首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freezing of xylem sap without cavitation   总被引:9,自引:2,他引:7       下载免费PDF全文
Freezing of stem sections and entire twigs of hemlock (Tsuga canadensis) has been demonstrated to occur without increasing the resistance to the movement of water through the frozen part after rewarming. This was interpreted to mean that freezing did not produce cavitation in the xylem sap even though A) the sap was unquestionably frozen; B) it contained dissolved gases; and C) it was under tension before freezing and after. Freezing stem sections of some other evergreen gymnosperms during the summer again produced no evidence for cavitation of the xylem sap. On the other hand, freezing stem sections of some angiosperms invariably increased the resistance to sap flow leading to wilting and death in a few hours when the sap tension was at normal daytime values at the time of freezing. These results were interpreted to mean that the bordered pits on the tracheids of gymnosperms function to isolate the freezing sap in each tracheid so that the expansion of water upon freezing not only eliminates any existing tension but also develops positive pressure in the sap. Dissolved gases frozen out of solution may then be redissolved under this positive pressure as melting occurs. As the bubbles are reduced in size by this ice pressure developed in an isolated tracheid, further pressure is applied by the surface tension of the water against air. If the bubbles are redissolved or are reduced to sufficient small size by the time the tension returns to the sap as the last ice crystals melt, then the internal pressure from surface tension in any existing small bubbles may exceed the hydrostatic tension of the melted sap and the bubbles cannot expand and will continue to dissolve.  相似文献   

2.
Tyree MT  Yang S 《Plant physiology》1992,100(2):669-676
Experiments were conducted to determine the influence of stem diameter, xylem pressure potential, and temperature on the rate of recovery of hydraulic conductivity in embolized stems of Acer saccharum Marsh. Recovery of conductivity was accompanied by an increase in stem water content as water replaced air bubbles and bubbles dissolved from vessels into the surrounding water. The time required for stems to go from less than 3 to 100% hydraulic conductivity increased approximately with the square of the stem diameter and increased with decreasing xylem pressure potential. Recovery was halted when xylem pressure potential decreased below −6 kPa. Increasing xylem pressure from 13 to 150 kPa reduced the time for recovery by a factor of 4. Temperature had little influence on the rate of recovery of hydraulic conductivity. All of these results are in accord with a theory of bubble dissolution in which it is assumed that: (a) the rate of bubble dissolution is rate limited by diffusion of air from the bubbles to the outer surface of the stems, (b) the equilibrium concentration of gases in liquid in stems is determined by Henry's law at all air-water interfaces, (c) the equilibrium solubility concentration is determined only by the partial pressure of the gas in the gas phase and not directly by the liquid-phase pressure, and (d) the gas pressure of an entrapped air bubble in the lumen of a cell can never be less than atmospheric pressure at equilibrium.  相似文献   

3.
Rachides of Juglans regia L. (Juglandaceae) and one‐year‐old twigs of Evonymus latifolia (L.) Mill. (Celastraceae) were cooled in air to ?25 °C, with an ultrasound detector attached to the xylem where peripheral tissues had been peeled off. Ultrasound acoustic emissions started between ?4·5 and ?14·3 °C, as measured with a thermocouple inserted into the xylem. The number of emissions was significantly lower from saturated plant parts than from those frozen at field water potentials. Bench‐drying of saturated samples produced significantly less signals than the freezing protocols. These findings are in accordance with the hypothesis that freezing of xylem under tension induces cavitation events. They corroborate earlier work which tried to provide a logical explanation for the seemingly paradoxical cryo‐scanning electron microscope observations of changing vessel contents during a daycourse in the field.  相似文献   

