首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nappi VM  Petti LM 《Journal of virology》2002,76(16):7976-7986
The bovine papillomavirus E5 protein activates the cellular platelet-derived growth factor beta receptor (PDGFbetaR) tyrosine kinase in a ligand-independent manner. Evidence suggests that the small transmembrane E5 protein homodimerizes and physically interacts with the transmembrane domain of the PDGFbetaR, thereby inducing constitutive dimerization and activation of this receptor. Amino acids in the receptor previously found to be required for the PDGFbetaR-E5 interaction are a transmembrane Thr513 and a juxtamembrane Lys499. Here, we sought to determine if these are the only two receptor amino acids required for an interaction with the E5 protein. Substitution of large portions of the PDGFbetaR transmembrane domain indicated that additional amino acids in both the amino and carboxyl halves of the receptor transmembrane domain are required for a productive interaction with the E5 protein. Indeed, individual amino acid substitutions in the receptor transmembrane domain identified roles for the extracellular proximal transmembrane residues in the interaction. These data suggest that multiple amino acids within the transmembrane domain of the PDGFbetaR are required for a stable interaction with the E5 protein. These may be involved in direct protein-protein contacts or may support the proper transmembrane alpha-helical conformation for optimal positioning of the primary amino acid requirements.  相似文献   

2.
The 44-amino acid E5 protein of bovine papillomavirus is a homo-dimeric, transmembrane protein that transforms cells by activating the platelet-derived growth factor ß receptor in a ligand-independent fashion. The E5 protein induces receptor activation by forming a stable complex with the receptor, thereby inducing receptor dimerization, trans-phosphorylation of tyrosine residues in the cytoplasmic domain of the receptor, and recruitment of cellular SH2 domain-containing proteins into a signal transduction complex. Direct interactions between specific transmembrane and juxtamembrane amino acids in the E5 protein and the PDGF ß receptor appear to drive complex formation and dimerization of the receptor. Further analysis of this unique mechanism of viral transformation promises to yield new insight into the regulation of growth factor receptor activity and cellular signal transduction pathways.  相似文献   

3.
The small transmembrane E5 protein of bovine papillomavirus (BPV) transforms cells by forming a stable complex with and activating the platelet-derived growth factor beta receptor (PDGFbetaR). The E5/PDGFbetaR interaction is thought to involve specific physical contacts between the transmembrane domains of the two proteins. Lys(499) at the extracellular juxtamembrane position and Thr(513) within the transmembrane domain of the PDGFbetaR are required for the interaction and are predicted to contact analogously positioned residues in the E5 protein. Here, mutagenic analysis of the transmembrane region of the PDGFbetaR was performed to further characterize the nature of the E5/PDGFbetaR interaction. We show that the receptor transmembrane domain, with minimal extracellular and intracellular sequence, is sufficient for the interaction. In addition, we provide evidence that the polar nature of Thr(513) as well as its positioning along the transmembrane alpha-helix is important for the interaction. We also identify the receptor transmembrane amino acids Ile(506) and Leu(520) as additional requirements for the interaction. Because Lys(499), Thr(513), Ile(506), and Leu(520) all align along the same face of the predicted PDGFbetaR transmembrane alpha-helix, our data support the model that the PDGFbetaR contacts the E5 protein via multiple amino acids along a single alpha-helical interface.  相似文献   

4.
L Petti  D DiMaio 《Journal of virology》1994,68(6):3582-3592
The E5 protein of bovine papillomavirus is a 44-amino-acid membrane protein which induces morphologic and tumorigenic transformation of fibroblasts. We previously showed that the E5 protein activates and forms a complex with the endogenous beta receptor for platelet-derived growth factor (PDGF) in transformed rodent fibroblasts and that the PDGF beta receptor can mediate tumorigenic transformation by the E5 protein in a heterologous cell system. Other workers have identified the receptor for epidermal growth factor (EGF) as a potential target of the E5 protein in NIH 3T3 cells. Here, we investigate the specificity of the interaction of the E5 protein with various growth factor receptors, with particular emphasis on the PDGF beta receptor and the EGF receptor. Under conditions where both the PDGF beta receptor and the EGF receptor are stably expressed in E5-transformed mouse and bovine fibroblasts and in E5-transformed epithelial cells, the E5 protein specifically forms a complex with and activates the PDGF receptor and not the EGF receptor. Under conditions of transient overexpression in COS cells, the E5 protein has the potential to associate with several growth factor receptors, including the EGF receptor. However, upon coexpression of PDGF beta receptors and EGF receptors in COS cells, the E5 protein preferentially forms a complex with the PDGF receptor. Therefore, we conclude that the PDGF beta receptor is the primary target for the E5 protein in a variety of cell types, including bovine fibroblasts.  相似文献   

