首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim Public land survey records are commonly used to reconstruct historical forest structure over large landscapes. Reconstruction studies have been criticized for using absolute measures of forest attributes, such as density and basal area, because of potential selection bias by surveyors and unknown measurement error. Current methods to identify bias are based upon statistical techniques whose assumptions may be violated for survey data. Our goals were to identify and directly estimate common sources of bias and error, and to test the accuracy of statistical methods to identify them. Location Forests in the western USA: Mogollon Plateau, Arizona; Blue Mountains, Oregon; Front Range, Colorado. Methods We quantified both selection bias and measurement error for survey data in three ponderosa pine landscapes by directly comparing measurements of bearing trees in survey notes with remeasurements of bearing trees at survey corners (384 corners and 812 trees evaluated). Results Selection bias was low in all areas and there was little variability among surveyors. Surveyors selected the closest tree to the corner 95% to 98% of the time, and hence bias may have limited impacts on reconstruction studies. Bourdo’s methods were able to successfully detect presence or absence of bias most of the time, but do not measure the rate of bias. Recording and omission errors were common but highly variable among surveyors. Measurements for bearing trees made by surveyors were generally accurate. Most bearings were less than 5° in error and most distances were within 5% of our remeasurements. Many, but not all, surveyors in the western USA probably estimated diameter of bearing trees at stump height (0.3 m). These estimates deviated from reconstructed diameters by a mean absolute error of 7.0 to 10.6 cm. Main conclusions Direct comparison of survey data at relocated corners is the only method that can determine if bias and error are meaningful. Data from relocated trees show that biased selection of trees is not likely to be an important source of error. Many surveyor errors would have no impact on reconstruction studies, but omission errors have the potential to have a large impact on results. We suggest how to reduce potential errors through data screening.  相似文献   

2.
Aim Woody plant expansion and infilling in grasslands and savannas are occurring across a broad range of ecosystems around the globe and are commonly attributed to fire suppression, livestock grazing, nutrient enrichment and/or climate variability. In the western Great Plains, ponderosa pine (Pinus ponderosa) woodlands are expanding across broad geographical and environmental gradients. The objective of this study was to reconstruct the establishment of ponderosa pine in woodlands in the west‐central Great Plains and to identify whether it was mediated by climate variability. Location Our study took place in a 400‐km wide region from the base of the Front Range Mountains (c. 105° W) to the central Great Plains (c. 100° W) and from Nebraska (43° N) to northern New Mexico (36° N), USA. Methods Dates for establishment of ponderosa pine were reconstructed with tree rings in 11 woodland sites distributed across the longitudinal and latitudinal gradients of the study area. Temporal trends in decadal pine establishment were compared with summer Palmer Drought Severity Index (PDSI). Annual trends in pine establishment from 1985 to 2005 were compared with seasonal PDSI, temperature and moisture availability. Results Establishment of ponderosa pine occurred in the study area in all but one decade (1770s) between the 1750s and the early 2000s, with over 35% of establishment in the region occurring after 1980. Pine establishment was highly variable among sites. Across the region, decadal pine establishment was persistently low from 1940 to 1960, when PDSI was below average. Annual pine establishment from 1985 to 2005 was positively correlated with summer PDSI and inversely correlated with minimum spring temperatures. Main conclusions Most ponderosa pine woodlands pre‐date widespread Euro‐American settlement of the region around c. ad 1860 and currently have stable tree populations. High variability in the timing of establishment of pine among sites highlights the multiplicity of factors that can drive woodland dynamics, including land use, fire history, CO2 enrichment, tree population dynamics and climate. Since the 1840s, the influence of climate was most notable across the study area during the mid‐20th century, when the establishment of pine was suppressed by two significant droughts. The past sensitivity of establishment of ponderosa pine to drought suggests that woodland expansion will be negatively affected by predicted increases in temperature and drought in the Great Plains.  相似文献   

