首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutants of Downy Mildew Resistance in Lactuca Sativa (Lettuce)   总被引:1,自引:0,他引:1       下载免费PDF全文
As part of our investigation of disease resistance in lettuce, we generated mutants that have lost resistance to Bremia lactucae, the casual fungus of downy mildew. Using a rapid and reliable screen, we identified 16 distinct mutants of Latuca sativa that have lost activity of one of four different downy mildew resistance genes (Dm). In all mutants, only a single Dm specificity was affected. Genetic analysis indicated that the lesions segregated as single, recessive mutations at the Dm loci. Dm3 was inactivated in nine of the mutants. One of five Dm1 mutants was selected from a population of untreated seeds and therefore carried a spontaneous mutation. All other Dm1, Dm3, Dm5/8 and Dm7 mutants were derived from γ- or fast neutron-irradiated seed. In two separate Dm1 mutants and in each of the eight Dm3 mutants analyzed, at least one closely linked molecular marker was absent. Also, high molecular weight genomic DNA fragments that hybridized to a tightly linked molecular marker in wild type were either missing entirely or were truncated in two of the Dm3 mutants, providing additional evidence that deletions had occurred in these mutants. Absence of mutations at loci epistatic to the Dm genes suggested that such loci were either members of multigene families, were critical for plant survival, or encoded components of duplicated pathways for resistance; alternatively, the genes determining downy mildew resistance might be limited to the Dm loci.  相似文献   

3.
Resistance genes can exhibit heterogeneous patterns of variation. However, there are few data on their frequency and variation in natural populations. We analysed the frequency and variation of the resistance gene Dm3, which confers resistance to Bremia lactucae (downy mildew) in 1033 accessions of Lactuca serriola (prickly lettuce) from 49 natural populations. Inoculations with an isolate of Bremia lactucae carrying avirulence gene Avr3 indicated that the frequency of Dm3 in natural populations of L. serriola was very low. Molecular analysis demonstrated that Dm3 was present in only one of the 1033 wild accessions analysed. The sequence of the 5' region of Dm3 was either highly conserved among accessions, or absent. In contrast, frequent chimeras were detected in the 3' leucine-rich repeat-encoding region. Therefore low frequency of the Dm3 specificity in natural populations was due to either the recent evolution of Dm3 specificity, or deletions of the whole gene as well as variation in 3' region caused by frequent gene conversions. This is the most extensive analysis of the prevalence of a known disease resistance gene to date, and indicates that the total number of resistance genes in a species may be very high. This has implications for the scales of germplasm conservation and exploitation of sources of resistance.  相似文献   

4.
The association between variation for pre-infection peroxidase activity and levels of field resistance-susceptibility to downy mildew (Bremia lactucae) was investigated in lettuce (Lactuca sativa) cultivars, accessions of L. serriola (prickly lettuce), segregating F2 populations and selected F3 families from a cross between field resistant and susceptible lettuce cultivars. A trend was apparent in this series of experiments indicating that one component of field resistance could be related to a high level of peroxidase activity prior to infection. The data suggest that in breeding programmes there could be merit in imposing primary selection for high peroxidase activity prior to field selection for resistance.  相似文献   

5.
The occurrence of phenolic compounds (PC) in the defence reaction of Lactuca spp. was detected by histochemical methods. Four staining methods, including three for light and one for fluorescence microscopy, were used for imaging the location of PC in cells of genotypes with different resistance mechanisms after infection by Bremia lactucae , race NL16. The results showed that the major role of phenolic compounds in studied Lactuca spp. is connected with their overexpression and localized accumulation during a hypersensitive response (HR). In incompatible interactions a slight accumulation of phenols near the cell wall of infected cells was detected. The negative reaction to staining with aniline sulphate verified the absence of lignin creation. In both compatible and incompatible interactions structural modifications in the host cells occurred as a callose deposition. Frequently, these deposits were widespread in susceptible genotypes. Intensive and rapid accumulation of autofluorescent phenolics was linked with the onset of HR, the main cytological feature of resistance to lettuce downy mildew in Lactuca spp.  相似文献   

