首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Isolated egg cell protoplasts ofZea mays L., inbred line A 188, have been studied at the transmission electron microscope level. Their preparation for electron microscopy has been performed by embedding in ultra-low gelling agarose as a preliminary step. Five isolated egg cell protoplasts were serially ultrathin sectioned and studied in detail. One of these protoplasts was reconstructed in three dimensions to provide additional information on its structure. After enzymatic digestion and microdissection, isolated egg cells are true, highly vacuolized protoplasts. The structure of their organelles agrees with in situ observations, indicating an ultrastructural intactness after isolation: the mitochondria are polymorphic, form reticulate networks, and have well developed cristae; the plastids contain starch grains; and the spherical nucleus is euchromatic. As in situ, the organelles of the isolated egg cell protoplasts are aggregated near the nucleus. The complete picture provided by this work should serve as a comparative base for studies on in vitro fertilization products.  相似文献   

2.
DNA endoreduplication in Zea mays L. (cv. A619 × W64A) endosperm peaks between 16 and 18 d after pollination (DAP). The physiological function of DNA endoreduplication is not known but it is believed to be important in maize kernel development. In the present study, we investigated how 2, 4 or 6 d of high temperature (35 °C) affected DNA endoreduplication and maize kernel development in comparison with control kernels grown at 25 °C. Data were collected on fresh weight (FW), nuclei number, mitotic index, and DNA endoreduplication. Maize endosperm FW and nuclei number were reduced by exposure to 4 or 6 d of high temperature. At 18 DAP, the 2 d high temperature treatment (HTT) caused a reduction in FW and nuclei number, but had no effect on DNA endoreduplication and average DNA content per endosperm. However, when the exposure to high temperature was increased to 4 or 6 d, FW, nuclei number and the magnitude of DNA endoreduplication were progressively reduced, and the peak mitotic index was delayed compared with the control endosperm. At 18 DAP, the 4 d treatment showed 54·7% of the cells were 3 or 6 C, whereas only 41·2% were 12 C or higher. Six days of high temperature also resulted in a reduction in endosperm FW, nuclei number and a delay in the peak of mitotic index. DNA endoreduplication occurred in the kernels exposed to this treatment, although the magnitude was severely reduced compared with the control kernels. Nuclear DNA content was highly correlated (r = 0·93) with kernel FW, suggesting an important role of DNA endoreduplication in determining endosperm FW. The data suggest that high temperature during endosperm cell division exerted negative effects on DNA endoreduplication by dramatically reducing the nuclei number, leaving fewer nuclei available for DNA endoreduplication. However, the data also suggest that prolonged exposure to high temperature restricts entry of mitotic cells into the endoreduplication phase of the cell cycle.  相似文献   

3.
The interacting effects of temperature and pH on the kinetics of glutathione reductase from maize have been studied in detail. The apparent Km for oxidized glutathione (GSSG) measured with desalted crude extracts increased in an exponential manner with rising temperature as a single variable. Increasing pH as a single variable also resulted in higher values of apparent Km for GSSG. When pH was allowed to vary with temperature, a curve which combined the pH and temperature responses was observed. Temperature had the stronger influence and this combined curve was displaced from the temperature curve due to the effect of pH. The pH to which the assay buffer was adjusted at 30°C had an influence on the pattern of the results in this type of experiment. The response of apparent Km for NADPH, and of apparent Km for GSSG using partially-purified extracts, were also examined. The variation with temperature, at constant pH, was again exponential. The pattern of change of apparent Km with temperature is strongly dependent on experimental conditions. Affinity/temperature relationships deduced from such data would only reflect enzyme function in vivo if the physiological environment could be reproduced exactly in the assay mixture.  相似文献   

