首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elasmobranch fishes localize weak electric sources at field intensities of <5 ηV cm−1, but the response dynamics of electrosensory primary afferent neurons to near threshold stimuli in situ are not well characterized. Electrosensory primary afferents in the round stingray, Urolophus halleri, have a relatively high discharge rate, a regular discharge pattern and entrain to 1-Hz sinusoidal peak electric field gradients of ≤20 ηV cm−1. Peak neural discharge for units increases as a non-linear function of stimulus intensity, and unit sensitivity (gain) decreases as stimulus intensity increases. Average peak rate-intensity encoding is commonly lost when peak spike rate approximately doubles that of resting, and for many units occurs at intensities <1 μV cm−1. Best neural sensitivity for nearly all units is at 1–2 Hz with a low-frequency slope of 8 dB/decade and a high-frequency slope of −23 dB/decade. The response characteristics of stingray electrosensory primary afferents indicate sensory adaptations for detection of extremely weak phasic fields near 1–2 Hz. We argue that these properties reflect evolutionary adaptations in elasmobranch fishes to enhance detection of prey, communication and social interactions, and possibly electric-mediated geomagnetic orientation. Accepted: 20 June 1997  相似文献   

2.
The pit organs of the beetle Melanophilaacuminata were stimulated with monochromatic infrared radiation using a continuous wave CO overtone infrared laser. Best sensitivity was in the wavelength range 2.8–3.5 μm. In this range a stimulus intensity of 14.7 mW cm−2 was sufficient to generate single action potentials. At a wavelength of 5 μm receptor performance significantly decreased. An increase in stimulus intensity caused a decrease in response latency and an increase in the number of action potentials elicited. At a given wavelength (3.4 μm) the dynamic amplitude range of action potential responses covered 12 dB. At high stimulus intensities (94.2 mW cm−2) a stimulus duration of 4 ms was sufficient to generate one to two action potentials and a stimulus duration of 60 ms already caused response saturation (with up to nine action potentials). In a repetitive stimulus regime distinct receptor potentials were visible up to a frequency of 600 Hz. Accepted: 18 March 2000  相似文献   

3.
The gap detection paradigm is frequently used in psychoacoustics to characterize the temporal acuity of the auditory system. Neural responses to silent gaps embedded in white-noise carriers, were obtained from mouse inferior colliculus (IC) neurons and the results compared to behavioral estimates of gap detection. Neural correlates of gap detection were obtained from 78 single neurons located in the central nucleus of the IC. Minimal gap thresholds (MGTs) were computed from single-unit gap functions and were found to be comparable, 1–2 ms, to the behavioral gap threshold (2 ms). There was no difference in MGTs for units in which both carrier intensities were collected. Single unit responses were classified based on temporal discharge patterns to steady-state noise bursts. Onset and primary-like units had the shortest mean MGTs (2.0 ms), followed by sustained units (4.0 ms) and phasic-off units (4.2 ms). The longest MGTs were obtained for inhibitory neurons (xˉ = 14 ms). Finally, the time-course of behavioral and neurophysiological gap functions were found to be in good agreement. The results of the present study indicate the neural code necessary for behavioral gap detection is present in the temporal discharge patterns of the majority of IC neurons. Accepted: 6 February 1997  相似文献   

4.
This study examines the contribution of GABAergic inhibition to the discharge pattern and recovery properties of 110 bat inferior collicular neurons by means of bicuculline application to their recording sites. When stimulated with single pulses, 74 (67%) neurons discharged one or two impulses (phasic responders), 19 (17%) discharged three to ten impulses (phasic bursters) and 17 (16%) discharged impulses throughout the entire stimulus duration (tonic responders). Bicuculline application changed phasic responders into phasic bursters or tonic responders, increased the number of impulses by 10–2000% and shortened the response latency of most neurons. When stimulated with pairs of sound pulses, the recovery cycles of these neurons can be described as: (1) long inhibition (n = 49, 45%); (2) short inhibition (n = 41, 37%); and (3) fast recovery (n = 20, 18%) based upon the 50% recovery time that was either longer than 20 ms, between 10 and 20 ms or shorter than 10 ms. Bicuculline application shortened the 50% recovery time of most neurons by 11–2350% allowing them to respond to pairs of sound pulses at very short interpulse intervals. These data demonstrate that GABAergic inhibition contributes significantly to auditory temporal processing. Accepted: 18 April 1997  相似文献   