4.
Water transport from the roots to leaves in chaparral shrubs of California occurs through xylem vessels and tracheids. The formation of gas bubbles in xylem can block water transport (gas embolism), leading to shoot dieback. Two environmental factors that cause gas embolism formation in xylem conduits are drought and freezing air temperatures. We compared the differential vulnerabilities of Rhus laurina and Ceanothus megacarpus, co-dominant shrub species in the coastal regions of the Santa Monica Mountains of southern California, to both water stress-induced and freezing-induced embolism of their xylem. Rhus laurina has relatively large xylem vessel diameters, a deep root system, and a large basal burl from which it vigorously resprouts after wildfire or freezing injury. In contrast, Ceanothus megacarpus has small-diameter vessels, a shallow root system, no basal burl and is a non-sprouter after shoot removal by wildfire. We found that R. laurina became 50% embolized at a water stress of –3 MPa and 100% embolized by a freeze–thaw cycle at all hydration levels. In contrast, C. megacarpus became 50% embolized at a water stress of –9 MPa and 100% embolized by freeze–thaw events only at water potentials lower than –3 MPa. Reducing thaw rates from 0·8 °C min?1 to 0·08 °C min?1 (the normal thaw rate measured in situ) had no effect on embolism formation in R. laurina but significantly reduced embolism occurrence in well-hydrated C. megacarpus (embolism reduced from 74 to 35%). These results were consistent with the theory of gas bubble formation and dissolution in xylem sap. They also agree with field observations of differential shoot dieback in these two species after a natural freeze–thaw event in the Santa Monica Mountains.  相似文献   

5.
Advanced acoustic emission analysis, special microscopic examinations and experiments with physical model systems give reasons for the assumption that the tension in the water conducting system of vascular plants is caused by countless minute gas bubbles strongly adhering to the hydrophobic lignin domains of the xylem vessel walls. We ascertained these bubbles for several species of temperate deciduous trees and conifers. It is our hypothesis that the coherent bubble system of the xylem conduits operates as a force-transmitting medium that is capable of transporting water in traveling peristaltic waves. By virtue of the high elasticity of the gas bubbles, the hydro-pneumatic bubble system is capable of cyclic storing and releasing of energy. We consider the abrupt regrouping of the wall adherent bubble system to be the origin of acoustic emissions from plants. For Ulmus glabra, we recorded violent acoustic activity during both transpiration and re-hydration. The frequency spectrum and the waveforms of the detected acoustic emissions contradict traditional assumptions according to which acoustic emissions are caused by cavitation disruption of the stressed water column. We consider negative pressure in terms of the cohesion theory to be mimicked by the tension of the wall adherent bubble system.  相似文献   

6.
Summary Air bubbles were introduced into living hair cells ofNicotiana miersii. The air entered through wounds inflicted on slightly flaccid trichomes from the base of a fruiting stem. Protoplasmic streaming often continued normally in the threads that were near or apparently touched the air bubble. When air bubbles were included within a plasmolyzing protoplast, the protoplasm nearest the air bubble appeared and behaved like that further away.The volume of an included air bubble is affected by many factors, but as the bubble gets smaller, the overriding factor determining the rate of decrease in volume is the surface tension. The effect of the surface tension on the pressure within the bubble is such that the slope, in a graph of the radius of the bubble to the third power against time, is a constant. The value of this slope constant varies directly with the surface tension, although the surface tension is not the only factor determining its magnitude. The rate of volume decrease of bubbles both in living and in dead cells tended to be constant for small bubbles, and the value of the slope for radius cubed vs. time ranged from – 5 3/sec. to –14 3/sec, with most values near –10 3/sec. A theoretical value for the slope of a nitrogen bubble in water at 25 C. is calculated to be –94 3/sec. A minimum estimate of the surface tension of the cell content surrounding the air bubble is therefore 1/10th of the value of water.The relatively high value of the surface tension is interpreted to indicate that the organization of the cell content at the surface of the air bubble is not of the structural complexity assumed for the plasmalemma.A portion of this paper was presented at the annual meeting of the Botanical Society of America, Physiology Section, Lafayette, Indiana, 1961.This investigation was partly supported by a grant (G 8716) from the National Science Foundation.  相似文献   

