首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial cell migration is critical for vascular angiogenesis and is compromised to facilitate tumor metastasis. The migratory process requires the coordinated assembly and disassembly of focal adhesions (FA), actin, and microtubules (MT). MT dynamics at FAs deliver vesicular cargoes and enhance actomyosin contractility to promote FA turnover and facilitate cell advance. Noncentrosomal (NC) MTs regulate FA dynamics and are sufficient to drive cell polarity, but how NC MTs target FAs to control FA turnover is not understood. Here, we show that Rac1 induces the assembly of FA-proximal septin filaments that promote NC MT growth into FAs and inhibit mitotic centromere-associated kinesin (MCAK)-associated MT disassembly, thereby maintaining intact MT plus ends proximal to FAs. Septin-associated MT rescue is coupled with accumulation of Aurora-A kinase and cytoplasmic linker-associated protein (CLASP) localization to the MT between septin and FAs. In this way, NC MTs are strategically positioned to undergo MCAK- and CLASP-regulated bouts of assembly and disassembly into FAs, thereby regulating FA turnover and cell migration.  相似文献   

2.
Coupled zones of f-actin and microtubule movement in polarized cells   总被引:1,自引:0,他引:1  
Interactions between the actin and microtubule cytoskeletons occur during cell polarization. Two papers in a recent issue of the Journal of Cell Biology use fluorescent speckle microscopy (FSM) to analyze the relationship between actin and microtubule movements in migrating epithelial cells and in polarizing neuronal growth cones.  相似文献   

3.
A nondestructive method to determine viscoelastic properties of gels and fluids involves an oscillating glass fiber serving as a sensor for the viscosity of the surrounding fluid. Extremely small displacements (typically 1-100 nm) are caused by the glass rod oscillating at its resonance frequency. These displacements are analyzed using a phase-sensitive acoustic microscope. Alterations of the elastic modulus of a fluid or gel change the propagation speed of a longitudinal acoustic wave. The system allows to study quantities as small as 10 microliters with temporal resolution >1 Hz. For 2-100 microM f-actin gels a final viscosity of 1.3-9.4 mPa s and a final elastic modulus of 2.229-2.254 GPa (corresponding to 1493-1501 m/s sound velocity) have been determined. For 10- to 100-microM microtubule gels (native, without stabilization by taxol), a final viscosity of 1.5-124 mPa s and a final elastic modulus of 2.288-2. 547 GPa (approximately 1513-1596 m/s) have been determined. During polymerization the sound velocity in low-concentration actin solutions increased up to +1.3 m/s (approximately 1.69 kPa) and decreased up to -7 m/s (approximately 49 kPa) at high actin concentrations. On polymerization of tubulin a concentration-dependent decrease of sound velocity was observed, too (+48 to -12 m/s approximately 2.3-0.1 MPa, for 10- to 100-microM tubulin). This decrease was interpreted by a nematic phase transition of the actin filaments and microtubules with increasing concentration. 2 mM ATP (when compared to 0.2 mM ATP) increased polymerization rate, final viscosity and elastic modulus of f-actin (17 microM). The actin-binding glycolytic enzyme hexokinase also accelerated the polymerization rate and final viscosity but elastic modulus (2.26 GPa) was less than for f-actin polymerized in presence of 0.2 mM ATP (2.28 GPa).  相似文献   

4.
This study was designed to investigate the relationship between the position of the microtubule organizing center (MTOC) and the direction of migration of a sheet of endothelial cells (EC). Using immunofluorescence and phase microscopy the MTOC's of migrating EC were visualized as the cells moved into an in vitro experimental wound produced by mechanical denudation of part of a confluent monolayer culture. Although the MTOC's in nonmigrating EC were randomly positioned in relation to the nucleus, in migrating cells the position of the MTOC's changed so that 80% of the cells had the MTOC positioned in front of the nucleus toward the direction of movement of the endothelial sheet. This repositioning of the MTOC occurred within the first 4 h after wounding and was associated with the beginning of migration of EC's into the wounded area as seen by time-lapse cinemicrophotography. These studies focus attention on the MTOC as a cytoskeletal structure that may play a role in determining the direction of cell movement.  相似文献   

