首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertebrate cells contain at least 12 different genes for Hsp70 proteins, 3 of which are encoded in the major histocompatibility complex (MHC) class III region. In the human MHC, these are named Hsp70-1, -2, and -Hom. To characterize these proteins, we have determined their substrate binding specificity, their cellular and tissue distribution, and the regulation of their expression. We show for the first time (1) peptide binding specificity of Hsp70-Hom; (2) endogenous expression of Hsp70-Hom in human cell lines; (3) cytoplasmic location of Hsp70-Hom protein under basal conditions and concentration in the nucleus after heat shock; (4) unique RNA expression profiles in human tissues for each of the MHC-encoded Hsp70s, significantly different from that for the constitutive Hsc70; (5) a relative increase in levels of Hsp70-Hom protein, compared with other Hsp70s, in response to interferon gamma; and (6) a specific increase on lipopolysaccharide (LPS) treatment of in vivo messenger RNA levels for the MHC-encoded Hsp70s and the DnaJ homologue, hdj2, relative to other chaperones. The unique tissue distributions and specific up-regulation by LPS of the MHC-encoded Hsp70s suggest some specialization of functions for these members of the Hsp70 family, possibly in the inflammatory response.  相似文献   

2.
3.
To investigate the roles of ΔNp63α during corneal wound healing and the genes regulated by ΔNp63α in limbal epithelial cells. Adenovirus or shRNA targeting ΔNp63α were pre-injected into the anterior chamber of rat eyeballs and the central corneal epithelium was then wounded with NaOH. The effects of ΔNp63α expression during wound healing were observed by propidium iodide staining. In addition, limbal epithelial cells were cultured and ectopically expressed ΔNp63α by transfecting Ad-ΔNp63α. Total RNA was extracted from transfected epithelial cells and subjected to a gene expression microarray assay. The results showed that over-expression of ΔNp63α accelerated the process of corneal wound healing while knockdown of ΔNp63α impaired the process. ΔNp63α positively up-regulated several cell growth promoter genes and could be referred as a positive regulator of limbal epithelial cell proliferation. It might also inhibit cell differentiation and cell death by differential target gene regulation.  相似文献   

4.
Hsp105α and Hsp105β are major heat shock proteins in mammalian cells and belong to the HSP105/110 family. Hsp105α is expressed constitutively in the cytoplasm of cells, while Hsp105β, an alternatively spliced form of Hsp105α, is expressed specifically in the nucleus of cells during mild heat shock. Here, we show that not only Hsp105β but also Hsp105α accumulated in the nucleus of cells following the expression of enhanced green fluorescent protein with a pathological length polyQ tract (EGFP-polyQ97) and suppressed the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. Mutants of Hsp105α and Hsp105β with changes in the nuclear localization signal sequences, which localized exclusively in the cytoplasm with or without the expression of EGFP-polyQ97, did not suppress the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. Furthermore, Hsp70 was induced by the co-expression of Hsp105α and EGFP-polyQ97, and the knockdown of Hsp70 reduced the inhibitory effect of Hsp105α and Hsp105β on the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. These observations suggested that Hsp105α and Hsp105β suppressed the expanded polyQ tract-induced protein aggregation and apoptosis through the induction of Hsp70.  相似文献   

5.
Corneal epithelium maintains visual acuity and is regenerated by the proliferation and differentiation of limbal progenitor cells. Transplantation of human limbal progenitor cells could restore the integrity and functionality of the corneal surface in patients with limbal stem cell deficiency. However, multiple protocols are employed to differentiate human induced pluripotent stem (iPS) cells into corneal epithelium or limbal progenitor cells. The aim of this study was to optimize a protocol that uses bone morphogenetic protein 4 (BMP4) and limbal cell-specific medium. Human dermal fibroblast-derived iPS cells were differentiated into limbal progenitor cells using limbal cell-specific (PI) medium and varying doses (1, 10, and 50 ng/mL) and durations (1, 3, and 10 days) of BMP4 treatment. Differentiated human iPS cells were analyzed by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemical studies at 2 or 4 weeks after BMP4 treatment. Culturing human dermal fibroblast-derived iPS cells in limbal cell-specific medium and BMP4 gave rise to limbal progenitor and corneal epithelial-like cells. The optimal protocol of 10 ng/mL and three days of BMP4 treatment elicited significantly higher limbal progenitor marker (ABCG2, ∆Np63α) expression and less corneal epithelial cell marker (CK3, CK12) expression than the other combinations of BMP4 dose and duration. In conclusion, this study identified a successful reprogramming strategy to induce limbal progenitor cells from human iPS cells using limbal cell-specific medium and BMP4. Additionally, our experiments indicate that the optimal BMP4 dose and duration favor limbal progenitor cell differentiation over corneal epithelial cells and maintain the phenotype of limbal stem cells. These findings contribute to the development of therapies for limbal stem cell deficiency disorders.  相似文献   