7.
Freezing in Conifer Xylem: II. PIT ASPIRATION AND BUBBLE FORMATION   总被引:3,自引:0,他引:3  
A scanning electron microscope equipped with a freezing stagewas used to examine the effects of slow freezing on pit aspirationand bubble formation in living tree stems. The size (approximately 2.0 µm diameter) and the sphericalor ellipsoidal shape of the bubbles found in the centre of frozenlumens indicated freezing rates greater than 25 µm s–1.Both unaspirated and aspirated bordered pits were found in thefrozen xylem. The technique used did not reveal enough pitsto determine whether unaspirated pits were more prevalent thanaspirated pits. These results are compared with hypotheses and results fromprevious work on freezing in conifer xylem. Key words: Freezing, conifer xylem, bordered pits, bubbles  相似文献   

8.
Ice formation in the xylem sap produces air bubbles that under negative xylem pressures may expand and cause embolism in the xylem conduits. We used the centrifuge method to evaluate the relationship between freeze-thaw embolism and conduit diameter across a range of xylem pressures (Px) in the conifers Pinus contorta and Juniperus scopulorum. Vulnerability curves showing loss of conductivity (embolism) with Px down to -8 MPa were generated with versus without superimposing a freeze-thaw treatment. In both species, the freeze-thaw plus water-stress treatment caused more embolism than water stress alone. We estimated the critical conduit diameter (Df) above which a tracheid will embolize due to freezing and thawing and found that it decreased from 35 microm at a Px of -0.5 MPa to 6 microm at -8 MPa. Further analysis showed that the proportionality between diameter of the air bubble nucleating the cavitation and the diameter of the conduit (kL) declined with increasingly negative Px. This suggests that the bubbles causing cavitation are smaller in proportion to tracheid diameter in narrow tracheids than in wider ones. A possible reason for this is that the rate of dissolving increases with bubble pressure, which is inversely proportional to bubble diameter (La Place's law). Hence, smaller bubbles shrink faster than bigger ones. Last, we used the empirical relationship between Px and Df to model the freeze-thaw response in conifer species.  相似文献   

9.
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml−1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.  相似文献   

10.
 The mechanism of freeze stress-induced embolism in Fagus sylvatica L. branches was analyzed under controlled conditions. Excised branches were exposed to successive freeze-thaw cycles in temperature controlled chambers. Thermocouples were placed on the bark to detect sap freezing exotherms. The degree of xylem embolism was estimated after each cycle by the loss of hydraulic conductivity. After one freeze-thaw cycle the degree of embolism was found to decrease with xylem specific hydraulic conductivity, small apical shoots being more susceptible to embolism. Exotherms revealed that distal shoots were freezing first and exuded sap as a result of water expansion. The lower water content in apical shoots upon freezing probably induced higher sap tensions which promoted air bubble expansion and vessel cavitation preferentially near the apices. When the decrease in water content was experimentally prevented, embolism developed to a lesser extent. The higher vulnerability of shoot apices may protect the rest of the branch from winter damage. Received: 29 May 1998 / Accepted: 15 August 1998  相似文献   

11.
Functional and ecological xylem anatomy   总被引:17,自引:0,他引:17  
Cohesion-tension transport of water is an energetically efficient way to carry large amounts of water from the roots up to the leaves. However, the cohesion-tension mechanism places the xylem water under negative hydrostatic pressure (Px), rendering it susceptible to cavitation. There are conflicts among the structural requirements for minimizing cavitation on the one hand vs maximizing efficiency of transport and construction on the other. Cavitation by freeze-thaw events is triggered by in situ air bubble formation and is much more likely to occur as conduit diameter increases, creating a direct conflict between conducting efficiency and sensitivity to freezing induced xylem failure. Temperate ring-porous trees and vines with wide diameter conduits tend to have a shorter growing season than conifers and diffuse-porous trees with narrow conduits. Cavitation by water stress occurs by air seeding at interconduit pit membranes. Pit membrane structure is at least partially uncoupled from conduit size, leading to a much less pronounced trade-off between conducting efficiency and cavitation by drought than by freezing. Although wider conduits are generally more susceptible to drought-induced cavitation within an organ, across organs or species this trend is very weak. Different trade-offs become apparent at the level of the pit membranes that interconnect neighbouring conduits. Increasing porosity of pit membranes should enhance conductance but also make conduits more susceptible to air seeding. Increasing the size or number of pit membranes would also enhance conductance, but may weaken the strength of the conduit wall against implosion. The need to avoid conduit collapse under negative pressure creates a significant trade-off between cavitation resistance and xylem construction cost, as revealed by relationships between conduit wall strength, wood density and cavitation pressure. Trade-offs involving cavitation resistance may explain the correlations between wood anatomy, cavitation resistance, and the physiological range of negative pressure experienced by species in their native habitats.  相似文献   

