首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Determinate root growth is an important adaptation feature for seedling establishment in some Cactaceae. We show that seedlings of Pachycereus pringlei have primary roots with a stable determinate developmental program. How water stress affects determinate root growth and lateral root development has not been studied. Here we address this question. Root growth was analyzed in plants growing in vitro under well-watered and water-deficient (created by polyethylene glycol) growth conditions. Under severe water stress roots terminated their growth earlier and the rate of growth was significantly decreased as a result of inhibition of both cell elongation and cell production. Under severe water stress the number of lateral roots and primordia per millimeter of primary root was 1.5-1.7 times greater than under well-watered conditions; however, the total number of lateral roots and primordia was the same under all conditions. Lateral roots resembled root spurs found in some Opuntioideae. Analysis of the dynamics of meristem exhaustion indicated that initial-cell activities are required for the maintenance of proliferation before meristem exhaustion. We conclude that lateral root formation is a stable developmental process resistant to severe water stress and that water stress accelerates the determinate developmental program of the primary root. Both of these features appear to be important for successful seedling establishment in a desert.  相似文献   

2.
Stenocereus eruca (Cactaceae), a prostrate cactus endemic to the Sonoran Desert, is thought to be highly clonal. We examined its clonal diversity and distribution: (1) at the population level, in four distinct populations along its distribution range; and (2) at a micro scale level, within a single population. Our objective was to evaluate the importance of sexual versus clonal recruitment through the use of RAPD markers. Contrary to previous field observations, clonal diversity was relatively high across the distribution range. This finding suggests that sexual recruitment is an important regeneration mechanism. The proportions of distinguishable genotypes (G/N = 0.83) and genotypic diversity (D = 0.987) were greater than in other clonal cacti, suggesting that clonal propagation is not the major regeneration mechanism. Autocorrelation analyses revealed a spatial genetic structure that may be the result of restricted gene flow (via pollen or seeds) and clonal propagation. A molecular variance analysis (AMOVA) indicated that most of the variation (66.3%) was found within and not across populations. Future studies on pollen and seed dispersal are needed to understand the role of the clonal habit in the mating system of S. eruca.  相似文献   

3.
We report eight new co-dominant nuclear markers for population genetics of the bark beetle Araptus attenuatus Wood. Several loci include introns from low-copy genes, and four cross-amplify in one or more related genera. The markers show moderate levels of polymorphism (2–19 alleles per locus), and no loci showed significant deviations from Hardy–Weinberg or linkage equilibrium across both of the two populations examined, consistent with Mendelian inheritance patterns.  相似文献   

4.
Distinguishing the historical effects of gene migration and vicariance on contemporary genetic structure is problematic without testable biogeographic hypotheses based on preexisting geological and environmental evidence. The availability of such hypotheses for North America's Sonoran Desert has contributed to our understanding of the effect of historical vicariance and dispersal events on the diversification of this region's vertebrate biota but have not yet been applied to its flora. In this paper we describe a detailed allozyme analysis of the population genetic structure and phylogeography of the Sonoran Desert columnar cactus, Lophocereus schottii (senita). Inferred phylogroup distributions reflect two historical vicariance events: (1) a middle Pliocene northward transgression of the Sea of Cortéz that is reflected in well-supported Baja California peninsular and continental phylogroups but not in current taxonomic treatments of the species; and (2) a late Pliocene transpeninsular seaway across southern Baja that is reflected in tentative support for peninsular and southern Cape Region phylogroups corresponding to taxonomic varieties L. schottii var. schottii and L. schottii var. australis, respectively. A middle Pleistocene midpeninsular seaway hypothesized to explain congruent phylogroup distributions in several vertebrate taxa is not reflected in L. s. var. schottii, nor is the distinction of a third variety, L. s. var. tenuis, from continental populations of L. s. var. schottii. Linear regression of pairwise estimates of interpopulation differentiation (M and F(ST)/[1 - F(ST)]) on interpopulation geographic distance revealed significant evidence of isolation by distance within peninsular and continental phylogroups but not between them, consistent with historical vicariance between but not within these regions. We also found significant evidence of isolation by distance between putative L. s. var. schottii and L. s. var. australis phylogroups, suggesting that reproductive isolation between peninsular and Cape Region forms is incomplete. Within peninsular, but not continental, phylogroups, northward range expansion from southern Pleistocene refugia is reflected in significant declines in genetic variation with increasing latitude and in an area phenogram in which populations are progressively nested from south (ancestral) to north (descendant) along the Baja peninsula. Although the geographic concordance of phylogenetic topologies suggests that ancient vicariance events, and not dispersal, have primarily influenced the biogeographic distributions of Baja's vertebrate biota, the phylogeographic structure of L. schottii suggests that Sonoran Desert plant species may exhibit genetic signatures of postglacial range expansion and gene flow as well as vicariance.  相似文献   