5.
We studied the directionality of spike timing in the responses of single auditory nerve fibers of the grass frog, Rana temporaria, to tone burst stimulation. Both the latency of the first spike after stimulus onset and the preferred firing phase during the stimulus were studied. In addition, the directionality of the phase of eardrum vibrations was measured. The response latency showed systematic and statistically significant changes with sound direction at both low and high frequencies. The latency changes were correlated with response strength (spike rate) changes and were probably the result of directional changes in effective stimulus intensity. Systematic changes in the preferred firing phase were seen in all fibers that showed phaselocking (i.e., at frequencies below 500–700 Hz). The mean phase lead for stimulation from the contralateral side was approximately 140° at 200 Hz and decreased to approximately 100° at 700 Hz. These phaseshifts correspond to differences in spike timing of approximately 2 ms and 0.4 ms respectively. The phaseshifts were nearly independent of stimulus intensity. The phase directionality of eardrum vibrations was smaller than that of the nerve fibers. Hence, the strong directional phaseshifts shown by the nerve fibers probably reflect the directional characteristics of extratympanic pathways. Accepted: 23 November 1996  相似文献   

6.
Visual evoked potentials (EP) were recorded when the test subjects accomplished the tasks of a comparison of a current stimulus with the previous one, the stimuli being presented in a continuous sequence. In the first task, rare repetition of two stimuli (Russian letters) in the continuously changing flow of stimuli was relevant, and the test subject had to press the button when it happened; in the second task, the relevant stimulus was a rare change in the flow of stimuli. The influence of the stimulus repetition/change factor on EP was analyzed. The processes related to the comparison of the current and previous stimuli were most manifest in four time intervals: 120–140, 180–210, 260–280, and 350–370 ms. The occipito-temporal component of EP revealed in the interval of 180–210 ms, which we denoted as the negative component of visual mismatch (NCVM), proved a special component, differing in its functional and temporal characteristics from theN 2b component. WhereasN 2b is modulated by the factor of stimulus probability, the NCVM by that of stimulus repetition/change.  相似文献   

7.
We recorded from single units of individual sensilla of the thoracic infrared (IR) pit organs of Melanophila acuminata. When the organ was stimulated with a thermal radiator whose emission spectrum was similar to that of a typical forest fire, units responded phasically with up to seven spikes within 30–40 ms at a radiation power of 24 mW cm−2. In the experiments all wavelengths shorter than 1.6 μm were excluded by a longpass IR filter. Response latencies were about 4 ms and initial impulse frequencies were up to 250 impulses per second (ips). A single spike could be generated even when stimulus duration was only 2 ms. Reduction of total radiation power from 24 mW cm−2 to 5 mW cm−2 resulted in increased response latencies of 5–6 ms and the occurrence of only two to three spikes. Initial impulse frequencies decreased to 125 ips. According to our physiological results and calculations, Melanophila should be able to detect a 10-hectare fire from a distance of 12 km. Mechanical stimuli also evoked responses of the IR sensilla. All present morphological and physiological findings lead to the conclusion that the IR receptors of Melanophila must function by means of a hitherto undescribed photomechanic mechanism. Accepted: 1 November 1997  相似文献   

8.
The pupil of an awake, untrained, head-restrained barn owl was found to dilate in response to sounds with a latency of about 25 ms. The magnitude of the dilation scaled with signal-to-noise ratio. The dilation response habituated when a sound was repeated, but recovered when stimulus frequency or location was changed. The magnitude of the recovered response was related to the degree to which habituating and novel stimuli differed and was therefore exploited to measure frequency and spatial discrimination. Frequency discrimination was examined by habituating the response to a reference tone at 3 kHz or 6 kHz and determining the minimum change in frequency required to induce recovery. We observed frequency discrimination of 125 Hz at 3 kHz and 250 Hz at 6 kHz – values comparable to those reported by others using an operant task. Spatial discrimination was assessed by habituating the response to a stimulus from one location and determining the minimum horizontal speaker separation required for recovery. This yielded the first measure of the minimum audible angle in the barn owl: 3° for broadband noise and 4.5° for narrowband noise. The acoustically evoked pupillary dilation is thus a promising indicator of auditory discrimination requiring neither training nor aversive stimuli. Accepted: 28 February 2000  相似文献   

