首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pheromones presumably released by conspecifics amplify both the appetitive and the consummatory components of feeding in Aplysia. These effects can be mimicked by administering homogenate of the large hermaphroditic duct containing atrial gland tissue, as well as peptides from the bag cells. Identified cerebro-pedal regulator (C-PR) neuron is thought to command various behaviors that comprise the appetitive phase of feeding. In a reduced preparation, we investigated the effects on the C-PR of applying these substances to the rhinophores, the sensory organs which detect pheromones. Stimuli that excite feeding in the animal were also found to affect the C-PR. Large hermaphroditic duct homogenate caused a doubling in the firing rate of the C-PR, and amplified the response of the C-PR to other excitatory stimuli, such as touch of food to the rhinophores. Bag cell peptides (α, β and γ bag cell peptide, and egg-laying hormone) caused smaller increases in the firing rate of the C-PR. These data are consistent with the hypothesis that pheromones facilitate appetitive feeding behavior in part via their excitation of C-PR. Accepted: 28 November 1997  相似文献   

2.
Nine alkaloids (acridine, aristolochic acid, atropine, berberine, caffeine, nicotine, scopolamine, sparteine, and strychnine) were evaluated as feeding deterrents for gypsy moth larvae (Lymantria dispar (L.); Lepidoptera: Lymantriidae). Our aim was to determine and compare the taste threshold concentrations, as well as the ED50 values, of the nine alkaloids to determine their potency as feeding deterrents. The alkaloids were applied to disks cut from red oak leaves (Quercus rubra) (L.), a plant species highly favored by larvae of this polyphagous insect species. We used two-choice feeding bioassays to test a broad range of biologically relevant alkaloid concentrations spanning five logarithmic steps. We observed increasing feeding deterrent responses for all the alkaloids tested and found that the alkaloids tested exhibited different deterrency threshold concentrations ranging from 0.1 to 10 mM. In conclusion, it appears that this generalist insect species bears a relatively high sensitivity to these alkaloids, which confirms behavioral observations that it avoids foliage containing alkaloids. Berberine and aristolochic acid were found to have the lowest ED50 values and were the most potent antifeedants. Handling Editor: Joseph Dickens.  相似文献   

3.
Perceptive performance and feeding behavior of calanoid copepods   总被引:1,自引:0,他引:1  
The goal of this study was to determine variables associatedwith calanoid feeding behavior, and thus, to improve our understandingof the basics of calanoid feeding rates. These variables includedperiods and frequency of appendage motion, rates of cell clearance,distance at which a copepod first reacts to a cell which iseventually captured, and rate of water flow through the areacovered by the motions of a copepod's feeding appendages. Theeffects of these variables on feeding rates were determinedfor copepodids and adult females of the calanoid copepod Eucalanuspileatus at phytoplankton concentrations covering the rangeencountered by this species on the south-eastern shelf of theUSA. Our results indicate that the distance at which E.pileatusperceives phytoplankton cells increases {small tilde}2-foldas food concentrations decrease from 1.0 to 0.1 mm3 l–1.These results lead us to hypothesize that this is due to increasedsensitivity of chemosensors on the copepods' feeding appendages.This 2-fold increase in perceptive distance amounts to a near4-fold increase in perceived volume which is close to the 6-foldincrease in volume swept clear (VSC) from 1.0 to 0.1 mm3 l–1of Thalassiosira weissflogii. We assume that the increases inVSC by planktonic copepods, when food levels are below satiation,are largely a function of the sensory performance of the individualcopepod.  相似文献   