5.
Dynamic and stable populations of microtubules in cells   总被引:10,自引:21,他引:10       下载免费PDF全文
Using a new immunocytochemical technique, we have visualized the spatial arrangement of those microtubules in cells that are stable to biotin-tubulin incorporation after microinjection. Cells fixed at various periods of time after injection were exposed to antibody to biotinylated tubulin and several layers of secondary antibodies; these layers prevented reaction of biotin-containing microtubules with antitubulin antibodies. The microtubules that had not incorporated biotin-tubulin could then be stained with anti-tubulin and a fluorescent secondary antibody. In BSC1 cells, most microtubules in the cell exchange with a half-time of 10 min. A separate population of microtubules can be detected, using the above techniques, that are stable to exchange for 1 h or more; these have a characteristic pericentrosomal spatial arrangement as compared to the majority of dynamic microtubules. Unlike the dynamic microtubules, most of the stable microtubules are nongrowing. The average BSC-1 cell contains approximately 700 microtubules: approximately 500 growing at 4 micron min-1, 100 shrinking at approximately 20 micron min-1, and approximately 100 that are relatively more stable to exchange. The potential significance of these stable microtubules is discussed.  相似文献   

6.
The establishment of neural circuits requires both stable and plastic properties in the neuronal cytoskeleton. In this study we show that properties of stability and lability reside in microtubules and these are governed by cellular differentiation and intracellular location. After culture for 3, 7, and 14 d in nerve growth factor-containing medium, PC-12 cells were microinjected with X-rhodamine-labeled tubulin. 8-24 h later, cells were photobleached with a laser microbeam at the cell body, neurite shaft, and growth cone. Replacement of fluorescence in bleached zones was monitored by digital video microscopy. In 3-d cultures, fluorescence recovery in all regions occurred by 26 +/- 17 min. Similarly, in older cultures, complete fluorescence recovery at the cell body and growth cone occurred by 10-30 min. However, in neurite shafts, fluorescence recovery was markedly slower (71 +/- 48 min for 7-d and 201 +/- 94 min for 14-d cultures). This progressive increase in the stability of microtubules in the neurite shafts correlated with an increase of acetylated microtubules. Acetylated microtubules were present specifically in the neurite shaft and not in the regions of fast microtubule turnover, the cell body and growth cone. During the recovery of fluorescence, bleached zones did not move with respect to the cell body. We conclude that the microtubule component of the neuronal cytoskeleton is differentially dynamic but stationary.  相似文献   

7.
1. Significant levels of total phospholipid phosphate were detected in highly purified microtubule protein preparations. 2. While the phospholipid profiles of total microtubule proteins and microtubule-associated proteins showed both similarities and differences to that of a whole brain homogenate, purified tubulin was associated only with phospholipids that were not detectable in the latter. 3. Phosphatidyl ethanolamine, found exclusively in a fraction of microtubule associated proteins, stimulated microtubule assembly in vitro.  相似文献   

8.
The neural microtubule-associated protein Tau binds directly to microtubules and regulates their dynamic behavior. In addition to being required for normal development, maintenance, and function of the nervous system, Tau is associated with several neurodegenerative diseases, including Alzheimer disease. One group of neurodegenerative dementias known as FTDP-17 (fronto-temporal dementia with Parkinsonism linked to chromosome 17) is directly linked genetically to mutations in the tau gene, demonstrating that Tau misfunction can cause neuronal cell death and dementia. These mutations result either in amino acid substitutions in Tau or in altered Tau mRNA splicing that skews the expression ratio of wild-type 3-repeat and 4-repeat Tau isoforms. Because wild-type Tau regulates microtubule dynamics, one possible mechanism underlying Tau-mediated neurodegeneration is aberrant regulation of microtubule behavior. In this study, we microinjected normal and mutated Tau protein into cultured cells expressing fluorescent tubulin and measured the effects on the dynamic instability of individual microtubules. We found that the FTDP-17 amino acid substitutions G272V (in both 3-repeat and 4-repeat Tau contexts), DeltaK280, and P301L all exhibited markedly reduced abilities to regulate dynamic instability relative to wild-type Tau. In contrast, the FTDP-17 R406W mutation (which maps in a regulatory region outside the microtubule binding domain of Tau) did not significantly alter the ability of 3-repeat or 4-repeat Tau to regulate microtubule dynamics. Overall, these data are consistent with a loss-of-function model in which both amino acid substitutions and altered mRNA splicing in Tau lead to neurodegeneration by diminishing the ability of Tau to properly regulate microtubule dynamics.  相似文献   