5.
L Petti  L A Nilson    D DiMaio 《The EMBO journal》1991,10(4):845-855
The bovine papillomavirus E5 gene encodes a 44 amino acid membrane-associated protein that can induce tumorigenic transformation of rodent fibroblast cell lines. Genetic studies suggest that the E5 protein may transform cells by influencing the activity of cellular proteins involved in growth regulation. We report here that the endogenous cellular beta type receptor for the platelet-derived growth factor (PDGF) is constitutively activated in C127 and FR3T3 cells stably transformed by the E5 protein, but not in these cell types transformed by a variety of other oncogenes. In C127 cells, a metabolic precursor as well as the mature form of the receptor is activated by E5 transformation. Activation of the receptor also occurs upon acute E5-mediated transformation of these cells and precedes mitogenic stimulation in this system. Moreover, activation of the receptor by addition of PDGF or the v-sis gene to untransformed cells is sufficient to induce DNA synthesis and stable growth transformation. We propose that the PDGF receptor is an important cellular intermediate in the transforming activity of the bovine papillomavirus E5 protein. There is a short region of sequence similarity between the fibropapillomavirus E5 proteins and PDGF, suggesting that the E5 proteins may activate the PDGF receptor by binding directly to it.  相似文献   

6.
The bovine papillomavirus E5 protein is a 44-amino-acid membrane-associated protein that forms a stable complex with the endogenous platelet-derived growth factor (PDGF) beta receptor in rodent and bovine fibroblasts, resulting in sustained receptor activation and cell transformation. We report here that high-level expression of the E5 protein caused a reduction in the level of the mature form of the PDGF beta receptor in acutely and stably transformed mouse C127 cells. To explore in more detail the interaction of the E5 protein and the PDGF beta receptor, we tested the abilities of various E5 point mutants to bind the PDGF receptor, to induce PDGF receptor down-regulation and tyrosine phosphorylation, and to transform cells. A transformation-competent mutant, like the wild-type E5 protein, bound the receptor and induced receptor tyrosine phosphorylation and down-regulation. Transformation-defective E5 proteins either failed to interact with the endogenous PDGF beta receptor in mouse fibroblasts or underwent an aberrant interaction with the receptor. Mutation of glutamine at position 17, aspartic acid at position 33, or both carboxyl-terminal cysteine residues required for E5 homodimerization interfered with stable complex formation with the PDGF receptor, tyrosine phosphorylation and down-regulation of the receptor, and cell transformation. Point mutations at several other carboxyl-terminal positions generated transformation-defective E5 proteins that formed a complex with the PDGF receptor and induced receptor tyrosine phosphorylation but did not induce PDGF receptor down-regulation. Either PDGF receptor activation is not sufficient for transformation of C127 cells or the receptors that are tyrosine phosphorylated in response to these mutant E5 proteins are not fully activated and therefore are not able to deliver a mitogenic signal.  相似文献   