5.
The geographical dichotomy hypothesis suggests that columnar cacti in the tropics depend primarily on bats for pollination. This dependence may to be less in the outer tropics where many columnar cactus species (or their populations) show a relatively generalized pollination system with both nocturnal (moths and bats) and diurnal pollinators (bees and hummingbirds) (geographical dichotomy hypothesis). This hypothesis has been mostly tested in the northern tropics; nonetheless, our knowledge of columnar cactus species inhabiting the southern tropics is still scarce. The aim of this project was to evaluate the pollination biology of Oreocereus celsianus, a columnar cactus with restricted distribution in the subtropical Andes, to determine if the pollination system of this cactus tends to be more generalized than specialized because of the geographical position where it occurs. Observations of frequency of visit showed that Patagona gigas (Giant Hummingbird) is the main pollinator of the flowers, visiting them when they are opening (afternoon of the first day). Bees, wasps and moths were occasional visitors of the flowers. None of them seem to act as pollinator. Autogamy, geitonogamy and xenogamy treatments produced high fruit set, showing that O. celsianus has an unusual mixed mating system. The results suggest that this Andean columnar cactus is partially specialized on hummingbirds, with most pollination service performed by a single species, and it has the capacity of selfing (??fail-safe?? pollination system). This mixed mating system (both outcrossing and selfing) may be a response to the unpredictable environment of the Prepuna in the subtropical Andes.  相似文献   

6.
To examine the generality of population-level impacts of ancient vicariance identified for numerous arid-adapted animal taxa along the Baja peninsula, we tested phylogeographical hypotheses in a similarly distributed desert plant, Euphorbia lomelii (Euphorbiaceae). In light of fossil data indicating marked changes in the distributions of Baja floristic assemblages throughout the Holocene and earlier, we also examined evidence for range expansion over more recent temporal scales. Two classes of complementary analytical approaches — hypothesis-testing and hypothesis-generating — were used to exploit phylogeographical signal from chloroplast DNA sequence data and genotypic data from six codominant nuclear intron markers. Sequence data are consistent with a scenario of mid-peninsular vicariance originating c. 1 million years ago (Ma). Alternative vicariance scenarios representing earlier splitting events inferred for some animals (e.g. Isthmus of La Paz inundation, c. 3 Ma; Sea of Cortez formation, c. 5 Ma) were rejected. Nested clade phylo-geographical analysis corroborated coalescent simulation-based inferences. Nuclear markers broadened the temporal spectrum over which phylogeographical scenarios could be addressed, and provided strong evidence for recent range expansions along the north–south axis of the Baja peninsula. In contrast to previous plant studies in this region, however, the expansions do not appear to have been in a strictly northward direction. These findings contribute to a growing appreciation of the complexity of organismal responses to past climatic and geological changes — even when taxa have evolved in the same landscape context.  相似文献   