9.
This study examines the effect of pulse repetition rate (PRR), pulse intensity, and bicuculline on the minimum threshold (MT) and latency of inferior collicular neurons of the big brown bat, Eptesicusfuscus, under free-field stimulation conditions. It tests the hypothesis that changes in MT and latency of collicular neurons are co-dependent on PRR. The number of impulses in inferior collicular neurons (n = 245) increased either monotonically (25%) or non-monotonically (75%) with pulse intensity. Latencies either decreased to a plateau (72%), fluctuated unpredictably within 3 ms (21%) or changed very little (7%) with increasing pulse intensity. Latencies and MTs of most collicular neurons increased by 1.5–24 ms (mean ± SD = 4.8 ± 3.3 ms) and 4–75 dB (mean ± SD = 22.1 ± 16.2 dB) with increasing PRR. In most neurons (94%), the latency increase was completely (42%) or partially (52%) eliminated when pulse intensity was compensated for the MT increase with PRR. Complete elimination of latency was achieved by bicuculline application. In a few neurons (6%), the latency increase with PRR was not affected by compensated pulse intensity or bicuculline application. Accepted: 8 October 1997  相似文献   

10.
Neurons in the inferior colliculus (IC) of the awake big brown bat, Eptesicus fuscus, were examined for joint frequency and latency response properties which could register the timing of the bat's frequency-modulated (FM) biosonar echoes. Best frequencies (BFs) range from 10 kHz to 100 kHz with 50% tuning widths mostly from 1 kHz to 8 kHz. Neurons respond with one discharge per 2-ms tone burst or FM stimulus at a characteristic latency in the range of 3–45 ms, with latency variability (SD) of 50 μs to 4–6 ms or more. BF distribution is related to biosonar signal structure. As observed previously, on a linear frequency scale BFs appear biased to lower frequencies, with 20–40 kHz overrepresented. However, on a hyperbolic frequency (linear period) scale BFs appear more uniformly distributed, with little overrepresentation. The cumulative proportion of BFs in FM1 and FM2 bands reconstructs a scaled version of the spectrogram of FM broadcasts. Correcting FM latencies for absolute BF latencies and BF time-in-sweep reveals a subset of IC cells which respond dynamically to the timing of their BFs in FM sweeps. Behaviorally, Eptesicus perceives echo delay and phase with microsecond or even submicrosecond accuracy and resolution, but even with use of phase-locked FM and tone-burst stimuli the cell-by-cell precision of IC time-frequency registration seems inadequate by itself to account for the temporal acuity exhibited by the bat. Accepted: 21 June 1997  相似文献   

11.
The present study demonstrates that perithreshold temporal integrationoccurs in the human taste system across stimulus durations rangingfrom 200 to 1500 ms in a manner analogous to that seen in othermajor sensory systems. Thus, the notion that gustation is comparativelyinsensitive to temporal stimulus parameters at threshold levelsis disproved. Chem. Senses 22: 171–175, 1997.  相似文献   

12.
 The detection of compound sinusoidal gratings of various spatial frequency separations and four different grating sizes has been studied using the summation-to-threshold paradigm. Contrast interrelation functions have been measured and spatial frequency tuning estimates, based on the slope of the contrast interrelation function at two definite points, were derived using the “negative gradient technique” proposed by Logvinenko [Logvinenko (1995) Biol Cybern 73: 547–552]. It is shown that compound grating detection can be modelled by assuming pattern-specific sensory mechanisms for each of the spatial frequency components, which adapt to the periodicity and the size of the stimulus but not to its envelope function. Further, it is shown that relative sensitivity for a given spatial frequency separation can be predicted with good accuracy by the correlation of the grating components used for superposition. It is suggested that the most plausible implementation of the pattern correlation principle in human grating detection is the “grating cell” model. Received: 10 March 2000 / Accepted in revised form: 4 December 2000  相似文献   