9.
We have used video-enhanced DIC microscopy to examine the effects of XMAP, a Mr 215,000 microtubule-associated protein from Xenopus eggs (Gard, D.L., and M. W. Kirschner. 1987. J. Cell Biol. 105:2203-2215), on the dynamic instability of microtubules nucleated from axoneme fragments in vitro. Our results indicate that XMAP substantially alters the parameters of microtubule assembly at plus ends. Specifically, addition of 0.2 microM XMAP resulted in (a) 7-10-fold increase in elongation velocity, (b) approximately threefold increase in shortening velocity, and (c) near elimination of rescue (the switch from rapid shortening to elongation). Thus, addition of XMAP resulted in the assembly of longer, but more dynamic, microtubules from the plus ends of axonemes which upon catastrophe disassembled back to the axoneme nucleation site. In agreement with previous observations (Gard, D.L., and M. W. Kirschner. 1987. J. Cell Biol. 105:2203-2215), the effects of XMAP on the minus end were much less dramatic, with only a 1.5-3-fold increase in elongation velocity. These results indicate that XMAP, unlike brain MAPs, promotes both polymer assembly and turnover, and suggests that the interaction of XMAP with tubulin and the function of XMAP in vivo may differ from previously characterized MAPs.  相似文献   

10.
Breast tumor cells enter the bloodstream long before the development of clinically evident metastasis. However, the early presence of such bloodborne cells predicts poor patient outcome. Nearly 90% of human breast tumors arise as carcinomas from mammary epithelial cells, so it is important to study how these cells respond to the detached conditions that they would experience in the bloodstream. We report here that mammary epithelial cell lines produce long and dynamic protrusions of the plasma membrane when detached. Although human and mouse mammary epithelial cell lines die by apoptosis within 16 h of detachment, this protrusive response persists for days in cells overexpressing either Bcl-2 or Bcl-xL. Unlike actin-dependent invadopodia and podosomes, these protrusions are actually enhanced by actin depolymerization with Cytochalasin-D or Latrunculin-A. Immunofluorescence and Western blotting demonstrate that the protrusions are enriched in detyrosinated Glu-tubulin, a post-translationally modified form of alpha-tubulin that is found in stabilized microtubules. Video microscopy indicates that these protrusions promote cell-cell attachment, and inhibiting microtubule-based protrusions correlates with reduced extracellular matrix attachment. Since bloodborne metastasis depends on both cell-cell and cell-matrix attachment, microtubule-based protrusions in detached mammary epithelial cells provide a novel mechanism that could influence the metastatic spread of breast tumors.  相似文献   

11.
In migrating cells, external signals polarize the microtubule (MT) cytoskeleton by stimulating the formation of oriented, stabilized MTs and inducing the reorientation of the MT organizing center (MTOC). Glycogen synthase kinase 3beta (GSK3beta) has been implicated in each of these processes, although whether it regulates both processes in a single system and how its activity is regulated are unclear. We examined these issues in wound-edge, serum-starved NIH 3T3 fibroblasts where MT stabilization and MTOC reorientation are triggered by lysophosphatidic acid (LPA), but are regulated independently by distinct Rho GTPase-signaling pathways. In the absence of other treatments, the GSK3beta inhibitors, LiCl or SB216763, induced the formation of stable MTs, but not MTOC reorientation, in starved fibroblasts. Overexpression of GSK3beta in starved fibroblasts inhibited LPA-induced stable MTs without inhibiting MTOC reorientation. Analysis of factors involved in stable MT formation (Rho, mDia, and EB1) showed that GSK3beta functioned upstream of EB1, but downstream of Rho-mDia. mDia was both necessary and sufficient for inducing stable MTs and for up-regulating GSK3beta phosphorylation on Ser9, an inhibitory site. mDia appears to regulate GSK3beta through novel class PKCs because PKC inhibitors and dominant negative constructs of novel PKC isoforms prevented phosphorylation of GSK3beta Ser9 and stable MT formation. Novel PKCs also interacted with mDia in vivo and in vitro. These results identify a new activity for the formin mDia in regulating GSK3beta through novel PKCs and implicate novel PKCs as new factors in the MT stabilization pathway.  相似文献   