4.
An epipharyngeal taste sensillum in Leptinotarsa decemlineata larvae was studied. Electron microscopy showed that the sensillum is innervated by five neurons. Electrophysiological experiments showed that one of these cells responds to water, a second to sucrose and a third to two feeding deterrents that were also effective in a behavioural test. Receptor cells sensitive to feeding deterrents were not previously reported for L.␣decemlineata larvae or adults. The response of the sucrose-sensitive cell was strongly inhibited by one of the two feeding deterrents and only slightly by the other feeding deterrent. The relationship between the behavioural and electrophysiological results is discussed in order to elucidate the neural code of feeding deterrents in L. decemlineata larvae. We conclude that probably both the response of the deterrent cell and peripheral interactions exerted by feeding deterrents on the sucrose-sensitive cell determine the potency of feeding deterrents. The present results provide a physiological basis for the hypothesis that the presence or absence of feeding deterrents in potential food plants is a decisive cue in food plant selection by L. decemlineata larvae. Accepted: 25 March 1998  相似文献   

5.
Aphid feeding induces various defense signaling mechanisms in plants. The recognition of feeding activities by plants occurs through the use of transmembrane pattern recognition receptors (PRRS) or, acting largely inside the cell, polymorphic nucleotide-binding leucine-rich-repeat (NB-LRR) protein products, encoded by most R genes. Activation may induce defensive reactions which are the result of highly coordinated sequential changes at the cellular level comprising, among other changes, the synthesis of signaling molecules. The ensuing plant responses are followed by the transmission of defense response signal cascades. Signals are mediated by bioactive endogenous molecules, i.e. phytohormones, such as jasmonic acid (JA), salicylic acid (SA), ethylene (ET), abscisic acid (ABA), gibberellic acid (GA) and free radicals such as hydrogen peroxide (H2O2) and nitric oxide (NO) which independently provide direct chemical resistance. Plant-induced defenses are also regulated by a network of inter-connecting signaling pathways, in which JA, SA, and ET play dominant roles. Both synergistic and inhibitory aspects of the cross-talk among these pathways have been reported. This paper presents molecular mechanisms of plant response to aphid feeding, the precise activation of various endogenous bioactive molecules signaling in the response of many plant species and their participation in the regulation of numerous defense genes, which lead to a specific metabolic effect. Selected important points in signal transduction pathways were also discussed in studies on plant response to aphid feeding.  相似文献   

6.
Root-knot nematodes (RKN) are highly specialized, obligatory plant parasites. These animals reprogram root cells to form large, multinucleate, and metabolically active feeding cells (giant cells) that provide a continuous nutrient supply during 3–6 weeks of the nematode’s life. The establishment and maintenance of physiologically fully functional giant cells are necessary for the survival of these nematodes. As such, giant cells may be useful targets for applying strategies to reduce damage caused by these nematodes, aiming the reduction of their reproduction. We have recently reported the involvement of cell cycle inhibitors of Arabidopsis, named Kip-Related Proteins (KRPs), on nematode feeding site ontogeny. Our results have demonstrated that this family of cell cycle inhibitors can be envisaged to efficiently disrupt giant cell development, based on previous reports which showed that alterations in KRP concentration levels can induce cell cycle transitions. Herein, we demonstrated that by overexpressing KRP genes, giant cells development is severely compromised as well as nematode reproduction. Thus, control of root-knot nematodes by modulating cell cycle-directed pathways through the enhancement of KRP protein levels may serve as an attractive strategy to limit damage caused by these plant parasites.  相似文献   

7.
1. This paper reviews the role of transmitters in identified neurons of gastropod molluscs in generating and modulating fictive feeding. 2. In Lymnaea and Helisoma the 3 phase rhythm is generated by sets of interneurons which use acetylcholine for the N1 (protraction) phase, glutamate for the N2 (rasp) phase interneurons. The N3 interneurons are likely to use several different transmitters, of which one is octopamine. 3. In all the species examined, serotonin (5-HT) is released from giant cerebral cells. Other amines, including dopamine and octopamine, are present in the buccal ganglia and all these amines activate or enhance feeding. 4. Nitric oxide (NO), mostly originating from sensory processes, can also activate fictive feeding, but (at least in Lymnaea) may also be released centrally from buccal (B2) and cerebral neurons (CGC). 5. The central pattern generator for feeding is also modulated by peptides including APGWamide, SCP(B) and FMRFamide. 6. There is increasing evidence that most of these transmitters/modulators act on feeding neurons through second messenger systems--allowing them to act as longer-lasting neuromodulators of the feeding network. 7. Many of the transmitters are used in similar ways by each of the gastropods examined so far, so that their function in the CNS seems to have been conserved through evolution.  相似文献   