7.
L M Petti  V Reddy  S O Smith    D DiMaio 《Journal of virology》1997,71(10):7318-7327
The bovine papillomavirus E5 protein forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in receptor activation and cell transformation. Amino acids in both the putative transmembrane domain and extracytoplasmic carboxyl-terminal domain of the E5 protein appear important for PDGF receptor binding and activation. Previous analysis indicated that the transmembrane domain of the receptor was also required for complex formation and receptor activation. Here we analyzed receptor chimeras and point mutants to identify specific amino acids in the PDGF beta receptor required for productive interaction with the E5 protein. These receptor mutants were analyzed in murine Ba/F3 cells, which do not express endogenous receptor. Our results confirmed the importance of the transmembrane domain of the receptor for complex formation, receptor tyrosine phosphorylation, and mitogenic signaling in response to the E5 protein and established that the threonine residue in this domain is required for these activities. In addition, a positive charge in the extracellular juxtamembrane domain of the receptor was required for E5 interaction and signaling, whereas replacement of the wild-type lysine with either a neutral or acidic amino acid inhibited E5-induced receptor activation and transformation. All of the receptor mutants defective for activation by the E5 protein responded to acute treatment with PDGF and to stable expression of v-Sis, a form of PDGF. The required juxtamembrane lysine and transmembrane threonine are predicted to align precisely on the same face of an alpha helix packed in a left-handed coiled-coil geometry. These results establish that the E5 protein and v-Sis recognize distinct binding sites on the PDGF beta receptor and further clarify the nature of the interaction between the viral transforming protein and its cellular target.  相似文献   

8.
The E5 protein of bovine papillomavirus type 1 binds to and activates the endogenous platelet-derived growth factor (PDGF) beta receptor in fibroblasts, resulting in cell transformation. We have developed a functional assay to test the ability of PDGF beta receptor mutants to mediate a mitogenic signal initiated by the E5 protein. Lymphoid Ba/F3 cells are strictly dependent on interleukin-3 for growth, but coexpression of the wild-type PDGF beta receptor and the E5 or v-sis-encoded protein generated a mitogenic signal which allowed Ba/F3-derived cells to proliferate in the absence of interleukin-3. In these cells, the E5 protein bound to and caused increased tyrosine phosphorylation of both the mature and the precursor forms of the wild-type PDGF beta receptor. The tyrosine kinase activity of the receptor was necessary for E5-induced receptor tyrosine phosphorylation and mitogenic activity but not for complex formation with the E5 protein. In contrast, the PDGF-binding domain of the receptor was not required for complex formation with the E5 protein, E5-induced tyrosine phosphorylation or mitogenic activity, demonstrating that E5-mediated receptor activation is ligand independent. Analysis of receptor mutants lacking various combinations of tyrosine phosphorylation sites revealed that the E5 and v-sis-encoded proteins display similar requirements for signaling and suggested that the wild-type PDGF beta receptor can generate multiple independent mitogenic signals. Importantly, these mutants dissociated two activities of the PDGF beta receptor tyrosine kinase, both of which are required for sustained mitogenic signaling: (i) receptor autophosphorylation and creation of binding sites for SH2 domain-containing proteins and (ii) phosphorylation of substrates other than the receptor itself.  相似文献   

9.
The E5 polypeptide of bovine papillomavirus type 1 is a small membrane-bound protein which induces the transformation of immortalized fibroblasts, apparently via the formation of a ternary complex with the platelet-derived growth factor receptor (PDGFR) and the 16-kDa V-ATPase protein. This interaction seems to be mediated, at least in part, by their respective transmembrane domains. E5 also cooperates with transfected beta PDGFR to induce interleukin-3 (IL-3)-independent growth of a mouse myeloid precursor cell line (32D) which normally lacks expression of most known tyrosine kinase growth factor receptors. Cell proliferation induced by beta PDGFR and E5 is also highly specific, since the highly conserved alpha PDGFR and other related receptors did not physically or functionally interact with E5 in these cells. In the current study, analysis of chimeric alpha and beta PDGFRs confirmed that a short region encompassing the beta PDGFR transmembrane domain was sufficient for complex formation with E5, receptor autophosphorylation, and sustained proliferation of 32D cells in the absence of IL-3. Furthermore, a deletion mutant lacking the entire extracellular domain efficiently bound E5 and induced IL-3-independent growth. These data provide direct evidence that the interaction between E5 and the beta PDGFR involves amino acids 531 to 556 of the receptor transmembrane region and that this specific interaction is critical for activation of the PDGFR signaling complex.  相似文献   