7.
The Sonoran Desert columnar cactus Pachycereus pringlei has a geographically variable, non-hermaphroditic breeding system. It is trioecious (separate males, females and hermaphrodites) in the northern two-thirds of its range in Sonora, Mexico, and in the southern three-quarters of its range in Baja California, Mexico, and is gynodioecious (separate females and hermaphrodites) elsewhere. Trioecy occurs near known maternity roosts of its major pollinator, the nectar-feeding bat Leptonycteris curasoae; gynodioecy occurs>50km from known bat roosts. The observed geographic patterns cannot be explained by limited gene flow or by the geographic distributions of diurnal avian pollinators. Our field observations plus a theoretical analysis suggest that the abundance of chiropteran pollinators plays an important role in the maintenance of trioecy in this plant. Under pollinator limitation, trioecy can be a stable breeding system in this species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The geographic dichotomy hypothesis suggests that columnar cacti inhabiting the tropics depend on flower visitors (birds and bats) for their pollination, showing highly specialized animal‐pollinated systems. This pattern has been demonstrated for the northern hemisphere; however, our knowledge of the species of columnar cacti growing in the southern tropics is still scarce. In this study, we studied the reproductive biology of Oreocereus fossulatus (Cactaceae, Tribe Trichocereae), an endemic, columnar cactus of the tropical Andes, to determine if its pollination system tends to be more generalized (mixed systems of autogamy and xenogamy) than specialized (xenogamy) as a consequence of the geographic position of where it lives. Observations of the frequency of visits showed that Patagona gigas (Trochillidae) is its main pollinator. It visits the flowers when they are open, coinciding with the periods of greater floral reward (dusk and dawn of the first day of anthesis). The treatments of autogamy, xenogamy and geitonogamy produced fruits, showing that O. fossulatus exhibits a generalized pollination system, in the same way as its congeneric species O. celsianus, which is distributed farther south in the Prepuna biogeographical region. Our results suggest that species partially specializing in pollination by hummingbirds and, besides, capable of autopollination, could be common in the tropical and subtropical Andes, probably as a response to the unpredictable environments present in their ecosystems.  相似文献   

9.

Aim

Desert springs or oases are the only permanent mesic environments in highly water-limited arid regions. Oases have immense cultural, evolutionary and ecological importance for people and a high number of endemic and relic species. Nevertheless, they are also highly vulnerable ecosystems, with invasive species, overexploitation and climate change being the primary threats. We used the arthropod communities' spatiotemporal diversity and distribution patterns as a proxy to understand biodiversity dynamics in two geographically close but ecologically contrasting and highly threatened ecosystems: deserts and oases.

Location

Baja California Peninsula, Mexico.

Methods

Arthropod communities at five oases and surrounding desert scrub areas were sampled in two seasons. Using DNA metabarcoding and traditional taxonomic surveys, we tried to identify what biotic and abiotic characteristics of the habitat are important drivers of arthropod diversity and how these characteristics can change across spatial and temporal scales.

Results

Over 6200 individuals representing 23 orders were collected. In oasis samples, the community composition fluctuated more in space (i.e. among sites) than in time (i.e. seasons). Thus, seasonal changes did not affect oasis community diversity and composition, but the dissimilarity among sites increased with geographic distance. Moreover, anthropic activities negatively correlated with arthropod diversity in oases. On the other hand, the season, geography (e.g. latitude) and biotic characteristics of the habitat (e.g. sampled scrub species) significantly affected the diversity and composition of the desert arthropod communities.

Main Conclusions

Neutral dynamics (e.g. historical climatic events, dispersal limitation and spatial component) and human impact significantly influenced the biodiversity patterns of each oasis. In contrast, the habitat's seasonal variation and biotic characteristics were the most important variables influencing the diversity of the desert communities. Baja California oases harbour distinct invertebrate communities; therefore, each oasis should be conserved individually to preserve these unique assemblages.  相似文献   

10.
Increases in the incidence and severity of drought threaten the viability of rare plants in arid regions. The endangered Nichol's Turk's head cactus (Echinocactus horizonthalonius Lemaire var. nicholii L. Benson) occurs only in four small, isolated populations in the Sonoran Desert of North America. Since 1995 we have monitored a population in southeastern Arizona (USA). Here we report 23 years of observations on abundance, growth, mortality, flowering and recruitment. Abundance of plants decreased from 132 in 1996 to 40 in 2017, with 100 individuals recruited and 203 dying during the study. Individual plants grew slowly, increasing annually by an average of 0.22 cm (95% confidence interval, 0.18–0.26 cm) in diameter and 0.27 cm (0.20–0.33 cm) in height. Growth was slowest when drought was most severe and slowed as plants reached maximum size. Annual mortality increased markedly across the study period and did not vary with plant size. Annual probability of flowering increased as plants increased in diameter but not in height, and varied with precipitation and drought but not with mean annual temperature. Recruitment was higher when average temperature was higher and the number of recruits per capita increased across the study period. The annual rate of change in abundance averaged −6%, but shifted markedly from −1% during 1995–2008 to −11% during 2008–2017. Our results indicate that the population's decline was not a consequence of failed recruitment but of increased mortality, which we discuss in the context of climate and herbivory.  相似文献   