6.
Heat shock protein 70 (Hsp70) family consists of at least eight chaperone proteins that differ from each other by their pattern of expression and intracellular localization. Whereas ample experimental and clinico-pathological data has implicated the major stress-inducible Hsp70-1 as a protein required for cancer cell survival, the study of the other family members has been limited by the lack of experimental tools to differentiate between the highly homologous family members. This limitation has been recently overcome by the RNA interference technology that for the first time allows targeted knockdown of the individual Hsp70 family members. Data based on this technology has revealed that also Hsp70-2, a protein essential for spermatogenesis, is required for cancer cell growth and survival. Remarkably, the highly homologous Hsp70 proteins enhance cancer cell growth and survival by distinct molecular mechanisms.  相似文献   

7.
The 70-kDa heat shock protein (Hsp70) is up-regulated in a wide variety of tumor cell types and contributes to the resistance of these cells to the induction of cell death by anticancer drugs. Hsp70 binding protein 1 (HspBP1) modulates the activity of Hsp70 but its biological significance has remained unclear. We have now examined whether HspBP1 might interfere with the prosurvival function of Hsp70, which is mediated, at least in part, by inhibition of the death-associated permeabilization of lysosomal membranes. HspBP1 was found to be expressed at a higher level than Hsp70 in all normal and tumor cell types examined. Tumor cells with a high HspBP1/Hsp70 molar ratio were more susceptible to anticancer drugs than were those with a low ratio. Ectopic expression of HspBP1 enhanced this effect of anticancer drugs in a manner that was both dependent on the ability of HspBP1 to bind to Hsp70 and sensitive to the induction of Hsp70 by mild heat shock. Furthermore, anticancer drugs up-regulated HspBP1 expression, whereas prevention of such up-regulation by RNA interference reduced the susceptibility of tumor cells to anticancer drugs. Overexpression of HspBP1 promoted the permeabilization of lysosomal membranes, the release of cathepsins from lysosomes into the cytosol, and the activation of caspase-3 induced by anticancer drugs. These results suggest that HspBP1, by antagonizing the prosurvival activity of Hsp70, sensitizes tumor cells to cathepsin-mediated cell death.  相似文献   

8.
Heat shock protein 105 (Hsp105) is a molecular chaperone, and the isoforms Hsp105α and Hsp105β exhibit distinct functions with different subcellular localizations. Hsp105β localizes in the nucleus and induces the expression of the major heat shock protein Hsp70, whereas cytoplasmic Hsp105α is less effective in inducing Hsp70 expression. Hsp105 shuttles between the cytoplasm and the nucleus; the subcellular localization is governed by the relative activities of the nuclear localization signal (NLS) and nuclear export signal (NES). Here, we show that nuclear accumulation of Hsp105α but not Hsp105β is involved in Adriamycin (ADR) sensitivity. Knockdown of Hsp105α induces cell death at low ADR concentration, at which ADR is less effective in inducing cell death in the presence of Hsp105α. Of note, Hsp105 is localized in the nucleus under these conditions, even though Hsp105β is not expressed, indicating that Hsp105α accumulates in the nucleus in response to ADR treatment. The exogenously expressed Hsp105α but not its NLS mutant localizes in the nucleus of ADR-treated cells. In addition, the expression level of the nuclear export protein chromosomal maintenance 1 (CRM1) was decreased by ADR treatment of cells, and CRM1 knockdown caused nuclear accumulation of Hsp105α both in the presence and absence of ADR. These results indicating that Hsp105α accumulates in the nucleus in a manner dependent on the NLS activity via the suppression of nuclear export. Our findings suggest a role of nuclear Hsp105α in the sensitivity against DNA-damaging agents in tumor cells.  相似文献   