10.
The bovine papillomavirus E5 gene encodes a 44-amino-acid, homodimeric transmembrane protein that is the smallest known transforming protein. The E5 protein transforms cultured fibroblasts by forming a stable complex with the endogenous platelet-derived growth factor (PDGF) beta receptor through transmembrane and juxtamembrane interactions, leading to sustained receptor activation. Aspartic acid 33 in the extracellular juxtamembrane region of the E5 protein is important for cell transformation and interaction with the PDGF beta receptor. A. N. Meyer et al. (Proc. Natl. Acad. Sci USA 91:4634-4638, 1994) speculated that this residue interacted with lysine 499 on the receptor. We constructed E5 mutants containing all possible substitutions at position 33, as well as several double mutants containing substitutions at aspartic acid 33 and at glutamic acid 36, and we examined the ability of these mutants to transform C127 mouse fibroblasts and to bind to and induce activation of the PDGF beta receptor. There was an excellent correlation between the transformation activities of the various mutants and their ability to bind to and activate the PDGF beta receptor. Analysis of the mutants demonstrated that a juxtamembrane negative charge on the E5 protein was required for cell transformation and for productive interaction with the PDGF beta receptor and indicated that aspartic acid 33 was more important for these activities than was glutamic acid 36. These results are consistent with the existence of an essential juxtamembrane salt bridge between lysine 499 on the PDGF beta receptor and an acidic residue in the C terminus of the E5 protein and lend support to our proposed model for the complex between the E5 dimer and the PDGF beta receptor.  相似文献   

11.
The E5 oncoprotein of bovine papillomavirus type 1 is a 44-amino-acid, hydrophobic polypeptide which localizes predominantly in Golgi membranes and appears to transform cells through the activation of tyrosine kinase growth factor receptors. In fibroblasts, E5 interacts with both the 16-kilodalton vacuolar ATPase subunit and the platelet-derived growth factor receptor (PDGF-R) via its hydrophobic transmembrane domain and induces autophosphorylation of the receptor. To further analyze the correlation between E5 biological activity and its ability to bind these cellular proteins, a series of nine E5 transmembrane mutants was evaluated. In 32D mouse hematopoietic cells, there was an incomplete correlation between the abilities of the E5 mutant proteins to associate the PDGF-R and to transform cells. However, all transforming E5 mutant proteins induced PDGF-R tyrosine phosphorylation. In NIH 3T3 and C127 mouse fibroblasts, both transforming and nontransforming E5 mutant proteins were defective for PDGF-R binding. In addition, while most of the transforming E5 proteins induced PDGF-R phosphorylation, one hypertransforming mutant (serine 17) neither bound nor induced receptor autophosphorylation. These findings support the hypothesis that the transformation of fibroblasts by E5 transmembrane mutants can involve alternative cellular targets or potentially independent activities of the E5 protein. In addition, these results underscore the critical role of the transmembrane domain in mediating E5 biological activities.  相似文献   

12.
We showed previously that the beta receptor for platelet-derived growth factor (PDGF) is constitutively activated in fibroblasts transformed by the 44-amino-acid bovine papillomavirus type 1 (BPV) E5 protein and that the E5 protein and the PDGF receptor exist in a stable complex in E5-transformed fibroblasts. On the basis of these results, we proposed that activation of the PDGF receptor by the BPV E5 protein generates a sustained proliferative signal, resulting in fibroblast transformation. In this study, we used a gene transfer approach to provide functional evidence that the PDGF receptor can mediate transformation by the E5 protein. We show that normal mouse mammary gland (NMuMG) cells, a murine mammary epithelial cell line that does not express PDGF receptors, are not susceptible to transformation by the E5 protein. Coexpression of the PDGF beta receptor and E5 genes in these cells results in markedly increased tyrosine phosphorylation of an immature PDGF receptor species and the formation of a stable complex between the E5 protein and this immature PDGF receptor form. Importantly, introduction of the PDGF receptor gene into NMuMG cells renders them highly susceptible to E5-mediated tumorigenic transformation. In contrast, the E5 protein does not induce transformation via the endogenous epidermal growth factor receptor pathway in these cells. These results demonstrate that the PDGF receptor, a cellular protein with a well-characterized role in the positive control of cell proliferation, can mediate transformation by a DNA virus transforming protein.  相似文献   