13.
To understand how chemoreceptor organs may extract temporal information from odor plumes, we investigated the frequency filter properties of lobster chemoreceptor cells. We used rapid stimulation and high-resolution stimulus measurement for accurate stimulus control and recorded extracellular responses from chemoreceptors in the lobster lateral antennule in situ. We tested 16 hydroxyproline-sensitive cells with a series of ten 100-ms pulses at 10, 100 and 1000 μmol l−1 at stimulation frequencies from 0.5 Hz to 4 Hz. Receptor cell responses could accurately encode 10 μmol l−1, but not 100 or 1000 μmol l−1 pulses, delivered at rates of 4 Hz. Flicker-fusion frequency and synchronization with the stimulus pulse train were concentration dependent: performance rates above 1 Hz became poorer both with increasing pulse amplitude and frequency. Flicker fusion frequency was 3 Hz for 100 μmol l−1 pulses and 2 Hz for 1000 μmol l−1 pulses. Individual cells showed differences in their stimulus pulse following capabilities, as measured by the synchronization coefficient. These individual differences may form a basis for coding temporal features of an odor plume in an across-fiber pattern. Accepted: 7 July 1999  相似文献   

14.
We studied the role of the lateral line system for detection and discrimination of dipole stimuli in the oscar, Astronotus ocellatus (Family Cichlidae), and determined detection thresholds in still water and frequency discrimination capabilities in still and turbulent water. Average detection threshold of six animals for a 100-Hz dipole stimulus was 0.0059 μm peak-to-peak water displacement at the surface of the fish. After inactivation of the neuromast receptor organs of the lateral line system with the antibiotic streptomycin, dipole detection was reduced, but recovered within 2–4 weeks. This suggests that the oscar relied strongly on hydrodynamic information received by the lateral line system. Five oscars learned to discriminate a 100-Hz stimulus from 70 Hz and lower frequencies. When turbulence was introduced into the experimental tank, fish were still able to discriminate 100 Hz from frequencies 70 Hz and lower indicating that frequency discrimination mediated by the lateral line system was not reduced in turbulent water.  相似文献   

15.
The sensory basis of rheotaxis (orientation to currents) was investigated in the blind Mexican cave fish, Astyanax fasciatus. An unconditioned rheotactic response to uniform velocity flows was exhibited, with a threshold of less than 3 cm s−1. Disabling the entire lateral line or the superficial neuromast receptor class increased the rheotactic threshold to greater than 9 cm s−1. A pharmacological block of the lateral line canal system alone had no effect. These results demonstrate that the superficial lateral line system controls rheotaxis at low current velocities. The effect of pairing an odor stimulant with the water current dropped the rheotactic threshold to less than 0.4 cm s−1. This study provides a clear behavioral role for the superficial neuromasts where none previously existed, and also establishes a link between the mechanosensory lateral line and olfactory systems in the olfactory search behavior of the cave fish. Accepted: 9 January 1999  相似文献   

16.
The bilateral pairs of cercal interneurons 10-2a and 10-3a in the cricket terminal ganglion are supposed to constitute a functional system for measuring the direction of air-borne signals, based on their phase-locked responses and selective directional sensitivity. The purpose of this study was to obtain information on the frequency and intensity characteristics and thus the potential working range of this system. By recording intracellularly from the axons of the interneurons we measured responses for stimuli of varying frequency, intensity, and direction. Typically, the stimulus frequency range examined extended from 5 to 600 Hz, at intensities of 0.03–30 mm s−1 (peak-to-peak air-particle velocity). The results show that interneurons 10-2a and 10-3a preserved their level of activity, response type, and direction tuning in the whole frequency range tested. Stimulus-response cross-correlograms revealed that spike trains were synchronized with stimulus waves at even higher frequencies, at least up to 1000 Hz. At a given air-particle velocity in the range of about 2–2.5 logarithmic units, the spike number responses of the interneurons were nearly constant over a wide frequency range. Directional diagrams appeared to be independent of stimulus frequency, both in orientation and in amplitude. Accepted: 14 October 1998  相似文献   

17.
 Stochastic resonance can be described as improved detection of weak periodic stimuli by a dynamic nonlinear system, resulting from the simultaneous presentation of a restricted dynamic range of low-intensity noise. This property has been reported in simple physical and biological activities. The present study describes data consistent with the interpretation that stochastic resonance can be observed in the response of cochlear neurons. These experiments utilized low levels (−5 to 25 dB SPL) of stimuli and noise (5 to 30 dB SPL). Stimuli consisted of simultaneously presented 8 kHz (F 1) and 8.8 kHz (F 2) tone bursts, which generated an 800 Hz F 2F 1 cochlear nerve envelope ensemble response in the gerbil. The mean response threshold was approximately −3 dB SPL. Simultaneous presentation of a low-intensity wideband noise increased the amplitude of this response. This was observed with tonal stimuli having intensities of 0–5 dB SPL; responses to stimulus levels >10 dB were attenuated by noise. Response amplitude was increased by noise levels of 10–15 dB; the amplitude was unaffected by lower levels of noise, and decreased in the presence of higher noise levels. These properties are compatible with those of stochastic resonance. Accepted: 11 March 1999  相似文献   