9.
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is an accessory protein that plays an important role in viral pathogenesis. This pathogenic activity of Vpr is related in part to its capacity to induce cell cycle G2 arrest and apoptosis of target T cells. A screening for multicopy suppressors of these Vpr activities in fission yeast identified heat shock protein 70 (Hsp70) as a suppressor of Vpr-induced cell cycle arrest. Hsp70 is a member of a family of molecular chaperones involved in innate immunity and protection from environmental stress. In this report, we demonstrate that HIV-1 infection induces Hsp70 in target cells. Overexpression of Hsp70 reduced the Vpr-dependent G2 arrest and apoptosis and also reduced replication of the Vpr-positive, but not Vpr-deficient, HIV-1. Suppression of Hsp70 expression by RNA interference (RNAi) resulted in increased apoptosis of cells infected with a Vpr-positive, but not Vpr-defective, HIV-1. Replication of the Vpr-positive HIV-1 was also increased when Hsp70 expression was diminished. Vpr and Hsp70 coimmunoprecipitated from HIV-infected cells. Together, these results identify Hsp70 as a novel anti-HIV innate immunity factor that targets HIV-1 Vpr.  相似文献   

10.
Extracellular Hsp70 (eHsp70) can act as damage-associated molecular pattern (DAMP) via Toll-like receptors TLR2 and TLR4, and stimulate immune and inflammatory responses leading to sterile inflammation and propagation of already existing inflammation. It was found elevated in the blood of patients with chronic obstructive pulmonary disease (COPD), who might suffer occasional bacterial colonizations and infections. We used a monocytic THP-1 cell line as a cellular model of systemic compartment of COPD to assess inflammatory effects of eHsp70 when present alone or together with bacterial products lypopolysaccharide (LPS) and lypoteichoic acid (LTA). THP-1 cells were differentiated into macrophage-like cells and treated with various concentrations of recombinant human Hsp70 protein (rhHsp70), LPS (TLR4 agonist), LTA (TLR2 agonist), and their combinations for 4, 12, 24, and 48 h. Concentrations of IL-1α, IL-6, IL-8, and TNF-α were determined by ELISA. Cell viability was assessed by MTS assay, and mode of cell death by luminometric measurements of caspases-3/7, -8, and -9 activities. rhHsp70 showed cell protecting effect by suppressing caspases-3/7 activation, while LPS provoked cytotoxicity through caspases-8 and -3/7 pathway. Regarding inflammatory processes, rhHsp70 alone induced secretion of IL-1α and IL-8, but had modulatory effects on release of all four cytokines when applied together with LPS or LTA. Combined effect with LPS was mainly synergistic, and with LTA mainly antagonistic, although it was cytokine- and time-dependent. Our results confirmed pro-inflammatory function of extracellular Hsp70, and suggest its possible implication in COPD exacerbations caused by bacterial infection through desensitization or inappropriate activation of TLR2 and TLR4 receptors.  相似文献   