3.
Abstract Aim We addressed four objectives: (1) Determine the regional responses of species, size classes and a vegetation type to climate and parent material predictors, including their distributions in environmental space and the relative contributions of the predictors to explained variation. (2) Determine whether size classes of a species respond similarly to climate and parent material. (3) Assess the extent to which the predicted regional distribution of a vegetation type can be approximated by the distribution of its diagnostic species and vice versa. The establishment of a consistent relationship between the distribution of a vegetation type and its diagnostic species would facilitate change detection, management and conservation planning by allowing the use of one distribution to generate the other when data availability is limited. (4) Examine landscape‐scale environmental variability in predicted species and vegetation type distributions. Location South‐western USA (Arizona, New Mexico and southern Colorado). Methods Ecological response surface models were developed using a data base of 1409 vegetation plots to analyse biotic–environmental relationships of (1) Pinus ponderosa P. & C. Lawson and Abies concolor (Gord. & Glend.) Lindl. Ex Hildebr. size classes, (2) P. ponderosa, A. concolor and Quercus gambelii Nutt. combined size classes, and (3) a P. ponderosa forest type widely distributed in the south‐western USA. Results and main conclusions Pinus ponderosa and A. concolor models generally were judged to be successful. Quercus gambelii models were judged unsuccessful, which may result from the influence of variables not modelled, such as soil moisture, disturbance, biotic factors and other site limiting factors. Size classes differed in the range of environmental conditions associated with high occurrence probabilities within and between species, reflecting differences in the effects of climate variability and anthropogenic changes, such as fire suppression, on the distribution of each size class. Pinus ponderosa alliance was predicted to be distributed over a narrower range of environmental conditions than P. ponderosa species models, therefore limiting the use of this vegetation type as a surrogate for the distribution of the dominant species, and vice versa. Maps of combinations of environmental variables that produced a high probability of P. ponderosa occurrence showed that some landscapes predicted to contain the species exhibited diverse environmental conditions over short distances. The use of regional environmental relationships to characterize areas with high local environmental variability may facilitate identification of areas of potential rapid biotic change.  相似文献   

4.
5.
Much of the previous research on spatial reference conditions in dry frequent fire pine forests have come from stand‐level patterns under regionally average ecosystem conditions (e.g. soil type and precipitation). We evaluated the 1883 reference conditions of an uncut ponderosa pine stand representing a far end of the range of variability in terms of regionally unusual environmental conditions. Using a forest reconstruction model, univariate and bivariate Ripley's K functions, and regression analysis, we determined 1883 structural and spatial reference conditions, and compared those to the contemporary (2010) stand. Historical stand density was 77 trees/ha with a basal area of 8.0 m2/ha. Reference spatial patterns were significantly aggregated from 1 to 2 m and randomly distributed at distances greater than 2 m. Nearly 40% of the reconstructed trees were individuals, the average patch size was 2.9 trees, and the largest patch had 7 members. The contemporary stand had considerably greater densities and basal area than historical conditions and showed aggregation at all distances. Bivariate spatial analysis indicated attraction of post‐settlement recruitment to live pre‐settlement trees from 1 to 6 m and no association at distances greater than 6 m. We speculate that the historically random tree pattern is the product of a variety of factors including soil parent material, climate, and more homogeneous resource partitioning.  相似文献   

6.
7.
Maternally inherited mtDNA in a secondary contact zone of ponderosa pine revealed a cline less than 10 km wide - much narrower than previously described. A survey of 76 populations gave no evidence either of intermixing or of a mosaic contact zone. Such sharp contact zones are consistent with diffusive range expansion, rather than long distance colonization. However, evidence for long distance seed dispersal events was found in two populations where haplotypes were observed far from their main area of occurrence. The results suggest a small number of long distance colonists with diffusive dispersal from these centres.  相似文献   