6.
Investigations on the susceptibility of head lettuce (Lactuca sativa) to downy mildew (Bremia lactucae) III. Activities of peroxidase, catalase and polyphenoloxidase Host cell walls in contact with intercellular hyphae of Bremia lactucae stain electron positively in susceptible and incompletely resistant varieties of lettuce after appropriate electron microscopy preparation for peroxidase activity. The outer membranes of the mitochondria of the parasite also stained darkly in susceptible varieties whereas in incompletely resistant plants Bremia innermost mitochondrial membranes and host cell mitochondria were darkly stained. This latter observation suggests increased respiration and could be explained as a resistance reaction. Catalase activity was observed in the microbodies of susceptible, in incompletely resistant and healthy varieties. There were no differences in stain intensity in the three kinds of varieties suggesting that catalase activity is not involved in resistance reactions. Polyphenoloxidase activity was infrequently observed on the host cell wall in susceptible and healthy plants, whereas strong activity in incompletely resistant varieties was observed in vesicles in the haustorial sheath. These vesicles were not surrounded by unit membranes and therefore could not have originated from the unit membranes of the extrahaustorial matrix or from the host plasmalemma. They may have been derived from the host protoplast and involved in inactivation of parasite produced toxins thereby contributing to resistance.  相似文献   

7.

Key message

In a stacking study of eight resistance QTLs in lettuce against downy mildew, only three out of ten double combinations showed an increased resistance effect under field conditions.

Abstract

Complete race nonspecific resistance to lettuce downy mildew, as observed for the nonhost wild lettuce species Lactuca saligna, is desired in lettuce cultivation. Genetic dissection of L. saligna’s complete resistance has revealed several quantitative loci (QTL) for resistance with field infection reductions of 30–50 %. To test the effect of stacking these QTL, we analyzed interactions between homozygous L. saligna CGN05271 chromosome segments introgressed into the genetic background of L. sativa cv. Olof. Eight different backcross inbred lines (BILs) with single introgressions of 30–70 cM and selected predominately for quantitative resistance in field situations were intercrossed. Ten developed homozygous lines with stacked introgression segments (double combinations) were evaluated for resistance in the field. Seven double combinations showed a similar infection as the individual most resistant parental BIL, revealing epistatic interactions with ‘less-than-additive’ effects. Three double combinations showed an increased resistance level compared to their parental BILs and their interactions were additive, ‘less-than-additive’ epistatic and ‘more-than-additive’ epistatic, respectively. The additive interaction reduced field infection by 73 %. The double combination with a ‘more-than-additive’ epistatic effect, derived from a combination between a susceptible and a resistant BIL with 0 and 30 % infection reduction, respectively, showed an average field infection reduction of 52 %. For the latter line, an attempt to genetically dissect its underlying epistatic loci by substitution mapping did not result in smaller mapping intervals as none of the 22 substitution lines reached a similar high resistance level. Implications for breeding and the inheritance of L. saligna’s complete resistance are discussed.  相似文献   

8.
Summary Previously undetected race-specific resistance to Bremia lactucae (downy mildew) was located in many lettuce cultivars hitherto considered to be universally susceptible to this disease. This resistance factor(s) may also be widely distributed in other cultivars known to carry combinations of already recognised factors R1 to R11. Specific virulence to match this resistance is almost invariably present in pathogen collections. This situation may be either a relic of the evolutionary history of the B. lactucaeL. sativa asssociation or may reflect a rare mutation in B. lactucae for avirulence on all but a few specialised L. sativa genotypes.  相似文献   

9.
Sesquiterpenoid lactones (SLs) from lettuce (Lactuca sativa L.) include constitutive components of latex such as lactucin and the induced phytoalexin, lettucenin A. A redundant primer strategy was used to recover two full length cDNA clones (LTC1 and LTC2) encoding sesquiterpene synthases from a cDNA library derived from seedlings with the red spot disorder, which accumulate phytoalexins. Recombinant enzymes produced from LTC1 and LTC2 in Escherichia coli catalysed the cyclisation of farnesyl diphosphate to germacrene A, potentially an early step in the biosynthesis of SLs. RT-PCR analysis showed LTC1 and LTC2 were expressed constitutively in roots, hypocotyls and true leaves but not in cotyledons. Expression in cotyledons was induced by challenge with the downy mildew pathogen Bremia lactucae in the disease resistant cultivar Diana. Southern hybridisation experiments showed that LTC1 and LTC2 were not part of a multigene family. The germacrene A synthases provide targets for modified expression to generate beneficial modifications to the SL profile in lettuce.  相似文献   