11.
Tax, an oncogenic viral protein encoded by human T cell leukemia virus type 1 (HTLV-1), induces cellular transformation of T lymphocytes by modulating a variety of cellular gene expressions [1]. Identifying cellular partners that interact with Tax constitutes the first step toward elucidating the molecular basis of Tax-induced transformation. Here, we report a novel Tax-interacting protein, hTid-1. hTid-1, a human homolog of the Drosophila tumor suppressor protein Tid56, was initially characterized based on its interaction with the HPV-16 E7 oncoprotein [2]. hTid-1 and Tid56 are members of the DnaJ family [2,3], which contains a highly conserved signature J domain that regulates the activities of heat shock protein 70 (Hsp70) by serving as cochaperone [4-6]. In this context, the molecular chaperone complex is involved in cellular signaling pathways linked to apoptosis, protein folding, and membrane translocation and in modulation of the activities of tumor suppressor proteins, including retinoblastoma, p53, and WT1[7-12]. We find that expression of hTid-1 inhibits the transformation phenotype of two human lung adenocarcinoma cell lines. We show that Tax interacts with hTid-1 via a central cysteine-rich domain of hTid-1 while a signature J domain of hTid-1 mediates its binding to Hsp70 in HEK cells. Importantly, Tax associates with the molecular chaperone complex containing both hTid-1 and Hsp70 and alters the cellular localization of hTid-1 and Hsp70. In the absence of Tax, expression of the hTid-1/Hsp70 molecular complex is targeted to perinuclear mitochondrial clusters. In the presence of Tax, hTid-1 and its associated Hsp70 are sequestered within a cytoplasmic "hot spot" structure, a subcellular distribution that is characteristic of Tax in HEK cells.  相似文献   

12.
Heat Shock Proteins (HSPs) represent a variety of protein families that are induced by stressors such as heat and toxicants, and the induction of HSPs in the organogenesis stage rodent embryo is well established. It has been proposed that thermotolerance and chemotolerance result from expression of the HSPs. However, whether these proteins function to prevent dysmorphogenesis and which family members serve this function are unknown. Therefore, we evaluated the specific ability of stress-inducible Hsp70-1 and Hsp70-3 to prevent arsenite-induced dysmorphology in the cultured mouse embryo using gain- and loss-of-function models. Loss of HSP function was accomplished by injecting antisense oligonucleotides directed against hsp70-1 and hsp 70-3 mRNAs into the amniotic cavity of cultured Day 9 mouse embryos. Suppression of hsp70-1 and hsp70-3 expression resulted in an up to six-fold increase in the incidence of arsenite-induced neural tube defects. Gain of HSP function was accomplished by microinjecting a transgene with a constitutive promotor driving expression of the hsp70-1 coding region, and resulted in a decreased incidence of arsenite-induced neural tube defects. These results indicate that Hsp70-1 and Hsp70-3 are both necessary and sufficient for preventing arsenite-induced dysmorphology in early-somite staged mouse embryos. Mol. Reprod. Dev. 59:285-293, 2001.  相似文献   

13.
Studies on the Hsp70 chaperone machine in eukaryotes have shown that Hsp70 and Hsp40/Hdj1 family proteins are sufficient to prevent protein misfolding and aggregation and to promote refolding of denatured polypeptides. Additional protein cofactors include Hip and Bag1, identified in protein interaction assays, which bind to and modulate Hsp70 chaperone activity in vitro. Bag1, originally identified as an antiapoptotic protein, forms a stoichiometric complex with Hsp70 and inhibits completely Hsp70-dependent in vitro protein refolding of an unfolded polypeptide. Given its proposed involvement in multiple cell signaling events as a regulator of Raf1, Bcl2, or androgen receptor, we wondered whether Bag1 functions in vivo as a negative regulator of Hsp70. In this study, we demonstrate that Bag1, expressed in mammalian tissue culture cells, has pronounced effects on one of the principal activities of Hsp70, as a molecular chaperone essential for stabilization and refolding of a thermally inactivated protein. The levels of Hsp70 and Bag1 were modulated either by transient transfection or conditional expression in stably transfected lines to achieve levels within the range detected in different mammalian tissue culture cell lines. For example, a twofold increase in the concentration of Bag1 reduced Hsp70-dependent refolding of denatured luciferase by a factor of 2. This effect was titratable, and higher levels of wild-type but not a mutant form of Bag1 further inhibited Hsp70 refolding by up to a factor of 5. The negative effects of Bag1 were also observed in a biochemical analysis of Bag1- or Hsp70-overexpressing cells. The ability of Hsp70 to maintain thermally denatured firefly luciferase in a soluble state was reversed by Bag1, thus providing an explanation for the in vivo chaperone-inhibitory effects of Bag1. Similar effects on Hsp70 were observed with other cytoplasmic isoforms of Bag1 which have in common the carboxyl-terminal Hsp70-binding domain and differ by variable-length amino-terminal extensions. These results provide the first formal evidence that Bag1 functions in vivo as a regulator of Hsp70 and suggest an intriguing complexity for Hsp70-regulatory events.  相似文献   