13.
The bovine papillomavirus E5 protein binds to the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in constitutive activation of the receptor and cell growth transformation. By subjecting extracts from E5-transformed or PDGF-treated cells to velocity sedimentation in sucrose gradients, activated PDGF beta receptor complexes were separated from monomeric, inactive receptor. Rapidly sedimenting activated complexes contained oligomeric (apparently dimeric), tyrosine-phosphorylated PDGF beta receptor, the E5 protein, and associated cellular signaling proteins including the p85 subunit of phosphoinositol 3'-kinase, phospholipase Cgamma, and Ras-GTPase activating protein. These signaling proteins made the major contribution to the increased sedimentation rate of the activated receptor complexes. Pairwise analysis of components of these complexes indicated that multiple signaling proteins and the E5 protein were simultaneously present in the activated complexes. Our results also showed that the E5 protein and PDGF activated only a small fraction of the total PDGF beta receptor, that not all receptor molecules associated with the E5 protein were tyrosine-phosphorylated, and that signaling proteins could bind to hemiphosphorylated receptor dimers. On the basis of these results, we propose a model for the assembly of multiprotein, activated PDGF beta receptor complexes in response to the E5 protein.  相似文献   

14.
Oates J  Hicks M  Dafforn TR  DiMaio D  Dixon AM 《Biochemistry》2008,47(34):8985-8992
The E5 protein from bovine papillomavirus is a type II membrane protein and the product of the smallest known oncogene. E5 causes cell transformation by binding and activating the platelet-derived growth factor beta receptor (PDGFbetaR). In order to productively interact with the receptor, it is thought that E5 binds as a dimer. However, wild-type E5 and various mutants have also been shown to form trimers, tetramers, and even higher order oligomers. The residues in E5 that drive and stabilize a dimeric state are also still in question. At present, two different models for the E5 dimer exist in the literature, one symmetric and one asymmetric. There is universal agreement, however, that the transmembrane (TM) domain plays a vital role in stabilizing the functional oligomer; indeed, mutation of various TM domain residues can abolish E5 function. In order to better resolve the role of the E5 TM domain in function, we have undertaken the first quantitative in vitro characterization of the E5 TM domain in detergent micelles and liposomes. Circular and linear dichroism analyses verify that the TM domain adopts a stable alpha-helical structure and is able to partition efficiently across lipid bilayers. SDS-PAGE and analytical ultracentrifugation demonstrate for the first time that the TM domain of E5 forms a strong dimer with a standard state free energy of dissociation of 5.0 kcal mol (-1). We have used our new results to interpret existing models of E5 dimer formation and provide a direct link between TM helix interactions and E5 function.  相似文献   

15.
The E5 oncoprotein of bovine papillomavirus type 1 is a Golgi-resident, 44-amino acid polypeptide that can transform fibroblast cell lines by activating endogenous platelet-derived growth factor receptor beta (PDGF-R). However, the recent discovery of E5 mutants that exhibit strong transforming activity but minimal PDGF-R tyrosine phosphorylation indicates that E5 can potentially use additional signal transduction pathway(s) to transform cells. We now show that two classes of E5 mutants, despite poorly activating the PDGF-R, induce tyrosine phosphorylation and activation of phosphoinositide 3-kinase (PI 3-K) and that this activation is resistant to a selective inhibitor of PDGF-R kinase activity, tyrphostin AG1296. Consistent with this independence from PDGF-R signaling, the E5 mutants fail to induce significant cell proliferation in the absence of PDGF, unlike wild-type E5 or the sis oncoprotein. Despite differences in growth factor requirements, however, both wild-type E5 and mutant E5 cell lines form colonies in agarose. Interestingly, activation of PI 3-K occurs without concomitant activation of the ras-dependent mitogen-activated protein kinase pathway. The known ability of constitutively activated PI 3-K to induce anchorage-independent cell proliferation suggests a mechanism by which the mutant E5 proteins transform cells.  相似文献   