8.
Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non‐native species density in a second‐growth ponderosa pine forest. Location: Challenge Experimental Forest, northern Sierra Nevada, California, USA. Methods: We compared the effects of mastication only, mastication with supplemental treatments (tilling and prescribed fire), hand removal, and a control on initial understory vegetation response using a randomized complete block experimental design. Each block (n=4) contained all five treatments and understory vegetation was surveyed within 0.04‐ha plots for each treatment. Results: While mastication alone and hand removal dramatically reduced the midstory vegetation, these treatments had little effect on understory richness compared with control. Prescribed fire after mastication increased native species richness by 150% (+6.0 species m2) compared with control. However, this also increased non‐native species richness (+0.8 species m2) and shrub seedling density (+24.7 stems m2). Mastication followed by tilling resulted in increased non‐native forb density (+0.7 stems m2). Conclusions: Mechanical mastication and hand removal treatments aided in reducing midstory fuels but did not increase understory plant diversity. The subsequent treatment of prescribed burning not only further reduced fire hazard, but also exposed mineral soil, which likely promoted native plant diversity. Some potential drawbacks to this treatment include an increase of non‐native species and stimulation of shrub seed germination, which could alter ecosystem functions and compromise fire hazard reduction in the long‐term.  相似文献   

9.
10.
Aim Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low‐severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low‐severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and early historical reports, suggest the low‐severity model may only apply in limited geographical areas. The aim of this article is to elaborate a new variable‐severity fire model and evaluate the applicability of this model, along with the low‐severity model, for the ponderosa pine–Douglas fir forests of the Rocky Mountains. Location Rocky Mountains, USA. Methods The geographical applicability of the two fire models is evaluated using historical records, fire histories and forest age‐structure analyses. Results Historical sources and tree‐ring reconstructions document that, near or before ad 1900, the low‐severity model may apply in dry, low‐elevation settings, but that fires naturally varied in severity in most of these forests. Low‐severity fires were common, but high‐severity fires also burned thousands of hectares. Tree regeneration increased after these high‐severity fires, and often attained densities much greater than those reconstructed for Southwestern ponderosa pine forests. Main conclusions Exclusion of fire has not clearly and uniformly increased fuels or shifted the fire type from low‐ to high‐severity fires. However, logging and livestock grazing have increased tree densities and risk of high‐severity fires in some areas. Restoration is likely to be most effective which seeks to (1) restore variability of fire, (2) reverse changes brought about by livestock grazing and logging, and (3) modify these land uses so that degradation is not repeated.  相似文献   

11.
Seasonal activity of superoxide dismutase (SOD, EC 1.15.1.1). ascorbate peroxidase (APOD, EC 1.11.1.11) and guaiacol-oxidizing enzymes (GPODs, EC 1.11.1.7) was examined in needles of 12- to 15-year-old ponderosa pine (Pinus ponderosa Laws.) trees which received ozone (O3) and acid precipitation treatment. Individual branches were enclosed in branch exposure chambers delivering either charcoal-filtered (O3-reduced) air, ambient air, or air with twice ambient (2 x ambient) concentrations of O3. Acid precipitation treatments were rain of pH 3.0 or 5.1 or no rain. Changes in antioxidant enzyme activity were not a consistent response to O3 fumigation or acid precipitation, but when observed, they occurred most often in the O3-sensitive clone and in symptomatic, fumigated branches. In the second year of fumigation. O3 fleck symptoms appeared on needles of the sensitive clone as early as July and APOD activities were significantly increased by O3 at all sampling dates. In the tolerant clone, antioxidant enzyme activities were not significantly changed by O3 in the first season of fumigation (March to December 1990), not even during an episode when ambient O3 concentrations reached 125 nl 1?1 (240 nl 1?1 in 2x ambient chambers). No foliar symptoms were observed on needles of the tolerant clone during this year. However, in the second year of fumigation (1992), O3 fleck symptoms were observed on the tolerant clone and APOD activities were significantly increased in previous-year needles. The tolerant clone had SOD, APOD, and GPOD activities at least 40% higher than those of the sensitive clone before fumigation and 65, 178, and 119% higher, respectively, during both years of fumigation. The higher constitutive levels of these enzymes may have protected against foliar injury in 1990, however in 1992 we concluded that the stimulations in antioxidant enzyme activities observed in symptomatic branches of both clones were a consequence of O3 injury. Total (intra- and extracellular) activities of the antioxidant enzymes did not appear to be good indicators of O3 tolerance. Phenotypically, the O3-tolerant clone was much more vigorous and in both years of fumigation, gas exchange rates were 30 to 71% higher than in the sensitive clone (P. D. Anderson, unpublished data). The greater vigor of the tolerant clone may allow more carbon allocation to protective and repair processes which include, but are not restricted to, the turnover of antioxidant enzymes and metabolites.  相似文献   