11.
  • Endemic species distributed in fragmented habitats are highly vulnerable to extinction because they may have low genetic diversity. However, some life-history traits can mitigate the effect of genetic drift on populations. We analysed the level and distribution of genetic variation and ancestral population size of Yucca capensis, a long-lived endemic plant of the Baja California Peninsula, Mexico. Its populations are scattered across a habitat that is suffering accelerated transformation.
  • We used six nuclear microsatellites to genotype 224 individuals from 17 locations across the entire species' geographic range. We estimated polymorphisms, heterozygosity and genetic structure. We also evaluated the ancestral and recent effective size and time since the population started to change.
  • We found high heterozygosity, high polymorphism and low differentiation among locations, suggesting a panmictic population across the range. We also detected a large ancestral effective population size, which suffered a strong reduction in the Mid-Holocene.
  • Despite changes in environmental conditions caused by habitat modification, the high diversity and low differentiation in Y. capensis may result from its large ancestral effective size and life-history traits, such as plant longevity, clonal growth and mating system, which reduce the rate of loss of genetic variation. However, the dependence on a specialist pollinator that displays short flight range can reduce gene flow among the plant populations and could, shortly, lead them into an extinction vortex.
  相似文献   

12.
Aim To analyse the distributional patterns of the Baja California Peninsula's resident avifauna, and to generate a regionalization based on a method that uses a parsimony analysis (parsimony analysis of endemicity, PAE) of point data and modelled potential distributions. Location The Baja California Peninsula, Mexico. Methods A data base was constructed containing records of 113 species of resident terrestrial birds present in the Baja California Peninsula. Records and localities were obtained from the literature and from specimens housed in scientific collections world‐wide. Raw data points and potential distribution maps obtained using the software Genetic Algorithms for Rule‐set Prediction (GARP), were analysed with PAE. Results The data base consisted of 4164 unique records (only one combination of species/locality) belonging to 113 terrestrial resident bird species, in a total of 809 localities. From the point distribution matrix, the analysis generated 500 equally parsimonious trees, from which a strict consensus cladogram with 967 steps was obtained. The cladogram shows a basal polytomy and some geographical correspondence of a few resolved groups obtained in the analysis. These results do not allow the recognition of areas defined by avifaunistic associations. From the potential distribution matrix, the analysis generated 501 equally parsimonious trees, and a strict consensus cladogram of 516 steps was obtained. The cladogram shows a higher resolution because of the number of resolved groups with better geographical correspondence and therefore regions are well‐defined. Main conclusions The correspondence of some groupings of species suggest their validity as areas with biogeographical (historical and/or ecological) meaning. This regionalization in the Baja California avifauna seems to be consistent with previous regionalizations for other groups. Hence, PAE is a useful tool for area categorization if reliable point records and prediction tools are available. Our results suggest that the geographical definition is much better using potential data generated by GARP, particularly when they are contrasted with the results from point data. Thus, this is an excellent alternative for developing biogeographical studies, as well as for improving the use of data from scientific collections and other sources of biodiversity information.  相似文献   

13.
The objective of this study is to determine the height and age at which reproduction begins (i.e., production of flowers and fruits; the transition to adulthood) in the giant saguaro cactus (Carnegiea gigantea) in four geographically and environmentally distinct populations, and to relate observed variability to environmental differences. The onset of reproduction has been estimated at a height of 2.2 m in near optimal conditions. This value has been widely accepted and applied to populations in less optimal conditions, although variations under less ideal conditions have not been investigated. In addition, previous research has demonstrated that Carnegiea growth rates are highly variable over their range. Thus, even if 2.2 m is a consistent transition height to adulthood over their range, the age of individuals in different populations would be different. I investigate the age and height at which this transition occurs. The author sampled the heights of the shortest reproductive individuals and the tallest non-reproductive individuals to estimate the mean height of the onset of flowering in each of four locales in the northern Sonoran Desert. Using a previously published age-height-growth model, the mean age of the start of reproduction was also computed for the four sites. ANOVA and t-tests were used to compare the average transition to adulthood across sites by both age and height. Statistical results are robust and significant variations in the onset of reproduction are observed by both age and height across the four sites. Saguaro National Park and Organ Pipe Cactus National Monument individuals are transitioning to adulthood, on average, at younger ages and shorter heights than the other two locales. At the arid and marginal Kofa site, individuals that established during the regeneration peak of the late 1800s-early 1900s are only now becoming reproductive (individuals that established around 1899), while at Saguaro National Park, on average, individuals that established in the 1950s are already transitioning to adulthood. These results have implications for regeneration, particularly in marginal locales where regeneration is already limited.  相似文献   