8.
Methanol extracts of Gomphocarpus sinaicus, Pergularia tomentosa and Cynanchum acutum (Apocynaceae, sub-family Asclepiadoideae) deterred feeding of Spodoptera littoralis in a binary-choice bioassay. Analyses of extracts using high-performance liquid chromatography with photodiode array detection indicated that methanol extracts of P. tomentosa and G. sinaicus contained cardenolides, while these compounds were not detected in extracts of C. acutum. Activity-guided fractionation of the methanol extracts of G. sinaicus and P. tomentosa resulted in the isolation of six cardenolides: 7,8-dehydrocalotropin, calotropin and coroglaucigenin 3-(6-deoxy-β-allopyranoside)-19-acetate (frugoside 19-acetate) from G. sinaicus, and coroglaucigenin, 16α-acetoxycalotropin and calactin from P. tomentosa. The isolation of 16α-acetoxycalotropin was a new report from P. tomentosa. Each of the 6 cardenolides deterred feeding by S. littoralis, while two cardenolide standards, digoxin and digitoxin, did not affect feeding. Differences among cardenolides in their effect on feeding were associated with specific structural features. C. acutum is the only one of the three species tested that is known to support the development of S. littoralis, although the development of larvae was delayed. The observed feeding deterrent activity of the cardenolide-free methanol extract of C. acutum would suggest that compounds other than cardenolides are responsible for the deterrent activity. These compounds, although deterrent in a short-term feeding assay, might not prevent long term feeding, thus allowing the larvae to develop on the plant.  相似文献   

9.
Alteration of mammalian cell metabolism by dynamic nutrient feeding   总被引:3,自引:0,他引:3  
Zhou W  Rehm J  Europa A  Hu WS 《Cytotechnology》1997,24(2):99-108
The metabolism of hybridoma cells was controlled to reduce metabolic formation in fed-batch cultures by dynamically feeding a salt-free nutrient concentrate. For this purpose, on-line oxygen uptake rate (OUR) measurement was used to estimate the metabolic demand of hybridoma cells and to determine the feeding rate of a concentrated solution of salt-free DMEM/F12 medium supplemented with other medium components. The ratios among glucose, glutamine and other medium components in the feeding nutrient concentrate were adjusted stoichiometrically to provide balanced nutrient conditions for cell growth. Through on-line control of the feeding rate of the nutrient concentrate, both glucose and glutamine concentrations were maintained at low levels of 0.5 and 0.2 mM respectively during the growth stage. The concentrations of the other essential amino acids were also maintained without large fluctuations. The cell metabolism was altered from that observed in batch cultures resulting in a significant reduction of lactate, ammonia and alanine production. Compared to a previously reported fed-batch culture in which only glucose was maintained at a low level and only a reduced lactate production was observed, this culture has also reduced the production of other metabolites, such as ammonium and alanine. As a result, a high viable cell concentration of more than 1.0 × 107 cells/mL was achieved and sustained over an extended period. The results demonstrate an efficient nutrient feeding strategy for controlling cell metabolism to achieve and sustain a high viable cell concentration in fed-batch mammalian cell cultures in order to enhance the productivity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
In this work, a recombinant Escherichia coli was constructed by overexpressing glucosamine (GlcN) synthase and GlcN-6-P N-acetyltransferase for highly efficient production of GlcN and N-acetylglucosamine (GlcNAc). For further enhancement of GlcN and GlcNAc production, the effects of different glucose feeding strategies including constant-rate feeding, interval feeding, and exponential feeding on GlcN and GlcNAc production were investigated. The results indicated that exponential feeding resulted in relatively high cell growth rate and low acetate formation rate, while constant feeding contributed to the highest specific GlcN and GlcNAc production rate. Based on this, a multistage glucose supply approach was proposed to enhance GlcN and GlcNAc production. In the first stage (0–2 h), batch culture with initial glucose concentration of 27 g/l was conducted, whereas the second culture stage (2–10 h) was performed with exponential feeding at μ set = 0.20 h−1, followed by feeding concentrated glucose (300 g/l) at constant rate of 32 ml/h in the third stage (10–16 h). With this time-variant glucose feeding strategy, the total GlcN and GlcNAc yield reached 69.66 g/l, which was enhanced by 1.59-fold in comparison with that of batch culture with the same total glucose concentration. The time-dependent glucose feeding approach developed here may be useful for production of other fine chemicals by recombinant E. coli.  相似文献   