18.
Stretch reflexes were evoked in elbow flexor muscles undergoing three different muscle contractions, i.e. isotonic shortening (SHO) and lengthening (LEN), and isometric (ISO) contractions. The intermuscle relationships for the magnitude of the stretch reflex component in the eletromyographic (EMG) activities of two main elbow flexor muscles, i.e. the biceps brachii (BB) and the brachioradialis (BRD), were compared among the three types of contractions. The subjects were requested to move their forearms sinusoidally (0.1 Hz) against a constant pre-load between elbow joint angles of 10° (0° = full extension) and 80° during SHO and LEN, and to keep an angle of 45° during the ISO. The perturbations were applied at the elbow angle of 45° in pseudo-random order. The EMG signals were rectified and averaged over a period of 100 ms before and 400 ms after the onset of the perturbation 40–50 times. From the ensemble averaged EMG waveform, the background activity (BGA), short (20–50 ms) and long latency (M2, 50–80, M3, 80–100 ms) reflex and voluntary activity (100–150 ms) components were measured. The results showed that both BGA and reflex EMG activity of the two elbow flexor muscles were markedly decreased during the lengthening contraction compared to the SHO and ISO contractions. Furthermore, the changes of reflex EMG components in the BRD muscle were more pronounced than those in the BB muscle, i.e. the ratios of M2 and M3 magnitudes between BRD and BB (BRD:BB) were significantly reduced during the LEN contractions. These results would suggest that the gain of long latency stretch reflex EMG activities in synergistic muscles might be modulated independently according to the model of muscle contraction. Accepted: 1 September 1997  相似文献   

19.
Three identified interneurons of the cercal system were investigated electrophysiologically; these interneurons are sensitive only to stimulation of cercal filiform-hair sensilla by low-frequency sound. Measurement of the frequency ranges revealed cut-off frequencies between ca. 20 and 70 Hz. Analysis of the responses near threshold and at higher intensities in the frequency range 5–500 Hz shows that one of them (Interneuron 9-1b) exhibits a sensitivity maximum at the frequency-intensity combination necessary for the perception of an intraspecific signal at 30 Hz. This band-pass behavior disappears at higher stimulus intensities. In order to investigate the mechanism of the low-frequency selectivity of the interneurons, two-tone stimulation experiments were performed. When stimuli in the best-frequency range were superimposed by a 100-Hz tone, the spiking activity was suppressed in an intensity-dependent manner. Accepted: 22 July 1998  相似文献   

20.
Honeybees Apis mellifera detect coloured targets presented to the frontal region of their compound eyes using their colour vision system at larger visual angles (α > 15°), and an achromatic visual system based on the long-wave photoreceptor type at smaller visual angles (5° < α < 15°). Here we examine the capability of the dorsal, ventral and frontal regions of the eye for colour detection. The minimum visual angle αmin at which the bees detect a stimulus providing both chromatic contrast and receptor-specific contrasts to the three receptor types varies for the different regions of the eye: 7.1 ± 0.5° for the ventral region, 8.2 ± 0.6° for the dorsal region and 4.0 ± 0.5° for the frontal region. Flight trajectories show that when the target was presented in the horizontal plane, bees used only the ventral region of their eyes to make their choices. When the targets appeared dorsally, bees used the frontodorsal region. This finding suggests that pure dorsal detection of coloured targets is difficult in this context. Furthermore, αmin in the ventral plane depends on receptor-specific contrasts. The absence of S-receptor contrast does not affect the performance (αmin = 5.9 ± 0.5°), whilst the absence of M- and L-receptor contrast significantly impairs the detection task. Minimal visual angles of 10.3 ± 0.9° and 17.6 ± 3°, respectively, are obtained in these cases. Thus, as for many visual tasks, the compound eye of the honeybee shows a regionalisation of colour detection that might be related to peripheral or central specialisations. Accepted: 28 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号