12.
Prior to an analysis of the shrinkage and growth of air bubbles entrained in wheat flour dough, the shrinkage and growth under a temperature rise of a small bubble in water was analysed for comparison. The rates of shrinkage and growth of the bubble were respectively controlled by the diffusion of under- and over-saturated dissolved air from and into the bubble. The diffusion coefficient of the dissolved air in water calculated from the shrinkage of the bubble was 2.10 × 10_9m2/sec (17°C), which agrees with the literature value. On the other hand, at below 100°C, the effects on the bubble growth of the expansion of air due to the temperature rise and the increase in the saturation vapor pressure of water were negligibly small. The accompanying air entrained in flour particles suspended in water was much more stable than a free bubble in water. However, the growth under a temperature-rise of a bubble evolved from wheat flour particles was the same as the growth of a bubble in water, if many bubbles did not coexist.  相似文献   

13.
The rise of sap in mangroves has puzzled plant physiologists for many decades. The current consensus is that negative pressures in the xylem exist which are sufficiently high to exceed the osmotic pressure of seawater (2.5 MPa). This implies that the radial reflection coefficients of the mangrove roots are equal to unity. However, direct pressure probe measurements in xylem vessels of the roots and stems of mangrove (Rhizophora mangle) grown in the laboratory or in the field yielded below-atmospheric, positive (absolute) pressure values. Slightly negative pressure values were recorded only occasionally. Xylem pressure did not change significantly when the plants were transferred from tap water to solutions containing up to 1700 mOsmol kg?1 NaCl. This indicates that the radial reflection coefficient of the roots for salt, and therefore the effective osmotic pressure of the external solution, was essentially zero as already reported for other halophytes. The low values of xylem tension measured with the xylem pressure probe were consistent with previously published data obtained using the vacuum/leafy twig technique. Values of xylem tension determined with these two methods were nearly two orders of magnitude smaller than those estimated for mangrove using the pressure chamber technique (?3 to ?6MPa). Xylem pressure probe measurements and staining experiments with alcian blue and other dyes gave strong evidence that the xylem vessels contained viscous, mucilage- and/or protein-related compounds. Production of these compounds resulting from wound or other artifactual reactions was excluded. The very low sap flow rates of about 20–50 cm h?1 measured in these mangrove plants were consistent with the presence of high molecular weight polymeric substances in the xylem sap. The presence of viscous substances in the xylem sap of mangroves has the following implications for traditional xylem pressure measurement techniques, development of xylem tension, and longdistance water transport: (1) high external balancing pressures in the pressure chamber are needed to force xylem sap to the cut surface of the twig; (2) stable tensions much larger than 0.1 MPa can be developed only occasionally because viscous solutions provide nucleation sites for gas bubble formation; (3) the frequent presence of small gas bubbles in viscous solutions allows water transport by interfacial, gravity-independent streaming at gas/water interfaces and (4) the increased density of viscous solutions creates (gravity-dependent) convectional flows. Density-driven convectional flows and interfacial streaming, but also the very low radial reflection coefficient of the roots to NaCl are apparently the means by which R. mangle maintains water transport to its leaves despite the high salinity of the environment.  相似文献   