11.
David Scott 《Animal behaviour》1984,32(4):1089-1100
The feeding rates of grouped (<1.5 m from conspecifics) and solo (>5 m from conspecifics) cattle egrets (Bubulcus ibis) in loose flocks away from cows were compared, to test the hypothesis that grouped cattle egrets benefit from feeding on prey flushed inadvertently by nearby conspecifics. The flock feeding rates were also compared to those of grouped and solo egrets near cows, to determine the effects of flock membership on feeding rates. Birds in flocks captured prey faster than those with cows, and tended to capture larger prey, but field observations and captive experiments failed to show that the feeding success of flock members was enhanced by the hypothesized ‘beater’ effect. Increases in prey density, however, always resulted in higher feeding rates, so some cattle egret groups may form in response to local concentrations of prey. Prey size may also play a role in group formation, because birds in the field tended to feed at greater distances from their neighbours when larger prey were captured, regardless of prey density. When small groups did form among cattle egrets feeding on relatively large prey, group members occasionally captured prey items that had been discovered by nearby conspecifics. This behaviour was not observed among birds in dense aggregations, which fed on small, highly abundant prey. These data indicate that there is a potential cost associated with feeding too near others unless the prey are relatively small and abundant.  相似文献   

12.
Phosphorus depletion was identified in high-cell-concentration fed-batch NS0 myeloma cell cultures producing a humanized monoclonal antibody (MAb). In these cultures, the maximum viable and total cell concentration was generally ca. 5 x 10(9) and 7 x 10(9) cells/L, respectively, without phosphate feeding. Depletion of essential amino acids, such as lysine, was initially thought to cause the onset of cell death. However, further improvement of cell growth was not achieved by feeding a stoichiometrically balanced amino acid solution, which eliminated depletion of amino acids. Even though a higher cell viability was maintained for a longer period, no increase in total cell concentration was observed. Afterwards, phosphorus was found to be depleted in these cultures. By also feeding a phosphate solution to eliminate phosphorus depletion, the cell growth phase was prolonged significantly, resulting in a total cell concentration of ca. 17 x 10(9) cells/L, which is much greater than ca. 7 x 10(9) cells/L without phosphate feeding. The maximum viable cell concentration reached about 10 x 10(9) cells/L, twice as high as that without phosphate feeding. Apoptosis was also delayed and suppressed with phosphate feeding. A nonapoptotic viable cell population of 6.5 x 10(9) cells/L, as compared with 3 x 10(9) cells/L without phosphate feeding, was obtained and successfully maintained for about 70 h. These results are consistent with the knowledge that phosphorus is an essential part of many cell components, including phospholipids, DNA, and RNA. As a result of phosphate feeding, a much higher integral of viable cell concentration over time was achieved, resulting in a correspondingly higher MAb titer of ca. 1.3 g/L. It was also noted that phosphate feeding delayed the cell metabolism shift from lactate production to lactate consumption typically observed in recombinant NS0 cultures. The results highlight the importance of phosphate feeding in high-cell-concentration NS0 cultures.  相似文献   