12.
Lamellipodium protrusion is linked to actin filament disassembly in migrating fibroblasts [Cramer, 1999: Curr. Biol. 9:1095-1105]. To further study this relationship, we have identified a method to specifically and sensitively detect G-actin in distinct spatial locations in motile cells using deoxyribonuclease I (DNase I). Although DNase I can bind both G- and F-actin in vitro [Mannherz et al., 1980: Eur. J. Biochem. 95:377-385], when cells were fixed in formaldehyde and permeabilized in detergent, fluorescently-labelled DNase I specifically stained G-actin and not F-actin. 92-98% of actin molecules were stably retained in cells during fixation and permeabilization. Further, increasing or decreasing cellular G-actin concentration by treating live cells with latrunculin-A or jasplakinolide, respectively, caused a respective increase and decrease in DNase I cell-staining intensity as expected. These changes in DNase I fluorescence intensity accurately reflected increases and decreases in cellular G-actin concentration independently measured in lysates prepared from drug-treated live cells (regression coefficient = 0.98). This shows that DNase I cell-staining is very sensitive using this method. Applying this method, we found that the ratio of G-/F-actin is lower in both the lamellipodium and in a broad band immediately behind the lamellipodium in migrating compared to non-migrating fibroblasts. Thus, we predict that protrusion of the lamellipodium in migrating fibroblasts requires tight coupling to filament disassembly at least in part because G-actin is relatively limited within and behind the lamellipodium. This is the first report to directly demonstrate high sensitivity of cell-staining for any G-actin probe and this, together with the ready commercial accessibility of fluorescently-labelled DNase I, make it a simple, convenient, and sensitive tool for cell-staining of G-actin.  相似文献   

13.
Dixit R  Cyr R 《The Plant cell》2004,16(12):3274-3284
Ordered cortical microtubule arrays are essential for normal plant morphogenesis, but how these arrays form is unclear. The dynamics of individual cortical microtubules are stochastic and cannot fully account for the observed order; however, using tobacco (Nicotiana tabacum) cells expressing either the MBD-DsRed (microtubule binding domain of the mammalian MAP4 fused to the Discosoma sp red fluorescent protein) or YFP-TUA6 (yellow fluorescent protein fused to the Arabidopsis alpha-tubulin 6 isoform) microtubule markers, we identified intermicrotubule interactions that modify their stochastic behaviors. The intermicrotubule interactions occur when the growing plus-ends of cortical microtubules encounter previously existing cortical microtubules. Importantly, the outcome of such encounters depends on the angle at which they occur: steep-angle collisions are characterized by approximately sevenfold shorter microtubule contact times compared with shallow-angle encounters, and steep-angle collisions are twice as likely to result in microtubule depolymerization. Hence, steep-angle collisions promote microtubule destabilization, whereas shallow-angle encounters promote both microtubule stabilization and coalignment. Monte Carlo modeling of the behavior of simulated microtubules, according to the observed behavior of transverse and longitudinally oriented cortical microtubules in cells, reveals that these simple rules for intermicrotubule interactions are necessary and sufficient to facilitate the self-organization of dynamic microtubules into a parallel configuration.  相似文献   

14.
Interactions between microtubules (MTs) and filamentous actin (f-actin) are involved in directed cell locomotion, but are poorly understood. To test the hypothesis that MTs and f-actin associate with one another and affect each other's organization and dynamics, we performed time-lapse dual-wavelength spinning-disk confocal fluorescent speckle microscopy (FSM) of MTs and f-actin in migrating newt lung epithelial cells. F-actin exhibited four zones of dynamic behavior: rapid retrograde flow in the lamellipodium, slow retrograde flow in the lamellum, anterograde flow in the cell body, and no movement in the convergence zone between the lamellum and cell body. Speckle analysis showed that MTs moved at the same trajectory and velocity as f-actin in the cell body and lamellum, but not in the lamellipodium or convergence zone. MTs grew along f-actin bundles, and quiescent MT ends moved in association with f-actin bundles. These results show that the movement and organization of f-actin has a profound effect on the dynamic organization of MTs in migrating cells, and suggest that MTs and f-actin bind to one another in vivo.  相似文献   

15.
Phosphoinositides (PtdInss) play key roles in cell polarization and motility. With a series of biosensors based on Förster resonance energy transfer, we examined the distribution and metabolism of PtdInss and diacylglycerol (DAG) in stochastically migrating Madin-Darby canine kidney (MDCK) cells. The concentrations of phosphatidylinositol (4,5)-bisphosphate, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), phosphatidylinositol (3,4)-bisphosphate, and DAG were higher at the plasma membrane in the front of the cell than at the plasma membrane of the rear of the cell. The difference in the concentrations of PtdInss was estimated to be less than twofold between the front and rear of the migrating MDCK cells. To decode the spatial activities of PtdIns metabolic enzymes from the obtained concentration maps of PtdInss, we developed a one-dimensional reaction diffusion model of PtdIns metabolism. In this model, the activities of phosphatidylinositol monophosphate 5-kinase, phosphatidylinositol 3-kinase, phospholipase C, and PIP3 5-phosphatases were higher at the plasma membrane of the front than at the plasma membrane of the rear of the cell. This result suggests that, although the difference in the steady-state level of PtdInss is less than twofold, PtdInss were more rapidly turned over at the front than the rear of the migrating MDCK cells.  相似文献   