10.
A plant's physiology is modified simultaneously with Oomycete pathogen penetration, starting with release and accumulation of reactive oxygen species (ROS). Localisation of superoxide, hydrogen peroxide, peroxidase and variation in their activity, and the isoenzyme profile of antioxidant enzymes peroxidase (1.11.1.7), catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) were studied in six genotypes of four Lactuca spp. (L. sativa, L. serriola, L. saligna and L. virosa) challenged with Bremia lactucae (race NL16). These factors were related to the differential expression of resistance during the course of 96h after inoculation (hai). Accumulation of hydrogen peroxide in infected cells together with enhanced activity of H(2)O(2)-scavenging enzymes in leaf extracts characterised resistant Lactuca spp. genotypes 6-12hai, and peaked at 48-96hai with expression of a hypersensitive reaction. Substantial changes of guaiacol peroxidase activity were detected only in the cytosolic enzyme; activities of the membrane-bound and the ion-bound enzymes were insignificant in the interactions of host genotypes and pathogen isolate examined. The most significant modifications of ROS metabolism were found in resistant L. virosa (NVRS 10.001 602), a genotype responding to pathogen ingress by a rapid and extensive hypersensitive reaction. Formation of the superoxide anion was not detected in either susceptible or resistant plants, and there was also no increase of superoxide dismutase activity or changes in its isozyme profile. The significance of precise balancing the intracellular level of hydrogen peroxide for variability of phenotypic expression of responses to B. lactucae infection in Lactuca spp. is discussed.  相似文献   

11.
Some inter- and intraspecific crosses may result in reduced viability or sterility in the offspring, often due to genetic incompatibilities resulting from interactions between two or more loci. Hybrid necrosis is a postzygotic genetic incompatibility that is phenotypically manifested as necrotic lesions on the plant. We observed hybrid necrosis in interspecific lettuce (Lactuca sativa and Lactuca saligna) hybrids that correlated with resistance to downy mildew. Segregation analysis revealed a specific allelic combination at two interacting loci to be responsible. The allelic interaction had two consequences: (1) a quantitative temperature-dependent autoimmunity reaction leading to necrotic lesions, lethality, and quantitative resistance to an otherwise virulent race of Bremia lactucae; and (2) a qualitative temperature-independent race-specific resistance to an avirulent race of B. lactucae. We demonstrated by transient expression and silencing experiments that one of the two interacting genes was Rin4. In Arabidopsis thaliana, RIN4 is known to interact with multiple R gene products, and their interactions result in hypersensitive resistance to Pseudomonas syringae. Site-directed mutation studies on the necrosis-eliciting allele of Rin4 in lettuce showed that three residues were critical for hybrid necrosis.  相似文献   

12.
Plant-pathogenic oomycetes secrete effector proteins to suppress host immune responses. Resistance proteins may recognize effectors and activate immunity, which is often associated with a hypersensitive response (HR). Transient expression of effectors in plant germplasm and screening for HR has proven to be a powerful tool in the identification of new resistance genes. In this study, 14 effectors from the lettuce downy mildew Bremia lactucae race Bl:24 were screened for HR induction in over 150 lettuce accessions. Three effectors—BLN06, BLR38 and BLR40—were recognized in specific lettuce lines. The recognition of effector BLR38 in Lactuca serriola LS102 did not co-segregate with resistance against race Bl:24, but was linked to resistance against multiple other B. lactucae races. Two unlinked loci are both required for effector recognition and are located near known major resistance clusters. Gene dosage affects the intensity of the BLR38-triggered HR, but is of minor importance for disease resistance.  相似文献   

13.
The second largest cluster of resistance genes in lettuce contains at least two downy mildew resistance specificities, Dm5/8 and Dm10, as well as Tu, providing resistance against turnip mosaic virus, and plr, a recessive gene conferring resistance against Plasmopara lactucae-radicis, a root infecting downy mildew. In the present paper four additional genetic markers have been added to this cluster, three RAPD markers and one RFLP marker, CL1795. CL1795 is a member of a multigene family related to triose phosphate isomerase; other members of this family map to the other two major clusters of resistance genes in lettuce. Seven RAPD markers in the region were converted into sequence characterized amplified regions (SCARs) and used in the further analysis of the region and the mapping of Dm10. Three different segregating populations were used to map the four resistance genes relative to molecular markers. There were no significant differences in gene order or rate of recombination between the three crosses. This cluster of resistance genes spans 6.4 cM, with Dm10 1.2 cM from Dm8. Marker analysis of 20 cultivars confirmed multiple origins for Dm5/8 specificity. Two different Lactuca serriola origins for the Du5/8 specificity had previously been described and originally designated as either Dm5 or Dm8. Some ancient cultivars also had the same specificity. Previously, due to lack of recombination in genetic analyses and the same resistance specificities, it was assumed that Dm5 and Dm8 were determined by the same gene. However, molecular marker analysis clearly identified genotypes characteristic of each source. Therefore, Dm5/8 specificity is either ancient and widespread in L. serriola and some L. sativa, or else has arisen on multiple occasions as alleles at the same locus or at linked loci.  相似文献   