12.
Changes in carbon storage and fluxes in a chronosequence of ponderosa pine   总被引:14,自引:1,他引:13  
Forest development following stand‐replacing disturbance influences a variety of ecosystem processes including carbon exchange with the atmosphere. On a series of ponderosa pine (Pinius ponderosa var. Laws.) stands ranging from 9 to> 300 years in central Oregon, USA, we used biological measurements to estimate carbon storage in vegetation and soil pools, net primary productivity (NPP) and net ecosystem productivity (NEP) to examine variation with stand age. Measurements were made on plots representing four age classes with three replications: initiation (I, 9–23 years), young (Y, 56–89 years), mature (M, 95–106 years), and old (O, 190–316 years) stands typical of the forest type in the region. Net ecosystem productivity was lowest in the I stands (?124 g C m?2 yr?1), moderate in Y stands (118 g C m?2 yr?1), highest in M stands (170 g C m?2 yr?1), and low in the O stands (35 g C m?2 yr?1). Net primary productivity followed similar trends, but did not decline as much in the O stands. The ratio of fine root to foliage carbon was highest in the I stands, which is likely necessary for establishment in the semiarid environment, where forests are subject to drought during the growing season (300–800 mm precipitation per year). Carbon storage in live mass was the highest in the O stands (mean 17.6 kg C m?2). Total ecosystem carbon storage and the fraction of ecosystem carbon in aboveground wood mass increased rapidly until 150–200 years, and did not decline in older stands. Forest inventory data on 950 ponderosa pine plots in Oregon show that the greatest proportion of plots exist in stands ~ 100 years old, indicating that a majority of stands are approaching maximum carbon storage and net carbon uptake. Our data suggests that NEP averages ~ 70 g C m?2 year?1 for ponderosa pine forests in Oregon. About 85% of the total carbon storage in biomass on the survey plots exists in stands greater than 100 years, which has implications for managing forests for carbon sequestration. To investigate variation in carbon storage and fluxes with disturbance, simulation with process models requires a dynamic parameterization for biomass allocation that depends on stand age, and should include a representation of competition between multiple plant functional types for space, water, and nutrients.  相似文献   

13.
14.
Ponderosa pine has very wide sapwood, and yet the spatial and temporal use of that sapwood for water transport is poorly understood. Moreover, there have been few comparisons of function in tips of old-growth trees in comparison with young trees. In the present study, axial and radial specific conductivity (ks), leaf specific conductivity (LSC), leaf specific conductance (kl), native embolism and the compartmentalization of sapwood water storage were characterized in trunks of young and old-growth trees. Trunks of young trees had lower ks, lower LSC and lower native embolism [corresponding to 5% loss of conductivity (PLC)] than trunks of old-growth trees. However, kl in young trees was 3.5 times higher than in old-growth trees, supporting the hypothesis that tall trees have a reduced ability to transport water to their leaves. Water storage (capacitance) of young trees was not significantly different than at the base of old-growth trees. Although the top of the old-growth trees had similar ks, LSC and kl to the young trees for a given cambial age, they had higher native embolism and lower capacitance. There was no trade-off between ks and native embolism at any height. In the tree crown, outer sapwood had 35–50% higher ks than the inner sapwood and 17–25 PLC lower native embolism. At the base of the old trees, there was no significant difference in native embolism between the outer, middle and inner sapwood, showing that refilling of embolisms was complete despite the 130-year difference in wood age among these radial positions. Although during the dry season the inner sapwood tended to be more saturated than the outer sapwood, the outer part of the sapwood contributed up to 60% of the overall stored water. Safer xylem, higher capacitance and higher kl would appear adaptive in the young trees for regulating their water resource, which is likely to be less reliable than the water availability of older trees with their more developed root system.  相似文献   