13.
A hybridoma cell line was cultivated in fed-batch cultures using a low-protein, serum-free medium. On-line oxygen uptake rate (OUR) measurement was used to adjust the nutrient feeding rate based on glucose consumption, which was estimated on-line using the stoichiometric relations between glucose and oxygen consumption. Through on-line control of the nutrient feeding rate, not only sufficients were supplied for cell growth and antibody production, but also the concentrations of glucose and other important nutrients such as amino acids were maintained at low levels during the cell growth phase. During the cultivation, cell metabolism changed from high lactate production and low oxygen consumption to low lactate production and high oxygen consumption. As a result the accumulation of lactate was reduced and the growth phase was extended. In comparison with the batch cultures, in which cells reached a concentration of approximately 2 x 10(6) cells/mL, a very high concentration of 1.36 x 10(7) cells/mL with a high cell viability (>90%) was achieved in the fed-batch culture. By considering the consumption of glucose and amino acids, as well as the production of cell mass, metabolites, and antibodies, a well-closed material balance was established. Our results demonstrate the value of coupling on-line OUR measurement and the stoichiometric realations for dynamic nutrient feeding in high cell concentration fed batch cultures. (c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
The deterrent effects of brown algal phenolic compounds and the terrestrial polyphenolic tannic acid on feeding by three species of invertebrate herbivores from central California, including the gastropods Tegula funebralis (Adams) and Tegula brunnea (Phillipi) and the echinoid Strongylocentrotus purpuratus (Stimpson) were examined. Algal phenolics used were the monomeric phenolic phloroglucinol and polyphloroglucinols from Fucus vesiculosus (Linnaeus), Halidrys siliquosa (Linnaeus) Lyngbye and Eisenia arborea Areschoug. All of the polyphenolics deterred feeding by all three herbivores at concentrations of 5 mg · ml−1 in agar disks. Concentrations of 2 mg · ml−1 also generally deterred feeding by the gastropods (these levels were not tested against S. purpuratus). Relative amounts of deterrence by different compounds were similar, especially for the gastropods. Phloroglucinol deterred feeding by the echinoids, but not by T. funebralis. Responses of the echinoids were otherwise similar to the gastropods, but more variable. I also demonstrated deterrence of S. purpuratus by tannic acid using the “tanned” kelp technique of Steinberg (1985). Reactivity of the different phenolic compounds in the Folin-Denis procedure, a common colorimetric assay used to estimate levels of phenolics in plant tissue, was similar. This suggests that measuring phenolic levels in brown algae by this technique will not be greatly confounded by the occurrence of different kinds of phenolic molecules in different brown algae. This result, in combination with the similarity of the deterrent effects of the compounds used in this study, increases the validity of previous studies in the northeastern Pacific Ocean which correlate algal phenolic levels and diets or feeding preferences of invertebrate herbivores. For plants and herbivores in this region, this assay is a reasonable measure of a biologically meaningful phenomenon — levels of phenolic deterrents in the algae.  相似文献   

15.
Opioid peptides have been implicated in regulation of feeding in invertebrates. Studies have suggested that receptors for opioids are present in cockroaches and that these receptors play roles in affecting both behaviour and feeding. We examined the effect of µ, δ, and κ opioid receptor agonists and antagonists on feeding, mass changes and activity in the cockroach, Periplaneta americana. The κ antagonist, nor-binaltorphimine, significantly increased food intake, while naltrexone (general antagonist) and naloxonazine (µ antagonist) both reduced feeding. A large mass loss was observed in cockroaches treated with nor-binaltorphimine, despite the increased food intake. Males did not lose as much mass during the 3 h as females, although drug treatment did have some effect on the loss. Time of activity (%) was not influenced by any drug. Water loss experiments suggested that nor-binaltorphimine increased water loss, accounting for the mass loss despite the increased feeding. We suggest that two populations of opioid receptors are present as previously reported, with one affecting feeding and the other involved with evaporative water loss.  相似文献   