14.
15.
The 70-kDa family of heat-shock proteins (Hsp70) plays an important role in the host immunity, which is widely expressed in eukaryotic cells as a major chaperone protein. In the present study, the full-length complementary DNA (cDNA) of a second cognate cytosolic Hsp70 family member (MnHsc70-2) was cloned and characterized from Macrobrachium nipponense, which is an economically and nutritionally important crustacean. The cDNA was 2,717 bp, containing an open reading frame (ORF) of 1,950 bp, which encodes a protein of 649 amino acids with a theoretical molecular weight of 71.1 kDa and an isoelectric point of 5.27. Sequence alignment showed that the MnHsc70-2 shared 75–97 % identity with other heat-shock proteins. Compared to the previously identified cognate Hsp70 (MnHsc70-1) in M. nipponense, MnHsc70-2 showed quite different expression profiles under unstressed conditions in all tested tissues, including the hemocytes, heart, hepatopancreas, gill, intestine, nerve, and muscle. The phylogenetic analysis demonstrated that MnHsc70-2 showed the closest relationship with MnHsc70-1. Heat-inducibility assays showed that two isolated messenger RNAs (mRNAs) displayed different expression profiles in both the hepatopancreas and gill tissues. MnHsc70-1 mRNA expression level decreased at first and then increased to the normal level, whereas MnHsc70-2 mRNA level increased at first and then decreased. The expressions of two MnHsc70s showed substantial obvious heat-inducible regulation in both the hepatopancreas and gill. Under bacterial challenge by Aeromonas hydrophila, both MnHsc70-1 and MnHsc70-2 mRNA level was up-regulated moderately. The results suggested that two cognate Hsc70s may play essential functions in mediating responses to heat-shock and bacterial challenge.  相似文献   

16.
Toll-like receptors (TLRs) play important roles in initiation of innate and adaptive immune responses. Emerging evidence suggests that TLR agonists can serve as potential adjuvant for vaccination. Heat shock proteins (HSPs), functionally serving as TLR4 agonists, have been proposed to act as Th1 adjuvant. We have identified a novel Hsp70 family member, termed Hsp70-like protein 1 (Hsp70L1), shown that Hsp70L1 is a potent T helper cell (Th1) polarizing adjuvant that contributes to antitumor immune responses. However, the underlying mechanism for how Hsp70L1 exerts its Th1 adjuvant activity remains to be elucidated. In this study, we found that Hsp70L1 binds directly to TLR4 on the surface of DCs, activates MAPK and NF-κB pathways, up-regulates I-a(b), CD40, CD80, and CD86 expression and promotes production of TNF-α, IL-1β, and IL-12p70. Hsp70L1 failed to induce such phenotypic maturation and cytokine production in TLR4-deficient DCs, indicating a role for TLR4 in mediating Hsp70L1-induced DC activation. Furthermore, more efficient induction of carcinoembryonic antigen (CEA)-specific Th1 immune response was observed in mice immunized by wild-type DCs pulsed with Hsp70L1-CEA(576-669) fusion protein as compared with TLR4-deficient DCs pulsed with same fusion protein. In addition, TLR4 antagonist impaired induction of CEA-specific human Th1 immune response in a co-culture system of peripheral blood lymphocytes (PBLs) from HLA-A2.1(+) healthy donors and autologous DCs pulsed with Hsp70L1-CEA(576-669) in vitro. Taken together, these results demonstrate that TLR4 is a key receptor mediating the interaction of Hsp70L1 with DCs and subsequently enhancing the induction of Th1 immune response by Hsp70L1/antigen fusion protein.  相似文献   