14.
We determined the phylogenetic relationships, population history, and hierarchical structure of genetic variation in pocket gophers distributed on the Baja California Peninsula (BCP), based on extensive geographic sampling. Using a fragment of the mitochondrial gene cytochrome b (cyt b), we found three latitudinal structured geographic clades (northern, central, and southern). The northern clade occurs in the border area of the USA and the north of BCP, the central clade occurs from the peninsular highlands through the Central Desert of Baja California, and the southern clade is distributed south of the San Ignacio Lagoon. AMOVA showed that genetic variation is higher among clades (64%) than within populations (18.1%). The deepest divergence among clades is very shallow (~300 000 years), which suggests that climatic changes during the Pleistocene or some inhospitable habitats have affected the structure of this group, rather than influences from older marine transgressions. Phylogenetic groups disclosed by our results do not coincide with the current infraspecific classification; therefore, we propose a change of epithet for BCP gophers (Thomomys nigricans) and a new subspecific taxonomic arrangement with four subspecies: Thomomys nigricans anitae, Thomomys nigricans martirensis, Thomomys nigricans nigricans, and Thomomys nigricans russeolus. © 2013 The Linnean Society of London  相似文献   

15.
The complex geological and ecological processes that have generated high levels of biodiversity and endemism in the Baja California Peninsula have been the subject of intensive study. However, relatively little is known about phylogeography of the iconic endemic palm species of this region. We therefore analyzed a total of 2,294 bp of chloroplast and 738 bp of nuclear sequence data in 169 samples of five native palm species from Baja California, Sonora and Guadalupe Island. We found that Washingtonia and Brahea palms had low levels of genetic diversity and were highly structured, with the majority of species and major geographic regions being characterized by distinct haplotypes. We also found strong support for currently recognized species in Washingtonia, but our results were less clear cut for Brahea due to haplotype sharing. Furthermore, patterns of population structure were broadly consistent with historical vicariant events such as the inundation of the Isthmus of La Paz, the formation of the Sea of Cortez, and the more recent colonization and isolation of Guadalupe Island's palms. Our findings contribute toward a growing appreciation of the complexity of plant responses to past geological changes and also provide valuable baseline genetic data on relict American palm species.  相似文献   

16.
Microsatellite markers were developed for the columnar cactus Polaskia chichipe from central Mexico. After an enrichment procedure and three screening steps 87% of colonies contained microsatellites. A pair of primers for 10 loci (seven polymorphic) were developed, tested and used to estimate variation in samples of 18–45 individuals from the Tehuacan Valley, Mexico. Alleles per locus ranged from two to eight (mean 5.28; SD 2.5). Range of expected heterozygosity values was 0.188–0.797 (mean 0.502; SD 0.25). These loci are particularly useful for more precise evolutionary studies, such as gene flow and breeding systems, for this cactus species.  相似文献   

17.
Polyploidy, an important mechanism of plant evolution, was investigated in Consolea, an endemic Caribbean opuntioid genus represented by nine subdioecious species with very narrow distributions, including species classified as rare or threatened. Standard chromosome counting and flow cytometric analyses were used to determine chromosome numbers and ploidy of each taxon. Compared to the base number (x = 11), the mitotic and meiotic counts indicated that there are seven hexaploid (2n = 66) and two octoploid species (2n = 88); no diploids were found. Histograms of intact nuclei confirmed that all species are polyploid, with C-DNA values ranging from 4.88-9.50 pg. The variation of DNA content was significantly higher for the octoploids than for the hexaploids. Male and female sexual morphs had similar DNA content, suggesting that there are no sex chromosomes. Cytomixis between cells and microsporocytes with no chromatin were observed. This provides a mechanism whereby gametes with variable chromosome numbers are produced, influencing reproduction and promoting speciation. In conclusion, C-DNA content and chromosome number separated Consolea species into two groups, which may correspond to two phylogenetic lineages or indicate that polyploidization occurred independently, with comparable effects on C-DNA content.  相似文献   