4.
Summary Three flint and three dent maize (Zea mays L.) inbred lines, their possible F1 crosses, F2 and backcross progenies, and all possible three-way crosses were evaluated in a three-year experiment for yield, ear moisture, and plant height. The purpose was to estimate genetic parameters in European breeding materials from (i) generation means analysis, (ii) diallel analysis of generation means, and (iii) analysis of F1 and three-way cross hybrids. Method (i) was based on the F-metric model and methods (ii) and (iii) on the Eberhart-Gardner (1966) genetic model; both models extended for heterotic maternal effects.Differences among generation means for yield and plant height were mainly attributable to dominance effects. Epistatic effects were significantly different from zero in a few crosses and considerably reduced heterosis in both traits. Additive x additive and domiance x dominance effects for yield were consistently positive and negative, respectively. Significant maternal effects were established to the advantage of generations with a heterozygous seed parent. In the diallel analysis, mean squares for dominance effects were greater than for additive effects for yield and plant height but smaller for ear moisture. Though significant for yield and plant height, epistatic variation was small compared to additive and dominance variation. Estimates of additive x additive epistasis for yield were significantly negative in 11 of 15 crosses, suggesting that advantageous gene combinations in the lines had been disrupted by recombination in the segregating generations. The analysis of hybrids supported the above findings regarding the analysis of variance. However, the estimates of additive x additive epistasis for yield were considerably smaller and only minimally correlated with those from the diallel analysis. Use of noninbred materials as opposed to materials with different levels of inbreeding is considered the main reason for the discrepancies in the results.  相似文献   

5.
Li K  Xu C  Zhang K  Yang A  Zhang J 《Proteomics》2007,7(9):1501-1512
Phosphorus (P) deficiency is a major limitation for plant growth and development. Plants can respond defensively to this stress, modifying their metabolic pathways and root morphology, and this involves changes in their gene expression. To better understand the low P adaptive mechanism of crops, we conducted the comparative proteome analysis for proteins isolated from maize roots treated with 1000 microM (control) or 5 microM KH2PO4 for 17 days. The results showed that approximately 20% of detected proteins on 2-DE gels were increased or decreased by two-fold or more under phosphate (Pi) stress. We identified 106 differentially expressed proteins by MALDI-TOF MS. Analysis of these P starvation responsive proteins suggested that they were involved in phytohormone biosynthesis, carbon and energy metabolisms, protein synthesis and fate, signal transduction, cell cycle, cellular organization, defense, secondary metabolism, etc. It could be concluded that they may play important roles in sensing the change of external Pi concentration and regulating complex adaptation activities for Pi deprivation to facilitate P homeostasis. Simultaneously, as a basic platform, the results would also be useful for the further characterization of gene function in plant P nutrition.  相似文献   

6.
Salt tolerance of maize (Zea mays L.): the role of sodium exclusion   总被引:5,自引:2,他引:3  
The influence of NaCl and Na2SO4 on growth of two maize cultivars (Zea mays cv. Pioneer 3906 and cv. Across 8023) differing in Na+ uptake was investigated in two green-house experiments. Na+ treatment with different accompanying anions (Cl?/SO42?) showed that ion toxicity was caused by Na+. While shoot growth of the two cultivars was markedly affected by salt in comparison to the control during the first 2–3 weeks, there were only slight differences between the cultivars. The shoot Ca2+ concentration was reduced in both cultivars, and the youngest leaves contained an even lower concentration compared with the rest of the shoot. During this first phase, Across 8023 tended to have higher concentrations of Ca2+ than Pioneer 3906. The Na+-excluding cultivar Pioneer 3906 showed continuous, although reduced, growth compared with the control, while the Na+ concentration in the shoot decreased until flowering. Cultivar Across 8023 accumulated Na+ until flowering: the reduction in the growth of stressed plants was greater than that for Pioneer 3906. Leaves of cultivar Across 8023 showed clear toxic symptoms, while those of the more salt-tolerant cultivar Pioneer 3906 did not. It is concluded that Na+ exclusion contributes to the salt tolerance of maize.  相似文献   