14.
A careful physical analysis of gas bubble dynamics in xylem   总被引:1,自引:0,他引:1  
Many studies have confirmed that cavitation in xylem is caused by air bubbles. Recently Shen et al. (Tree Physiol. 22 (2002) R655), analysed the expansion of a pre-existent bubble in xylem and one formed by air seeding. The present paper makes a further analysis of bubble expansion by the equilibrium criterion of the Helmholtz function. It has been proved that when xylem pressure P'l decreases to a special value P'l* from a value higher than, or equal to, or lower than -Po (Po is atmospheric pressure), an air bubble in xylem can grow up steadily, corresponding to minimums of the Helmholtz function F(r). As soon as P'l is lower than P'l*, since F(r) will be a decreasing function when P'l < P'l*, resulting in non-equilibrium of the bubble, it will break inducing a cavitation event. The analysis is consistent with the results of mechanism. Given P'l > or = -3Po, if an air bubble could enter a conduit, it would be in a stable equilibrium. When P'l < -3Po an air bubble entering a conduit will be in an unstable equilibrium. As the water further vaporizes, it will break at once. This is the case to which the former published formula P'l = -2sigma/rp is applicable.  相似文献   

15.
In the coldest part of winter, water uptake is blocked by the frozen soil and frozen stems known as ‘frost drought’ causing severe embolisms in woody plants. Frost drought in stems was simulated in a centrifuge by a synergy between freeze–thaw cycles and the different tensions induced by changing the rotation speed. Frost fatigue was defined as a reduction of embolism resistance after a freeze–thaw cycle and determined from ‘vulnerability curves’, which showed percent losses of conductivity vs tension (positive value) or xylem pressure (negative value). Different tensions combined with a controlled freeze–thaw cycle were induced to investigate the effects on frost resistance over the course of year. During the growing season, Acer mono Maxim. developed significant frost fatigue, and a significant positive correlation was found between frost fatigue response and exogenous tension. During the dormant season, A. mono showed very high embolism resistance to frost drought, even under a tension of 2 MPa. When the exogenous tension was increased to 3 MPa while the stem was frozen, significant frost fatigue occurred. Longer freezing times had more serious effects on frost fatigue in A. mono. A hypothesis was raised that at the same low temperature, the severer the drought (higher tension) when stems were frozen, the higher frost fatigue response would be induced.  相似文献   

16.
The current controversy about the "cohesion-tension" of water ascent in plants arises from the recent cryo-scanning electron microscopy (cryo-SEM) observations of xylem vessels content by Canny and coworkers (1995). On the basis of these observations it has been claimed that vessels were emptying and refilling during active transpiration in direct contradiction to the previous theory. In this study we compared the cryo-SEM data with the standard hydraulic approach on walnut (Juglans regia) petioles. The results of the two techniques were in clear conflict and could not both be right. Cryo-SEM observations of walnut petioles frozen intact on the tree in a bath of liquid nitrogen (LN(2)) suggested that vessel cavitation was occurring and reversing itself on a diurnal basis. Up to 30% of the vessels were embolized at midday. In contrast, the percentage of loss of hydraulic conductance (PLC) of excised petiole segments remained close to 0% throughout the day. To find out which technique was erroneous we first analyzed the possibility that PLC values were rapidly returned to zero when the xylem pressures were released. We used the centrifugal force to measure the xylem conductance of petiole segments exposed to very negative pressures and established the relevance of this technique. We then analyzed the possibility that vessels were becoming partially air-filled when exposed to LN(2). Cryo-SEM observations of petiole segments frozen shortly after their xylem pressure was returned to atmospheric values agreed entirely with the PLC values. We confirmed, with water-filled capillary tubes exposed to a large centrifugal force, that it was not possible to freeze intact their content with LN(2). We concluded that partially air-filled conduits were artifacts of the cryo-SEM technique in our study. We believe that the cryo-SEM observations published recently should probably be reconsidered in the light of our results before they may be used as arguments against the cohesion-tension theory.  相似文献   