16.
Summary— The dynamics and organization of microtubules associated with axonemes and kinetochores in vitro were visualized using video microscopy techniques. Microtubules attached either at the ends of axonemes or to mitotic chromosomes behave accordining to dynamic instability in our conditions. Microtubules attached to kinetochores showed lower rates of elongation and shortening than those nucleated by axonemes in the same conditions. In addition, elementary bundles of microtubules appeared spontaneously in association with kinetochores, with microtubules elongating along previously attached microtubules at even lower rates. Such side interactions, either spontaneous or stabilized by factors such as MAPs, might affect microtubule dynamics directly.  相似文献   

17.
MAP2C is a microtubule-associated protein abundant in immature nerve cells. We isolated a cDNA clone encoding whole mouse MAP2C of 467 amino acid residues. In fibroblasts transiently transfected with cDNA of MAP2C, interphase microtubule networks were reorganized into microtubule bundles. To reveal the dynamic properties of microtubule bundles, we analyzed the incorporation sites of exogenously introduced tubulin by microinjection of biotin-labeled tubulin and the turnover rate of microtubule bundles by photoactivation of caged fluorescein- labeled tubulin. The injected biotin-labeled tubulin was rapidly incorporated into distal ends of preexisting microtubule bundles, suggesting a concentration of the available ends of microtubules at this region. Although homogenous staining of microtubule bundles with antibiotin antibody was observed 2 h after injection, the photoactivation study indicated that turnover of microtubule bundles was extremely suppressed and < 10% of tubulin molecules would be exchanged within 1 h. Multiple photoactivation experiments provided evidence that neither catastrophic disassembly at the distal ends of bundles nor concerted disassembly due to treadmilling at the proximal ends could explain the observed rapid incorporation of exogenously introduced tubulin molecules. We conclude that microtubules bundled by MAP2C molecules are very stable while the abrupt increase of free tubulin molecules by microinjection results in rapid assembly from the distal ends within the bundles as well as free nucleation of small microtubules which are progressively associated laterally with preexisting microtubule bundles. This is the first detailed study of the function of MAPs on the dynamics of microtubules in vivo.  相似文献   

18.
A high carbohydrate-high fat (HC-HF) diet-associated with hyperinsulinemia has been previously reported to induce accelerated growth of prostate cancer in a xenograft model. High energy supply and insulin/insulin growth factor-1 axis are two of the mechanisms proposed. We hypothesize that metformin may have a protective effect against prostate cancer progression by affecting metabolisms associated with high energy intake. In the present study, animals were randomized into five groups, receiving a HC-HF diet with 50, 100, or 250 mg/kg body weight (mg/kg) metformin in drinking water, a standard diet or HC-HF diet alone. Animals on the HC-HF diet developed obesity and insulin resistance. They had significantly higher body weight, fasting blood glucose at an upper level of normal range, higher insulin secretion and utilization, and fatty degeneration of the liver. Metformin at the doses employed significantly reduced food and water consumption; however, only a dose of 250 mg/kg showed a significant reduction in body weight gain and suppression of gluconeogenesis as well remarkably reduced insulin secretion. There was no observed metformin-related hepato-toxicity in any of the groups. In summary, metformin at various doses exhibits protective effects on the metabolic disorder caused by the HC-HF diet with the most effective protection at a dose of 250 mg/kg. These effects may explain its translational role relating to its anti-neoplastic potential.  相似文献   

19.
《Current biology : CB》2022,32(5):1049-1063.e4
  1. Download : Download high-res image (232KB)
  2. Download : Download full-size image
  相似文献   

20.
Crude preparations of microtubule-associated proteins (MAPs), as well as purified MAP 2, influence the structure of products assembled from purified tubulin at low pH values. At pH 6.2, only 12% of the assembled products were microtubules (MTs) when assembly was conducted in 10% DMSO; 88% were large sheets of protofilaments. In the absence of DMSO, 28% of the structures were MTs. As the content of MAPs in the assembly reaction was increased, the proportion of MTs increased to 87% at a MAP/tubulin (ww) ratio of 0.67 in the presence of DMSO and to 98% at a MAP/tubulin (ww) ratio of 0.33 in the absence of DMSO. Purified MAP 2 was as effective as crude MAP preparations in promoting MT formation at pH 6.2. MTs formed from purified tubulin and MAP 2 were transformed into spirals of protofilaments upon the addition of Vinblastine (VLB). Spirals were also formed when VLB was added to a mixture of tubulin and MAP 2 at 4 ° C. It thus appears that MAP 2 is a causative factor in initiating spiral formation in the presence of VLB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号