18.
Establishment, colonization, and permanence of plants affect biogenic and physical processes leading to development of soil. Rockiness, temperature, and humidity are accepted explanations to the influence and the presence of rock-dwelling plants, but the relationship between mineral and chemical composition of rocks with plant abundance is unknown in some regions. This study documents plant species growing on rocks, their capacity as rock colonizers measured by the Importance Index, and the relationships between the chemical composition of rocks and the abundance of the dominant plant. The community is composed of eight species and is dominated by the small cactus Mammillaria fraileana. Sites with low abundance of this species contain volcanic breccias, high amounts Ca, Fe, Mg, Ti, Al, and Mn as part of moderately weatherable minerals, such as plagioclase and pyroxene. Sites with higher abundance contain rhyodacite, rhyolite, and andesite rocks rich in more weatherable minerals, such as volcanic glass and minerals containing Si, K, and Na. K and Na were present in equal proportions only at the site with more plants. Since Na is toxic for most plants, an experiment was carried out to assess its effect on the survival of M. fraileana seedlings. Decreased survival occurred as the concentration of Na increased. Even in the treatment without Na, survival decreased slightly. In summary, presence and abundance of plants is related to the type of bedrock, their weathering characteristics, and proportion of elements. The interactions among elements, rather than the isolated effect of specific elements, could be the most reliable explanation for local variations in the abundance and dominance of Mammillaria fraileana in rocky habitat in the southern Sonoran Desert.  相似文献   

19.
Susan Harrison 《Oecologia》1994,99(1-2):27-34
The western tussock moth (Orgyia vetusta) is very abundant on one stand of bush lupine (Lupinus arboreus) at the Bodega Marine Reserve (Sonoma Co, Calif., USA), but is sparse or absent on nearby stands. To determine what controls its abundance, both within the outbreak area and more globally, I performed experimental manipulations of resource availability and dispersal. To measure resource limitation, I inoculated 30 caged and 30 uncaged bushes with a realistic range of numbers of tussock moth eggs. On caged bushes, starvation led to density-dependent reductions in survival, pupal weight and fecundity. Larvae on uncaged bushes experienced density-independent ant predation on early instars and density-dependent emigration by late instars. From the results of this experiment, I predicted the density of a resource-limited tussock moth population. The predictions agreed fairly well with data from the outbreak area in 1992. To measure dispersal by the moth, which has flightless adult females, I released 30,000 tussock moth eggs at a central point in each of two uninfested lupine stands, and censused larvae weekly in a circle of radius 16 m until pupation. Median displacement over one entire generation was only 2 m, or about 2 bush radii. Rearing experiments indicated that bushes outside the out-break area are fully nutritionally suitable for the moth. I conclude that two major factors limiting the population are resources (within the outbreak area) and inefficient dispersal (more globally).  相似文献   

20.
Since cacti have very small surface/volume ratios, the amount of light they intercept is limited, and so is photosynthesis. However, many cacti shade themselves by means of dense hairy mats, called cephalia, which protect the floral buds. There is a trade-off between allocating a surface to photosynthesis or to the protection of reproductive structures. We found that proportion of the stem covered by cephalium affected fitness in the columnar cactus Lophocereus schottii. Too little cephalium holds few floral buds while too much reduces fecundity – probably through diminished photosynthesis – with an intermediate amount maximising reproduction. The optimal proportion of cephalium becomes smaller as the plant grows, probably because self-shading by new branches causes a further reduction in light interception. Smaller plants had significantly less cephalium than the optimal amount to maximise current reproduction. Since the largest individuals produced more reproductive structures, small cacti may find it more profitable to grow fast to achieve a large fecundity, than to assign resources to immediate reproduction via cephalium development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号