15.
We examined a 6‐year record of automated chamber‐based soil CO2 efflux (Fs) and the underlying processes in relation to climate and canopy gas exchange at an AmeriFlux site in a seasonally drought‐stressed pine forest. Interannual variability of Fs was large (CV=17%) with a range of 427 g C m?2 yr?1 around a mean annual Fs of 811 g C m?2 yr?1. On average, 76% of the variation of daily mean Fs could be quantified using an empirical model with year‐specific basal respiration rate that was a linear function of tree basal area increment (BAI) and modulated by a common response to soil temperature and moisture. Interannual variability in Fs could be attributed almost equally to interannual variability in BAI (a proxy for above‐ground productivity) and interannual variability in soil climate. Seasonal total Fs was twice as sensitive to soil moisture variability during the summer months compared with temperature variability during the same period and almost insensitive to the natural range of interannual variability in spring temperatures. A strong seasonality in both root respiration (Rr) and heterotrophic respiration (Rh) was observed with the fraction attributed to Rr steadily increasing from 18% in mid‐March to 50% in early June through early July before dropping rapidly to 10% of Fs by mid‐August. The seasonal pattern in Rr (10‐day averages) was strongly linearly correlated with tree transpiration (r2=0.90, P<0.01) as measured using sap flux techniques and gross ecosystem productivity (GEP, r2=0.83, P<0.01) measured by the eddy‐covariance approach. Rr increased by 0.43 g C m?2 day?1 for every 1 g C m?2 day?1 increase in GEP. The strong linear correlation of Rr to seasonal changes in GEP and transpiration combined with longer‐term interannual variability in the base rate of Fs, as a linear function of BAI (r2=0.64, P=0.06), provides compelling justification for including canopy processes in future models of Fs.  相似文献   

16.
17.
1 Abiotic conditions within logs can affect pine engraver Ips pini (Say) reproductive success, and slash management techniques have been developed that exploit these relationships to reduce brood production. In the present study, we investigated the affect of sunlight exposure on phloem temperature and moisture in logs of two diameters and the subsequent effects on pine engraver reproduction.
2 Logs, 30 cm in length, with diameters of 10 and 15 cm, were cut, left in the field for natural colonization by I pini , and then placed in an open meadow and under shade cloth, providing 27% and 66% shade, until offspring beetles had left the logs. Phloem temperature and moisture were recorded over the duration of the experiment and, at the end of the field experiment, logs were dissected and galleries were measured to gauge beetle reproductive success.
3 As sunlight exposure increased, phloem temperatures increased and potentially lethal temperatures were often reached in the high-sunlight exposure but seldom in the low-sunlight. Smaller diameter logs had drier phloem than larger diameter logs. All logs dried with time but sunlight level did not affect desiccation rates. Ips pini preferred attacking larger logs and the bottom side of logs. Sunlight exposure had a significant effect on net reproductive success in smaller diameter logs, with very little net reproductive success in high-sunlight exposed logs, and the highest reproductive success was found in small diameter logs in the low-sunlight treatments.
4 Management implications of these results are discussed.  相似文献   

18.
Despite widespread interest in drought legacies—multiyear impacts of drought on tree growth—the key implication of reported drought legacies remains unaddressed: as impaired growth and slow recovery associated with drought legacies are pervasive across forest ecosystems, what is the impact of more frequent drought conditions? We investigated the assumption that either multiple drought years occurring during a short period (multiyear droughts), or droughts occurring during the recovery period from previous drought (compounded droughts), are detrimental to subsequent growth. There is evidence that drought responses may vary among populations of widespread species, leading us to examine regional differences in responses of the conifer Pinus ponderosa to historic drought frequency in the western United States. More frequent drought conditions incurred additional growth declines and shifts in growth–climate sensitivities in the years following drought relative to single‐drought events, with ‘triple‐droughts' being worse than ‘double‐droughts'. Notably, prediction skill was not strongly reduced when ignoring compounded droughts, a consequence of the temporally comprehensive formulation of our stochastic antecedent model that accounts for the climatic memory of tree growth. We argue that incorporating drought‐induced temporal variability in tree growth sensitivities can aid inference gained from statistical models, where more simplistic models could overestimate the severity of drought legacies. We also found regional differences in response to repeated drought, and suggest plastic post‐drought sensitivities and climatic memory may represent beneficial physiological adjustments in interior regions. Within‐species variability may thus mediate forest responses to increasing drought frequency under future climate change, but experimental approaches using more species are necessary to improve our understanding of the mechanisms that underlie drought legacy effects on tree growth.  相似文献   