7.
The effects of temperature on the lateral diffusion of fluorescent phospholipids, sterols and proteins in the plasma membranes of maize root cortex protoplasts were monitored using fluorescence photobleaching recovery (FPR). Diffusion parameters were measured in two cultivars of maize having different chilling tolerance. Hydrodynamic theory predicts that the diffusion coefficient, D, should increase with increasing temperature. In the more chilling-tolerant cultivar, however, D for all three probes was nearly insensitive to temperature. In the more chilling-sensitive cultivar, D was also insensitive to temperature over the range from 12 to 21°C, but D for the lipid probes tended to be higher and more variable at lower temperatures. The proportion of probe molecules free to diffuse in the membrane was less than 1 for all probes, and increased significantly with increasing temperature for the protein probe. These results, taken together, support the concept that the plasma membrane contains domains having differing diffusional characteristics. Temperature effects on membrane diffusion are moderated by the existence of these domains to limit significant changes. The observed tendency for higher diffusion coefficients at low temperatures in the chilling-sensitive cultivar may correlate to morphological changes observed with protoplasts of that cultivar at low temperatures.  相似文献   

8.
Water deficit severely decreases maize (Zea mays L.) kernel growth; the effect is most pronounced in apical regions of ears. The capacity for accumulation of storage material in endosperms is thought to he partially determined by the extent of cell division and endoreduplication (post-mitotic nuclear DNA synthesis). To gain a better understanding of the regulatory mechanisms involved, we have examined the effect of water deficit on cellular development during the post-fertilization period. Greenhouse-grown maize was subjected to water-limited treatments during rapid cell division [from 1 to 10days after pollination (DAP)] or rapid endoreduplication (9 to 15 DAP). The number of nuclei and the nuclear DNA content were determined with flow cytometry. Water deficit from 1 to 10 DAP substantially decreased the rate of endosperm cell division in apical-region kernels, but had little effect on middle-region endosperms. Rewatcring did not allow cell division to recover in apical-region endosperms. Water deficit from 9 to 15 DAP also decreased cell division in apical-region endosperms. Endoreduplication was not affected by the late treatment in either region of the car, but was inhibited by the early treatment in the apical region. In particular, the proportion of nuclei entering higher DN A-content size classes was reduced. We conclude that cell division is highly responsive to water deficit, whereas endoreduplication is less so. We also conclude that the reduced proportion of nuclei entering higher DNA-content size classes during endoreduplication is indicative of multiple control points in the mitotic and endoreduplication cycles.  相似文献   

9.
The construction of maize genotypes with high haploid induction capacity made it possible to study the effect of colchicine on maize androgenesis in vitro. Anther cultures of three hybrids were treated with 0.02% and 0.03% colchicine for 3 days at the beginning of microspore induction. Colchicine added to the induction medium had no negative influence on the androgenic responses (anther induction, induction of structures of microspore origin and their regeneration ability) of the genotypes examined. However, significantly higher fertility was observed in plants originating from colchicine-treated microspores, especially at 0.03%. Cytological examinations showed that colchicine treatment before the first microspore division efficiently arrested mitosis and resulted in homozygous doubled-haploid microspores. Under the experimental conditions, the antimitotic drug had no later effect on the division symmetry of the microspore nucleus, and unequal divisions remained dominant. Callus formation from the induced microspores seemed to be more typical (ranging between 60–70%), but embryo frequency was increased by approximately 10%, especially at the higher colchicine concentration. These results suggest that the mechanism of colchicine action in premitotic maize microspores may differ from that previously observed in wheat. Received: 15 June 1998 / Revision received: 17 September 1998 / Accepted: 3 December 1998  相似文献   