17.
18.
hYVH1 [human orthologue of YVH1 (yeast VH1-related phosphatase)] is an atypical dual-specificity phosphatase that is widely conserved throughout evolution. Deletion studies in yeast have suggested a role for this phosphatase in regulating cell growth. However, the role of the human orthologue is unknown. The present study used MS to identify Hsp70 (heat-shock protein 70) as a novel hYVH1-binding partner. The interaction was confirmed using endogenous co-immunoprecipitation experiments and direct binding of purified proteins. Endogenous Hsp70 and hYVH1 proteins were also found to co-localize specifically to the perinuclear region in response to heat stress. Domain deletion studies revealed that the ATPase effector domain of Hsp70 and the zinc-binding domain of hYVH1 are required for the interaction, indicating that this association is not simply a chaperone-substrate complex. Thermal phosphatase assays revealed hYVH1 activity to be unaffected by heat and only marginally affected by non-reducing conditions, in contrast with the archetypical dual-specificity phosphatase VHR (VH1-related protein). In addition, Hsp70 is capable of increasing the phosphatase activity of hYVH1 towards an exogenous substrate under non-reducing conditions. Furthermore, the expression of hYVH1 repressed cell death induced by heat shock, H2O2 and Fas receptor activation but not cisplatin. Co-expression of hYVH1 with Hsp70 further enhanced cell survival. Meanwhile, expression of a catalytically inactive hYVH1 or a hYVH1 variant that is unable to interact with Hsp70 failed to protect cells from the various stress conditions. The results suggest that hYVH1 is a novel cell survival phosphatase that co-operates with Hsp70 to positively affect cell viability in response to cellular insults.  相似文献   

19.
Hsp70-1A—the major stress-inducible member of the HSP70 chaperone family—is being implicated in cancer diseases with the development of resistances to standard therapies. In normal cells, the protein is purely cytosolic, but in a growing number of tumor cells, a significant fraction can be identified on to the cell surface. The anchoring mechanism is still under debate, as Hsp70-1A lacks conventional signaling sequences for translocation from the cytosol to exoplasmic leaflet of the plasma membrane and common membrane binding domains. Recent reports propose a lipid-mediated anchoring mechanism based on a specific interaction with charged, saturated lipids such as dipalmitoyl phosphatidylserine (DPPS). Here, we prepared planar supported lipid bilayers (SLBs) to visualize the association of Hsp70-1A directly and on the single molecule level by atomic force microscopy (AFM). The single molecule sensitivity of our approach allowed us to explore the low concentration range of 0.05 to 1.0 μg/ml of Hsp70-1A which was not studied before. We compared the binding of the protein to bilayers with 20% DPPS lipid content both in the absence and presence of cholesterol. Hsp70-1A inserted exclusively into DPPS domains and assembled in clusters with increasing protein density. A critical density was reached for incubation with 0.5 μg/ml (7 nM); at higher concentrations, membrane defects were observed that originated from cluster centers. In the presence of cholesterol, this critical concentration leads to the formation of membrane blebs, which burst at higher concentrations supporting a previously proposed non-classical pathway for the export of Hsp70-1A by tumor cells. In the discussion of our data, we attempt to link the lipid-mediated plasma membrane localization of Hsp70-1A to its potential involvement in the development of resistances to radiation and chemotherapy based on our own findings and the current literature.  相似文献   

20.
Cell Stress & Chaperones journal has become a major outlet for papers and review articles about anti-heat shock protein (HSP) antibodies. In the last decade, it became evident that apart from their intracellular localization, members of the heat shock protein 90 (Hsp90; HSPC) and Hsp70 (HSPA) family are also found on the cell surface. In this review, we will focus on Hsp70 (HSPA1A), the major stress-inducible member of the human Hsp70 family. Depending on the cell type, the membrane association of Hsp70 comes in two forms. In tumor cells, Hsp70 appears to be integrated within the plasma membrane, whereas in non-malignantly transformed (herein termed normal) cells, Hsp70 is associated with cell surface receptors. This observation raises the question whether or not these two surface forms of Hsp70 in tumor and normal cells can be distinguished using Hsp70 specific antibodies. Presently a number of Hsp70 specific antibodies are commercially available. These antibodies were generated by immunizing mice either with recombinant or HeLa-derived human Hsp70 protein, parts of the Hsp70 protein, or with synthetic peptides. This review aims to characterize the binding of different anti-human Hsp70 antibodies and their capacity to distinguish between integrated and receptor-bound Hsp70 in tumor and normal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号