19.
A blend of eight nonhost angiosperm volatiles (benzyl alcohol, benzaldehyde, guaiacol, nonanal, salicylaldehyde, (E)‐2‐hexenal, (E)‐2‐hexen‐1‐ol and (Z)‐2‐hexen‐1‐ol) without [NAV] and with [NAVV] (–)‐verbenone (4,6,6‐trimethylbicyclo[3.1.1]hept‐3‐en‐2‐one) were tested at low (L), medium (M) and high (H) release rates for their ability to reduce attraction of western pine beetle, Dendroctonus brevicomis LeConte, to attractant‐baited (exo‐brevicomin [racemic, 3 mg/d], frontalin [racemic, 3 mg/d] and myrcene [18 mg/d]) multiple funnel traps. NAV‐L (40 mg/d) had no significant effect. Verbenone alone (50 mg/d) and NAV‐M (240 mg/d) both significantly reduced attraction, but no significant difference was observed between the two treatment means. NAV‐H (430 mg/d) significantly reduced catches by ~60% and 78% compared to verbenone alone and the baited control, respectively. In a second experiment, combining (–)‐verbenone with NAV (NAVV) increased the effects observed in Experiment 1. NAVV‐M (240 mg/d) resulted in an ~69% and 83% reduction in trap catch compared to verbenone alone and the baited control, respectively. Significantly fewer D. brevicomis were captured in NAVV‐H (430 mg/d) than any other treatment resulting in an ~93% reduction in trap catch compared to the baited control. In a third experiment, NAVV was tested at three release rates for its ability to protect individual ponderosa pines, Pinus ponderosa Dougl. ex Laws., from attack by D. brevicomis. Cumulative release rates varied in direct proportion to tree diameter, but represented quarter, half and full NAVV rates. NAVV significantly reduced the density of D. brevicomis attacks, D. brevicomis successful attacks, and levels of tree mortality on attractant‐baited trees. Only three of 15 NAVV‐treated trees died from D. brevicomis attack while ~93% mortality (14/15) was observed in the untreated, baited control. Quarter and half rates were ineffective for reducing tree mortality.  相似文献   

20.
Johnson  D.W.  Ball  J.T.  Walker  R.F. 《Plant and Soil》1997,190(1):29-40
This paper summarizes the data on nutrient uptake and soil responses in opentop chambers planted with ponderosa pine (Pinus ponderosa Laws.) treated with both N and CO2. Based upon the literature, we hypothesized that 1) elevated CO2 would cause increased growth and yield of biomass per unit uptake of N even if N is limiting, and 2) elevated CO2 would cause increased biomass yield per unit uptake of other nutrients only by growth dilution and only if they are non-limiting. Hypothesis 1 was supported only in part: there were greater yields of biomass per unit N uptake in the first two years of growth but not in the third year. Hypothesis 2 was supported in many cases: elevated CO2 caused growth dilution (decreased concentrations but not decreased uptake) of P, S, and Mg. Effects of elevated CO2 on K, Ca, and B concentrations were smaller and mostly non-significant. There was no evidence that N responded in a unique manner to elevated CO2, despite its unique role in rubisco. Simple growth dilution seemed to explain nutrient responses in almost all cases.There were significant declines in soil exchangeable K+, Ca2+, Mg2+ and extractable P over time which were attributed to disturbance effects associated with plowing. The only statistically significant treatment effects on soils were negative effects of elevated CO2 on mineralizeable N and extractable P, and positive effects of both N fertilization and CO2 on exchangeable Al3+. Soil exchangeable K+, Ca2+, and Mg2+ pools remained much higher than vegetation pools, but extractable P pools were lower than vegetation pools in the third year of growth. There were also large losses of both native soil N and fertilizer N over time. These soil N losses could account for the observed losses in exchangeable K+, Ca2+, Mg2+ if N was nitrified and leached as NO 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号