquatic macrophytes in this delta was primarily regulated by water salinity, soil salinity, and distance from the seashore, followed by nutrient concentrations (e.g., NH4 +, total soil N and PO4 ? of water). Salinity-tolerant species (e.g., Ruppia maritima, Phragmites australis, and Typha angustifolia) tended to be widely distributed across the entire delta. In contrast, salinity-sensitive species (e.g., Ceratophyllum demersum, Hydrilla verticillata, and Potamogeton malaianus) tended to be distributed in areas at the early stages of succession, which were relatively distant from the shore. Moreover, this study also confirmed that species richness and diversity were negatively correlated with water and soil salinity, which in turn were negatively correlated with plot distance from the shore. These data indicate that the primary drivers of aquatic macrophyte succession in this delta are water and soil salinity. The information assimilated here is used to propose management practices for the protection of aquatic macrophytes in the Yellow River Delta.  相似文献   

19.
Single-strand deoxyribonucleic acid (ssDNA) were used to modified nanogold particle to obtain a aptamer-nanogold probe (NGssDNA) for Hg(II). The probe is not aggregated in high concentration of NaCl. In the pH 7.0 Na2HPO4-NaH2PO4 buffer solution and in the presence of high concentration of NaCl, NGssDNA interact with Hg(II) to form stable double-strand T-Hg(II)-T mismatches and to release nanogold particles from the probe. The released nanogold particles aggregated to form bigger clusters which leaded the resonance scattering (RS) intensity at 540 nm enhanced linearly with the concentration of Hg2+ in the range of 0.39–1666.7 nM, with detection of 0.1 nM. This simple, rapid, and sensitive aptamer-nanogold RS assay was applied to determination of Hg2+ in wastewater, with satisfactory results.  相似文献   

20.
Phosphorus (P) availability in estuaries may increase with increasing salinity because sulfate from sea salt supports production of sulfide in sediments, which combines with iron (Fe) making it less available to sequester P. Increased P availability with increased salinity may promote the generally observed switch from P limitation of primary production in freshwater ecosystems to nitrogen (N) limitation in coastal marine waters. To investigate this hypothesis, we analyzed pore water from sediment cores collected along the salinity gradients of four Chesapeake Bay estuaries (the Patuxent, Potomac, Choptank, and Bush Rivers) with watersheds differing in land cover and physiography. At salinities of 1–4 in each estuary, abrupt decreases in pore water Fe2+ concentrations coincided with increases in sulfate depletion and PO4 3? concentrations. Peaks in water column PO4 3? concentrations also occur at about the same position along the salinity gradient of each estuary. Increases in pore water PO4 3? concentration with increasing salinity led to distinct shifts in molar NH4 +:PO4 3? ratios from >16 (the Redfield ratio characteristic of phytoplankton N:P) in the freshwater cores to <16 in the cores with salinities >1 to 4, suggesting that release of PO4 3? from Fe where sediments are first deposited in sulfate-rich waters could promote the commonly observed switch from P limitation in freshwater to N limitation in mesohaline waters. Finding this pattern at similar salinities in four estuaries with such different watersheds suggests that it may be a fundamental characteristic of estuaries generally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号