16.
Fish oil feeding showed less obesity in rodents, relative to other dietary oils. N-3 fatty acids rich in fish oil and fibrate compounds are peroxisome proliferator-activated receptor alpha (PPARalpha) ligands that stimulate beta-oxidation of fatty acids in liver and are used for treatment of hypertriglycemic patients. Since UCP-2, a member of an uncoupling protein family, has been shown to express in hepatocytes, the effects of these agents on the expression of UCP2 mRNA were investigated. C57BL/6J mice were divided into three groups; the first group was given a high-carbohydrate diet, and the other two groups were given a high-fat diet (60% of total energy) as safflower oil or fish oil for 5 months. Safflower oil diet fed mice developed obesity, but those fed fish oil diet did not. Therefore, the effects of fish oil feeding on the expression of UCP1, UCP2 and UCP3 in liver, skeletal muscle (gastrocnemius), white adipose tissue (WAT) and brown adipose tissue (BAT) were assessed by Northern blotting. Compared with safflower oil feeding, fish oil feeding up-regulated liver UCP2, BAT UCP2 and skeletal muscle UCP3 mRNA, while down-regulated WAT UCP2 and BAT UCP3 mRNA. Among these alterations, 5-fold up-regulation of liver UCP2 mRNA, relative to carbohydrate feeding, was noteworthy. Fenofibrate administration (about 500 mg/kg BW/d) for 2 wks also induced liver UCP2 expression by 9-fold. These data indicated that fish oil feeding and fibrate administration each up-regulated UCP2 mRNA expression in liver possibly via PPARalpha and hence each has the potential of increasing energy expenditure for prevention of obesity.  相似文献   

17.
We tested 11 analogous synthetic drimane antifeedant compounds for their feeding inhibiting effects on larvae of the large white butterfly Pieris brassicae L. (Lepidoptera: Pieridae) in no-choice tests on the host plant Brassica oleracea L. Furthermore, we observed larval feeding behaviour in no-choice tests to analyze temporal effects of five drimanes. The results show that the five analogous antifeedants differentially influence feeding behaviour and locomotion activity. Warburganal and polygodial are most likely sensory mediated antifeedants. Habituation to these compounds occurs soon after the onset of the tests (i.e., within 0.5–1.5 h). Compound 5 and confertifolin are probably not direct, sensory mediated antifeedants. After 0.5–1.5 h of exposure, these compounds inhibit not only feeding, but also locomotion behaviour, indicating postingestive, toxic effects. Isodrimenin inhibits feeding from the onset of the test and is probably a sensory mediated antifeedant. No habituation occurs to this compound, indicating that isodrimenin is either a very strong antifeedant or that it additionally has postingestive, toxic effects. Topical application of the drimanes on the larval cuticle revealed feeding inhibiting effects, but these could not be related to the occurrence of postingestive feeding inhibiting effects, indicating that this method is inappropriate to show possible postingestive effects of drimanes in P. brassicae. In conclusion, the behavioural observations performed in this research indicate that analogous drimanes inhibit feeding by P. brassicae larvae through multiple mechanisms of action. The results show that, when developing a structure activity relationship (SAR) for a series of antifeedants, it is important to distinguish the mode of action which underlies inhibition of feeding.  相似文献   