14.
A detailed linkage map of lettuce was constructed using 53 genetic markers including 41 restriction fragment length polymorphism (RFLP) loci, five downy mildew resistance genes, four isozyme loci and three morphological markers. The genetic markers were distributed into nine linkage groups and cover 404 cM which may be 25-30% of the lettuce genome. The majority (31 of 34) of the RFLP probes detected single segregating loci, although seven of these may have been homologous to further monomorphic loci. When several loci were detected by a single probe, the loci were generally linked, suggesting tandem duplications. One probe, however, detected loci in three linkage groups suggesting translocations. The five downy mildew resistance genes (Dm1, Dm3, Dm4, Dm5/8 and Dm13), segregating in the Calmar x Kordaat cross, represented each of the four resistance gene linkage groups. Dm5/8 is flanked by two cDNA loci, each located 10 cM away. These flanking markers will be used to study the source of variation in downy mildew genes and are also part our strategy to clone resistance genes.  相似文献   

15.

Key message

The nonhost resistance of wild lettuce to lettuce downy mildew seems explained by four components of a putative set of epistatic genes.

Abstract

The commonplace observation that plants are immune to most potential pathogens is known as nonhost resistance (NHR). The genetic basis of NHR is poorly understood. Inheritance studies of NHR require crosses of nonhost species with a host, but these crosses are usually unsuccessful. The plant-pathosystem of lettuce and downy mildew, Bremia lactucae, provides a rare opportunity to study the inheritance of NHR, because the nonhost wild lettuce species Lactuca saligna is sufficiently cross-compatible with the cultivated host Lactuca sativa. Our previous studies on NHR in one L. saligna accession led to the hypothesis that multi-locus epistatic interactions might explain NHR. Here, we studied NHR at the species level in nine accessions. Besides the commonly used approach of studying a target trait from a wild donor species in a cultivar genetic background, we also explored the opposite, complementary approach of cultivar introgression in a wild species background. This bidirectional approach encompassed (1) nonhost into host introgression: identification of L. saligna derived chromosome regions that were overrepresented in highly resistant BC1 plants (F1?×?L. sativa), (2) host into nonhost introgression: identification of L. sativa derived chromosome regions that were overrepresented in BC1 inbred lines (F1?×?L. saligna) with relatively high infection levels. We demonstrated that NHR is based on resistance factors from L. saligna and the genetic dose for NHR differs between accessions. NHR seemed explained by combinations of epistatic genes on three or four chromosome segments, of which one chromosome segment was validated by the host into nonhost approach.
  相似文献   

16.
The major cluster of resistance genes in lettuce cv. Diana contains approximately 32 nucleotide binding site-leucine-rich repeat encoding genes. Previous molecular dissection of this complex region had identified a large gene, RGC2B, as a candidate for encoding the downy mildew resistance gene, Dm3. This article describes genetic and transgenic complementation data that demonstrated RGC2B is necessary and sufficient to confer resistance with Dm3 specificity. Ethylmethanesulphonate was used to induce mutations to downy mildew susceptibility in cv. Diana (Dm1, Dm3, Dm7, and Dm8). Nineteen families were identified with a complete loss of resistance in one of the four resistance specificities. Sequencing revealed a variety of point mutations in RGC2B in the six dm3 mutants. Losses of resistance were due to single changes in amino acid sequence or a change in an intron splice site. These mutations did not cluster in any particular region of RGC2B. A full-length genomic copy of RGC2B was isolated from a lambdaphage library and introduced into two genotypes of lettuce. Transgenics expressing RGC2B exhibited resistance to all isolates expressing Avr3 from a wide range of geographical origins. In a wildtype Dm3-expressing genotype, many of the RGC2 family members are expressed at low levels throughout the plant.  相似文献   