10.
11.
The effects of various environmental conditions on the initiation of tassel branches (NTB) and spikelet‐pairs (NSP) were examined in the stress‐sensitive maize inbred F53. Chilling induced the most important effect, with a dramatic decrease in both NTB and NSP, provided it was applied at the end of the vegetative phase and start of the floral transition phase. The primary cause of chilling‐induced abortion of the tassel branches could be oxidative stress in the leaves, since lowering light irradiance during chilling greatly reduced the effect of cold. The comparison of inbreds F53 and F2 revealed that both genotypes exhibited a similar period of cold sensitivity at the floral transition phase, although F2 was considered from field observations as a stress‐insensitive genotype (at least for tassel development). However, our results also showed a chilling acclimation response in inbred F2 but not in inbred F53. The similarities with the work by Lejeune & Bernier (1996 Plant, Cell and Environment 19, 217–224.) concerning the effect of chilling on ear initiation in the sensitive inbred, B22, are emphasized.  相似文献   

12.
13.
The consequences of iron deficiency and iron re-supply were evaluated during the early stages of growth and development of young maize plantlets grown hydroponically in the absence of iron. Various parameters, such as fresh and dry weights, and the concentration of chlorophylls, iron, copper, manganese, calcium, magnesium and potassium in leaves, were measured at various times during the first 15 d of culture. Ten-day-old maize plantlets grown without iron displayed severe alterations, with a 50% decrease in iron and chlorophyll concentrations in leaves, and serious impairments in mitochondria and chloroplast ultrastructure. In contrast, neither leaf nor root growth, nor other mineral concentrations other than iron were significantly affected at this stage of development. In an attempt to characterize proteins potentially involved in iron nutrition or the adaptative response to iron starvation, comparative 2D-gel electrophoretic analysis of polypeptides was carried out on soluble and membrane fractions prepared from leaves and roots of iron-deficient and iron-sufficient 10-d-old maize plantlets. Two polypeptides (11 and 17 kDa, pI of about 6.8) from the microsomal fraction of leaves were found to be repressed under iron-deficient conditions. Some other polypeptides were found to he induced in microsomal fractions either from roots or leaves. Significant variations in the concentration of most of these polypeptides were observed from one experiment to another. It can be concluded from this study that, at this early stage of maize vegetative growth and development, molecular variations induced by iron deficiency do not affect major house-keeping proteins, but probably affect very specific events depending on low abundance proteins.  相似文献   

14.
不同基因型玉米间作的群体质量   总被引:5,自引:0,他引:5  
刘天学  李潮海  付景  闫成辉 《生态学报》2009,29(11):6302-6309
采用大田试验,研究了不同基因型玉米间作的群体质量特征.结果表明,HF9‖XD20间作,植株中部叶片平均叶龄延长,而对下部和上部叶片影响不大;ZD958‖LD981间作,ZD958植株下部叶片平均叶龄延长,而中、上部叶片则缩短,LD981植株下、中、上部叶片平均叶龄均有所延长.吐丝前,群体叶面积指数(LAI)单间作无明显差异,吐丝后,HF9和LD981的LAI分别大于和显著大于单作群体,而ZD958和XD20则分别小于和显著小于单作群体.紧凑型品种和半紧凑型品种间作增加了群体透光率,吐丝后10d,4个品种棒三叶叶色值(SPADR)均有所增加,并且除ZD958外,其余3个品种棒三叶净光合速率均有所增加,其中LD981增加显著.间作对吐丝以前的群体干物质积累量影响不大,吐丝后,半紧凑型品种(HF9和LD981)的干物质积累量增加,其中LD981增加显著,而紧凑型品种(XD20和ZD958)的干物质积累量减少,其中ZD958显著减少;间作还提高了收获指数,并且两种间作群体的土地当量比(LER)均大于1.结果提示,紧凑型与半紧凑型玉米品种的间作可以提高群体质量,延长叶片功能期,提高光合效率,增加籽粒产量.  相似文献   

