首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homologous recombination within plastids directs plastid genome transformation for foreign gene expression and study of plastid gene function. Though transgenes are generally efficiently targeted to their desired insertion site, unintended homologous recombination events have been observed during plastid transformation. To understand the nature and abundance of these recombination events, we analyzed transplastomic tobacco lines derived from three different plastid transformation vectors utilizing two different loci for foreign gene insertion. Two unintended recombinant plastid DNA species were formed from each regulatory plastid DNA element included in the transformation vector. Some of these recombinant DNA species accumulated to as much as 10–60% of the amount of the desired integrated transgenic sequence in T0 plants. Some of the recombinant DNA species undergo further, “secondary” recombination events, resulting in an even greater number of recombinant plastid DNA species. The abundance of novel recombinant DNA species was higher in T0 plants than in T1 progeny, indicating that the ancillary recombination events described here may have the greatest impact during selection and regeneration of transformants. A line of transplastomic tobacco was identified containing an antibiotic resistance gene unlinked from the intended transgene insertion as a result of an unintended recombination event, indicating that the homologous recombination events described here may hinder efficient recovery of plastid transformants containing the desired transgene. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Genetic engineering of the chloroplast   总被引:15,自引:0,他引:15  
Heifetz PB 《Biochimie》2000,82(6-7):655-666
Transformation of the plastid genome has a number of inherent advantages for the engineering of gene expression in plants. These advantages include: 10-50 times higher transgene expression levels; the absence of gene silencing and position effect variation; the ability to express polycistronic messages from a single promoter; uniparental plastid gene inheritance in most crop plants that prevents pollen transmission of foreign DNA; integration via a homologous recombination process that facilitates targeted gene replacement and precise transgene control; and sequestration of foreign proteins in the organelle which prevents adverse interactions with the cytoplasmic environment. It is now 12 years since the first conclusive demonstration of stable introduction of cloned DNA into the Chlamydomonas chloroplast by the Boynton and Gillham laboratory, and 10 years since the laboratory of Pal Maliga successfully extended these approaches to tobacco. Since then, technical developments in plastid transformation and advances in our understanding of the rules of plastid gene expression have facilitated tremendous progress towards the goal of establishing the chloroplast as a feasible platform for genetic modification of plants.  相似文献   

3.
Thus far plastid transformation in higher plants has been based on incorporation of foreign DNA in the plastid genome by the plastid's homologous recombination machinery. We report here an alternative approach that relies on integration of foreign DNA by the phiC31 phage site-specific integrase (INT) mediating recombination between bacterial and phage attachment sites (attB and attP, respectively). Plastid transformation by the new approach depends on the availability of a recipient line in which an attB site has been incorporated in the plastid genome by homologous recombination. Plastid transformation involves insertion of an attP vector into the attB site by INT and selection of transplastomic clones by selection for antibiotic resistance carried in the attP plastid vector. INT function was provided by either expression from a nuclear gene, which encoded a plastid-targeted INT, or expressing INT transiently from a non-integrating plasmid in plastids. Transformation was successful with both approaches using attP vectors with kanamycin resistance or spectinomycin resistance as the selective marker. Transformation efficiency in some of the stable nuclear INT lines was as high as 17 independently transformed lines per bombarded sample. As this system does not rely on the plastid's homologous recombination machinery, we expect that INT-based vectors will make plastid transformation a routine in species in which homologous recombination rarely yields transplastomic clones.  相似文献   