16.
The 44 amino acid E5 transmembrane protein is the primary oncogene product of bovine papillomavirus. Homodimers of the E5 protein activate the cellular PDGF beta receptor tyrosine kinase by binding to its transmembrane domain and inducing receptor dimerization, resulting in cellular transformation. To investigate the role of transmembrane hydrophilic amino acids in receptor activation, we constructed a library of dimeric small transmembrane proteins in which 16 transmembrane amino acids of the E5 protein were replaced with random, predominantly hydrophobic amino acids. A low level of hydrophilic amino acids was encoded at each of the randomized positions, including position 17, which is an essential glutamine in the wild-type E5 protein. Library proteins that induced transformation in mouse C127 cells stably bound and activated the PDGF beta receptor. Strikingly, 35% of the transforming clones had a hydrophilic amino acid at position 17, highlighting the importance of this position in activation of the PDGF beta receptor. Hydrophilic amino acids in other transforming proteins were found adjacent to position 17 or at position 14 or 21, which are in the E5 homodimer interface. Approximately 22% of the transforming proteins lacked hydrophilic amino acids. The hydrophilic amino acids in the transforming clones appear to be important for driving homodimerization, binding to the PDGF beta receptor, or both. Interestingly, several of the library proteins bound and activated PDGF beta receptor transmembrane mutants that were not activated by the wild-type E5 protein. These experiments identified transmembrane proteins that activate the PDGF beta receptor and revealed the importance of hydrophilic amino acids at specific positions in the transmembrane sequence. Our identification of transformation-competent transmembrane proteins with altered specificity suggests that this approach may allow the creation and identification of transmembrane proteins that modulate the activity of a variety of receptor tyrosine kinases.  相似文献   

17.
Growth factor receptors are typically activated by the binding of soluble ligands to the extracellular domain of the receptor, but certain viral transmembrane proteins can induce growth factor receptor activation by binding to the receptor transmembrane domain. For example, homodimers of the transmembrane 44-amino acid bovine papillomavirus E5 protein bind the transmembrane region of the PDGF beta receptor tyrosine kinase, causing receptor dimerization, phosphorylation, and cell transformation. To determine whether it is possible to select novel biologically active transmembrane proteins that can activate growth factor receptors, we constructed and identified small proteins with random hydrophobic transmembrane domains that can bind and activate the PDGF beta receptor. Remarkably, cell transformation was induced by approximately 10% of the clones in a library in which 15 transmembrane amino acid residues of the E5 protein were replaced with random hydrophobic sequences. The transformation-competent transmembrane proteins formed dimers and stably bound and activated the PDGF beta receptor. Genetic studies demonstrated that the biological activity of the transformation-competent proteins depended on specific interactions with the transmembrane domain of the PDGF beta receptor. A consensus sequence distinct from the wild-type E5 sequence was identified that restored transforming activity to a non-transforming poly-leucine transmembrane sequence, indicating that divergent transmembrane sequence motifs can activate the PDGF beta receptor. Molecular modeling suggested that diverse transforming sequences shared similar protein structure, including the same homodimer interface as the wild-type E5 protein. These experiments have identified novel proteins with transmembrane sequences distinct from the E5 protein that can activate the PDGF beta receptor and transform cells. More generally, this approach may allow the creation and identification of small proteins that modulate the activity of a variety of cellular transmembrane proteins.  相似文献   