15.
We investigated the change of root net proton excretion of seedlings of Triticum aestivum L. and Zea mays L. with daily variation of illumination using a multi-channel pH-stat system. We found an increase of net proton excretion during darkness and a drop after the beginning of illumination. Inhibition of carotenoid biosynthesis by norflurazone and photooxidation of chlorophylls did not change the periodicity or its induction. The induction of diurnal periodicity was possible with blue, green and red light. After induction the oscillation of net proton excretion continued for at least two cycles under constant light. We conclude that net H+ excretion of wheat and maize roots may be regulated by an endogenous clock or by a signal from the leaves. The nature of such a hypothetical signal remains unknown.  相似文献   

16.
Maize embryogenic calli induced from pollen were subcultured for one and one half years on N, basic medium supplemented with 2 mg/1 kinetin, 1 mg/l 6-benzyl-aminopurine, 0.3 mg/l 2,4-D, 500 mg/l casein hydrolysate and 250 mg/l glutamine. These embryogenic calli were used for protoplast isolation. Protoplasts were cultured on Z2 medium (Table 1) which is composed of rice protoplast culture basic medium 1 supplemented with 0.2 mg/l kinetin, 0.1 mg/l 6-benzyl-aminopurine, 0.5 mg/l 2,4-D, 200 mg/l casein hydrolysate, 100 mg/l glutamine and 2% coconut milk. The first division of regenerated cell occurred after 4-6 days in culture. After 3 weeks later, small calli could be seen with naked eyes. At this moment, addition of the same Z2 medium with decreased osmoticum twice for the protoplast culture is necessary. Regenerated calli, 2–4 mm in diameter, were transferred in succession on differentiation medium Z3 and Z4 for organogenesis. Embryogenesis and plant regeneration could occur simultaneously on Z4 differentiation medium. It seems that except the cultural conditions genotype and using of embryogenic materials are the two key factors for plant regeneration of maize protoplast and the former may be the critical one.  相似文献   

17.
Summary Comparison of different post-plating temperature regimes with a control treatment (27° C) revealed that a short-term cold (8/14°C:2/2 days or 14°C:4 days) as well as a heat treatment (30°C:14 days) increased the production of embryro-like-structures (ELS) from cultured maize anthers. The beneficial effects of short-term cold treatments were magnified 2–3 times when L-proline (PROL) was added to the induction medium (125–500 mg/L). In the best treatment (14°C:4 days, 125 mg/L L-proline) one genotype produced 143.5 ELS/100 anthers. Anthers subjected to high temperature (30°C:4 days, 30°C:7 days, 30°C:14 days) generally showed a lower response than did cold treated anthers, although genotypic differences were observed. Regeneration frequency did not appear to be affected by the presence of L-proline in the induction medium.Abbreviations ELS Embryo-like-structures - PROL L-proline  相似文献   

18.
Abscisic acid (ABA) is thought to play a role in inhibiting or aborting kernel growth during water deficit. To test the responsiveness of early endosperm development to ABA concentrations, cylinders containing (±)ABA in a buffered agar medium were applied to the apical pericarp surface of kernels on intact, well‐watered maize ( Zea mays L. cv. Pioneer Brand 3925) plants from 5 to 11 days after pollination (DAP). Endosperm nuclei were analyzed by flow cytometry to assess effects on cell division and endoreduplication. ABA treatments of ≥ 100 µM substantially decreased endosperm cell numbers and fresh weight accumulation, but did not affect average cell size. ABA at ≥ 300 µM decreased the proportion of nuclei in the size classes ≥ 12C, indicating that the rate of transition to endoreduplication status was inhibited, and decreased the progressive advance from 12C to 24C to 48C, indicating that the rate of S‐phase cycling of endoreduplicating cells was inhibited. We conclude that cell division was more responsive to ABA concentrations than were endoreduplication or cell expansion growth.  相似文献   

19.
20.
In this study, we performed the first high‐throughput proteomic analysis of developing rachis (cob) from maize genotype Mp313E. Using two proteomic approaches, 2‐DE and 2‐D LC, we identified 967 proteins. A 2‐D proteome reference map was established. Functional classification of identified proteins revealed that proteins involved in various cellular metabolisms, response to stimulus and transport, were the most abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号