18.
Control of L-phenylalanine production by a recombinant of Escherichia coli AT2471 by means of the dual feeding of glucose and L-tyrosine was investigated. A novel method was developed for on-line monitoring of the maximum glucose uptake rate (MGUR), in which the length of time required for the consumption of added glucose was measured. Accumulation of acetic acid was successfully prevented throughout the whole period of the culture when the glucose concentration was kept below 0.1 g/L by controlling the glucose feeding on the basis of on-line monitoring of the MGUR and the cell concentration with a laser sensor.In a batch culture with glucose feeding, after L-tyrosine was depleted cell growth and the L-phenylalanine production rate decreased along with decreases in the specific enzyme activities of chorismate mutase-p-prephenate dehydratase (CMP) and 3-deoxy-D-arabinoheputulosonate 7-phosphate synthase (DAHP), which are the key enzymes in the L-phenylalanine synthesis pathway. Increasing the L-tyrosine feed rate by an appropriate amount, but not so far as to cause L-tyrosine accumulation in the culture, increased the activities of the enzymes and the specific rates of growth and production while the product yield based on glucose consumption decreased.The average specific rates of growth, production, and MGUR could be expressed as functions of the specific L-tyrosine consumption rate during both the earlier and later periods of L-tyrosine feeding. Estimations of the amount of L-phenylalanine produced, the product yield, and the cost factor by using these functions with several different combinations of two specific L-tyrosine consumption rates for two 10-h periods resulted in a suggested optimum L-tyrosine feeding strategy giving a lower specific L-tyrosine consumption rate in the later period, to suppress cell growth, in comparison to that in the earlier period. During L-tyrosine feeding, the three specific rates (growth, production, and MGUR) could be successfully controlled by adjusting the specific L-tyrosine consumption rate to the predicted value. The cost factor was lowest in this controlled culture, demonstrating experimentally the effectiveness of the strategy. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
Summary Initiation and modulation of fictive feeding by cerebral to buccal interneurons (CBs) was examined in an isolated CNS preparation of Limax maximus. Three CBs which are phasically active during fictive feeding, CB1, CB3 and CB4, will reliably trigger bouts of fictive feeding when activated alone or in pairs. Another phasic CB, CBEC, is not effective for triggering feeding. One CB which is tonically active during fictive feeding, CBST, drives fictive feeding in 50% of preparations when activated alone and enhances triggering of feeding when co-activated with phasic CBs. The metacerebral giant cell (MGC) was found to be capable of triggering fictive feeding in preparations with an intact subcerebral commissure. The MGC was especially effective at increasing the effectiveness of other CBs for initiation of feeding. Short high-frequency bursts of phasic CB or MGC action potentials are capable of resetting ongoing fictive feeding. Resetting effects of CB action potentials are relatively independent of the phase of the bite-cycle in which they are activated. CB4 phase-advances the bite-cycle while the other phasic CBs phase-delay the bite cycle. Moderate frequency stimulation of CB4 speeds up the bite rate while moderate frequency stimulation of CB3 slows biting. All CBs, except the tonic CB, CBDL, increase the intensity of buccal motor neuron bursting during feeding. The excitatory effects of phasic CBs and the tonic CB, CBEPSP, on fictive feeding persist for many seconds after the offset of stimulation. CBs form both monosynaptic excitatory and monosynaptic inhibitory connections with different BG motor neurons.Abbreviations BG buccal ganglion - BR buccal root - CB cerebral-buccal interneuron - CBC cerebral-buccal connective - CPG central pattern generator - FB fast burster neuron - FMP feeding motor program - IBI interbite interval - MGC metacerebral giant cell  相似文献   

20.
Perfusion culture is often performed with micro-sparger to fulfill the high oxygen demand from the densified cells. Protective additive Pluronic F-68 (PF-68) is widely used to mitigate the adverse effect in cell viability from micro-sparging. In this study, different PF-68 retention ratio in alternating tangential filtration (ATF) columns was found to be crucial for cell performance of different perfusion culture modes. The PF-68 in the perfusion medium was found retained inside the bioreactor when exchanged through ATF hollow fibers with a small pore size (50 kD). The accumulated PF-68 could provide sufficient protection for cells under micro-sparging. On the other hand, with large-pore-size (0.2 μm) hollow fibers, PF-68 could pass through the ATF filtration membranes with little retention, and consequently led to compromised cell growth. To overcome the defect, a PF-68 feeding strategy was designed and successfully verified on promoting cell growth with different Chinese hamster ovary (CHO) cell lines. With PF-68 feeding, enhancements were observed in both viable cell densities (20%–30%) and productivity (~30%). A threshold PF-68 concentration of 5 g/L for high-density cell culture (up to 100 × 106 cells/mL) was also proposed and verified. The additional PF-68 feeding was not observed to affect product qualities. By designing the PF-68 concentration of perfusion medium to or higher than the threshold level, a similar cell growth enhancement was also achieved. This study systematically investigated the protecting role of PF-68 in intensified CHO cell cultures, shedding a light on the optimization of perfusion cultures through the control of protective additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号