17.
Incomplete specific resistance to Bremia lactucae in lettuce   总被引:3,自引:0,他引:3  
The complementary pair of dominant genes. Dm 7/1 and Dm 7/2 and the single dominant gene Dm 6 for specific resistance in Bremia lactucae in lettuce, condition incomplete resistance to non-virulent (incompatible) isolates of B. lactucae in both seedling and mature tissue. This incomplete resistance is characterised by a marked reduction in spotophore production compared with fully susceptible (compatible) race/cultivar combinations and by macroscopically visible hypersenstive cell necrosis. The incomplete resistance. In seedling the resistance conditioned by genes giving more complete resistance. In seedlings the resistance conditioned by genes Dm 7/1 and 7/2 was incomplete in outdoor 'crisp' lettuce genotypes and the resistance conditioned by gene Dm 6 was only completely expressed at 20°C.  相似文献   

18.
Investigations on the susceptibility and resistance of head lettuce (Lactuca sativa) to downy mildew (Bremia lactucae) II. Light and electron microscopic examinations of the host-parasite interface Infected leaves of lettuce varieties susceptible and incompletely resistant to Bremia lactucae were observed by light and electron microscopy. Primary infection structures in the epidermal cells as well as intercellular hyphae with the adjacent haustoria could be seen by differential interference contrast microscopy. The haustoria in host cells of susceptible varieties collapsed before degeneration of the invaded host cell. On the contrary, host cells of incompletely resistant varieties died before the haustoria in these cells showed any sign of degeneration. Electron microscopic investigations confirmed the observations with light microscopy. In incompletely resistant varieties, an electron transparent sheath enveloped the haustorium. In the sheath fragments of membranes are localized. These membrane particles as seen by using the goniometer in electron microscopic work were flat faced. The sheath material consists of transformed host cell wall material and involves fragments of the host plasmalemma as well as fragments of the unit membrane separating the sheath from extrahaustorial matrix. The sheath has an important role as a special filter to prevent the passage of nutrients from the host cell into the haustorium. Thus the incomplete resistance is based not only on an impeded penetration of the parasite into the epidermal cells and their hypersensitive reactions in case of a successful penetration but also on hypersensitivity of mesophyll cells which does not necessarily lead to death of the parasite but does impede the absorption of nutrients.  相似文献   

19.
Quantitative trait loci (QTLs) for downy mildew resistance in maize were identified based on co-segregation with linked restriction fragment length polymorphisms or simple sequence repeats in 220 F2 progeny from a cross between susceptible and resistant parents. Disease response was assessed on F3 families in nurseries in Egypt, Thailand, and South Texas and after inoculation in a controlled greenhouse test. Heritability of the disease reaction was high (around 93% in Thailand). One hundred and thirty polymorphic markers were assigned to the ten chromosomes of maize with LOD scores exceeding 4.9 and covering about 1,265 cM with an average interval length between markers of 9.5 cM. About 90% of the genome is located within 10 cM of the nearest marker. Three putative QTLs were detected in association with resistance to downy mildew in different environments using composite interval mapping. Despite environmental and symptom differences, one locus on chromosome 2 had a major effect and explained up to 70% of the phenotypic variation in Thailand where disease pressure was the highest. The other two QTLs on chromosome 3 and chromosome 9 had minor effects; each explained no more than 4% of the phenotypic variation. The three QTLs appeared to have additive effects on resistance, identifying one major gene and two minor genes that contribute to downy mildew resistance.  相似文献   

20.
Summary The host-pathogen interaction between lettuce (Lactuca sativa) and downy mildew (Bremia lactucae) is mainly differential and the resistance so far utilized in the host is vertical. As in many other obligate parasites, the introduction of cultivars with new vertical resistance has exerted a strong selection pressure on the pathogen resulting in significant changes in virulence frequencies and in the establishment of races with new combinations of virulence. Genetic diversity in pathogen populations may arise through mutation and gene flow, and new virulence genotypes may then be established through parasexuality and sexual recombination. In Swedish populations of Bremia lactucae, the pattern of variation in the parasite agrees well with that which might be expected in a diploid, outcrossing organism with frequent sexual reproduction. This is supported by: two or more isolates, different in virulence and mating type, may occur together on the same lettuce leaf; zygotes (oospores) are formed in all populations investigated and the frequency varies from 22% to 98%; oospores germinate rather frequently under suitable conditions. To breed for resistance in dynamic host-pathogen systems such as this one is difficult and the program should preferably be based on race-non-specific resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号