17.
The rates of shrinkage at constant temperature, and growth under a temperature rise below 100°C, of bubbles entrained in wheat flour dough were analyzed and compared with those of a bubble in water. The rate of shrinkage of bubbles in flour dough was controlled by the diffusion of dissolved air from the surface of bubbles to the bulk of flour dough. The apparent diffusion coefficient of the dissolved air in wheat flour dough with the water fraction of 0.49 calculated from the shrinkage of bubbles, was (3.2 ± 1.5) × 101?1 m2/sec (19°C), and (6.4 ± 2.0) × 10?11 m2/sec (42°C). However, the growth behavior of bubbles in flour dough under a temperature rise was very different from that predicted from the diffusion theory. The critical radius of bubbles to grow was larger than that estimated from the diffusion theory. The mechanism of growth of bubbles in wheat flour dough, which was different from that of a bubble in water, is a subject that needs to be clarified.  相似文献   

18.
树木树液上升机理研究进展   总被引:8,自引:0,他引:8  
何春霞  李吉跃  郭明 《生态学报》2007,27(1):329-337
水分在植物体内的运输一直是很多植物生理生态学家所关注的一个重要问题。介绍了内聚力学说的基本假设和其存在争议,总结了近年来这一研究领域的几个热点问题,主要包括:(1)木质部栓塞及其恢复机理;(2)木质部压力探针和压力室法测定的木质部张力值不一致的现象及其可能原因;(3)补偿压学说;(4)不同界面层张力以及输水管道的毛细作用力、薄壁细胞膨压和木质部渗透压、逆向蒸腾等在树木汁液上升中的贡献;(5)最近发现的存在于木质部导管伴胞和韧皮部薄壁细胞等质膜中的水孔蛋白在植物水分运输中的调控作用等。这些方面在解释树木的树液上升中都起着重要的作用。  相似文献   

19.
Freeze-thaw events can cause embolism in plant xylem. According to classical theory, gas bubbles are formed during freezing and expand during thawing. Conifers have proved to be very resistant to freeze-thaw induced embolism, because bubbles in tracheids are small and redissolve during thawing. In contrast, increasing embolism rates upon consecutive freeze-thaw events were observed that cannot be explained by the classical mechanism. In this study, embolism formation during freeze-thaw events was analyzed via ultrasonic and Cryo-scanning electron microscope techniques. Twigs of Picea abies L. Karst. were subjected to up to 120 freeze-thaw cycles during which ultrasonic acoustic emissions, xylem temperature, and diameter variations were registered. In addition, the extent and cross-sectional pattern of embolism were analyzed with staining experiments and Cryo-scanning electron microscope observations. Embolism increased with the number of freeze-thaw events in twigs previously dehydrated to a water potential of -2.8 MPa. In these twigs, acoustic emissions were registered, while saturated twigs showed low, and totally dehydrated twigs showed no, acoustic activity. Acoustic emissions were detected only during the freezing process. This means that embolism was formed during freezing, which is in contradiction to the classical theory of freeze-thaw induced embolism. The clustered pattern of embolized tracheids in cross sections indicates that air spread from a dysfunctional tracheid to adjacent functional ones. We hypothesize that the low water potential of the growing ice front led to a decrease of the potential in nearby tracheids. This may result in freezing-induced air seeding.  相似文献   

20.
Mangrove trees dominate coastal vegetation in tropical regions, but are completely replaced by herbaceous salt marshes at latitudes above 32 degrees N and 40 degrees S. Because water deficit can increase damage caused by freezing, we hypothesized that mangroves, which experience large deficits as a result of saline substrates, would suffer freeze-induced xylem failure. Vulnerability to freeze-induced xylem embolism was examined in the most poleward mangrove species in North America, in an area where freezing is rare but severe, and in Australia, in an area where freezing is frequent but mild. Percentage loss in hydraulic conductivity was measured following manipulations of xylem tension; xylem sap ion concentration was determined using X-ray microanalysis. Species with wider vessels suffered 60-100% loss of hydraulic conductivity after freezing and thawing under tension, while species with narrower vessels lost as little as 13-40% of conductivity. These results indicate that freeze-induced embolism may play a role in setting the latitudinal limits of distribution in mangroves, either through massive embolism following freezing, or through constraints on water transport as a result of vessel size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号