18.
The bovine papillomavirus E5 protein is thought to be a type II integral membrane protein that exists as a disulfide-linked homodimer in transformed cells. Polarized-infrared measurements show that the E5 dimer in membrane bilayers is largely α-helical and has a transmembrane orientation. Computational searches of helix-helix conformations reveal two possible low-energy dimer structures. Correlation of these results with previous mutagenesis studies on the E5 protein suggests how the E5 dimer may serve as a molecular scaffold for dimerization and ligand-independent activation of the PDGF-β receptor. We propose that on each face of the E5 dimer a PDGF-β receptor molecule interacts directly with Gln17 from one E5 monomer and with Asp33 from the other E5 monomer. This model accounts for the requirement of Gln17 and Asp33 for complex formation and explains genetic results that dimerization of the E5 protein is essential for cell transformation. Proteins 33:601–612, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
The murine myeloid progenitor cell line 32D was recently shown to undergo monocytic differentiation when protein kinase C-delta (PKC-delta) was overexpressed and activated by 12-O-tetradecanoylphorbol-13-acetate (TPA) (H. Mischak, J.H. Pierce, J. Goodnight, M.G. Kazanietz, P.M. Blumberg, and J.F. Mushinski, J. Biol. Chem. 268:20110-20115, 1993). Tyrosine phosphorylation of PKC-delta occurred when PKC-delta-transfected 32D cells were stimulated by TPA (W. Li, H. Mischak, J.-C. Yu, L.-M. Wang, J.F. Mushinski, M.A. Heidaran, and J.H. Pierce, J. Biol. Chem. 269:2349-2352, 1994). In order to elucidate the role played by PKC-delta in response to activation of a receptor tyrosine kinase, we transfected platelet-derived growth factor beta receptor (PDGF-beta R) alone (32D/PDGF-beta R) or together with PKC-delta (32D/PDGF-beta R/PKC-delta) into 32D cells. NIH 3T3 cells which endogenously express both PDGF-alpha R and PDGF-beta R were also transfected with PKC-delta (NIH 3T3/PKC-delta). Like TPA treatment, PDGF-BB stimulation caused striking phosphorylation of PKC-delta in vivo and translocation of some PKC-delta from the cytosol fraction to the membrane fraction in both cell systems. Some of the phosphorylation induced by PDGF-BB treatment was found to be on a tyrosine residue(s). Tyrosine-phosphorylated PKC-delta was observed only for the membrane fraction after stimulation with PDGF-BB or TPA. The enzymatic activity of PKC-delta in the membrane fraction also increased after stimulation with TPA or PDGF, providing a positive correlation between PKC-delta tyrosine phosphorylation and its activation. Overnight treatment of 32D/PDGF-beta R/PKC-delta cells with PDGF-BB induced monocytic differentiation as judged by an increase in expression of cell surface macrophage differentiation markers. PDGF-BB had much weaker effects on 32D/PDGF-beta R cell differentiation, suggesting that increased PKC-delta expression enhanced monocytic differentiation. These results indicate that PKC-delta is a downstream molecule in the PDGFR signaling pathway and may play a pivotal role in PDGF-beta R-mediated cell differentiation.  相似文献   

20.
We have previously reported that the Huntingtin interacting protein 1 (HIP1) gene is fused to the platelet-derived growth factor beta receptor (PDGFbetaR) gene in a patient with chronic myelomonocytic leukemia. We now show that HIP1/PDGFbetaR oligomerizes, is constitutively tyrosine-phosphorylated, and transforms the murine hematopoietic cell line, Ba/F3, to interleukin-3-independent growth. A kinase-inactive mutant is neither tyrosine-phosphorylated nor able to transform Ba/F3 cells. Oligomerization and kinase activation required the 55-amino acid carboxyl-terminal TALIN homology region but not the leucine zipper domain. Tyrosine phosphorylation of a 130-kDa protein and STAT5 correlates with transformation in cells expressing HIP1/PDGFbetaR and related mutants. A deletion mutant fusion protein that contains only the TALIN homology region of HIP1 fused to PDGFbetaR is incapable of transforming Ba/F3 cells and does not tyrosine-phosphorylate p130 or STAT5, although it is itself constitutively tyrosine-phosphorylated. We have also analyzed cells expressing Tyr --> Phe mutants of HIP1/PDGFbetaR in the known PDGFbetaR SH2 docking sites and report that none of these sites are necessary for STAT5 activation, p130 phosphorylation, or Ba/F3 transformation. The correlation of factor-independent growth of hematopoietic cells with p130 and STAT5 phosphorylation/activation in both the HIP1/PDGFbetaR Tyr --> Phe and deletion mutational variants suggests that both STAT5 and p130 are important for transformation mediated by HIP1/PDGFbetaR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号