4.
Multiple pathways for Cre/lox-mediated recombination in plastids   总被引:13,自引:0,他引:13  
Plastid transformation technology involves the insertion by homologous recombination and subsequent amplification of plastid transgenes to approximately 10 000 genome copies per leaf cell. Selection of transformed genomes is achieved using a selectable antibiotic resistance marker that has no subsequent role in the transformed line. We report here a feasibility study in the model plant tobacco, to test the heterologous Cre/lox recombination system for antibiotic marker gene removal from plastids. To study its efficiency, a green fluorescent protein reporter gene activation assay was utilized that allowed visual observation of marker excision after delivery of Cre to plastids. Using a combination of in vivo fluorescence activation and molecular assays, we show that transgene excision occurs completely from all plastid genomes early in plant development. Selectable marker-free transplastomic plants are obtained in the first seed generation, indicating a potential application of the Cre/lox system in plastid transformation technology. In addition to the predicted transgene excision event, two alternative pathways of Cre-mediated recombination were also observed. In one alternative pathway, the presence of Cre in plastids stimulated homologous recombination between a 117 bp transgene expression element and its cognate sequence in the plastid genome. The other alternative pathway uncovered a plastid genome 'hot spot' of recombination composed of multiple direct repeats of a 5 bp sequence motif, which recombined with lox independent of sequence homology. Both recombination pathways result in plastid genome deletions. However, the resultant plastid mutations are silent, and their study provides the first insights into tRNA accumulation and trans-splicing events in higher plant plastids.  相似文献   

5.
Efficient plastid transformation has been achieved in Nicotiana tabacum using cloned plastid DNA of Solanum nigrum carrying mutations conferring spectinomycin and streptomycin resistance. The use of the incompletely homologous (homeologous) Solanum plastid DNA as donor resulted in a Nicotiana plastid transformation frequency comparable with that of other experiments where completely homologous plastid DNA was introduced. Physical mapping and nucleotide sequence analysis of the targeted plastid DNA region in the transformants demonstrated efficient site-specific integration of the 7.8-kb Solanum plastid DNA and the exclusion of the vector DNA. The integration of the cloned Solanum plastid DNA into the Nicotiana plastid genome involved multiple recombination events as revealed by the presence of discontinuous tracts of Solanum-specific sequences that were interspersed between Nicotiana-specific markers. Marked position effects resulted in very frequent cointegration of the nonselected peripheral donor markers located adjacent to the vector DNA. Data presented here on the efficiency and features of homeologous plastid DNA recombination are consistent with the existence of an active RecA-mediated, but a diminished mismatch, recombination/repair system in higher-plant plastids.  相似文献   

6.
转基因座位是指染色体上插入的转基因及相邻的特定DNA序列。大多数转基因座位是以转基因片段、基因组片段和填充DNA相间而存在,仅少数含有完整的单拷贝转基因,这是由于在转基因整合过程中,转基因及基因组DNA发生缺失、重复和染色体的重排。转基因整合主要通过双链DNA断裂修复中的异常重组所产生,而同源重组也发挥了一定的作用。异常重组主要由单链复性、合成依赖链复性和依赖Ku蛋白的非同源末端连接途径调节。  相似文献   

7.
《Gene》1999,227(1):21-31
The expression of foreign genes in transgenic animals is generally unpredictable as transgenes are integrated at random after pro-nuclear injection into fertilized oocytes. In many cases, transgene expression is inhibited by neighbouring chromatin structures or by the repeated nature of the multiple transgene copies present at the integration site. A strategy involving homologous and site-specific recombination has been devised by which single copies of a foreign gene can be inserted specifically into the locus of a highly expressed gene. As a first step, a loxP recombination target site is introduced by homologous recombination into a predetermined gene locus such that the loxP sequence is placed next to the promoter region and replaces the translational initiation signal. In a subsequent site-specific recombination reaction, a gene of interest can be integrated into the pre-existing loxP site. This biphasic recombination strategy was used to integrate a luciferase reporter gene into the locus of the murine β-casein gene in embryonic stem cells.  相似文献   

8.
传统转基因技术,如显微注射、转座子、慢病毒转染等将目的基因插入基因组内的整合方式是随机的,这些随机整合对后期转基因动物品系组建和育种带来诸多不利,因此有研究人员提出了定点整合转基因技术。目前该技术的定点整合效率非常低,主要取决于两个方面:一是靶位点产生DNA双链断裂(double-strand break, DSB)的效率;二是断裂后的靶位点与携带同源臂及外源基因的供体质粒发生同源重组的效率,其中同源重组修复(homologous recombination repair, HDR)是基因组定点整合最为依赖的修复机制。靶位点产生DSB后,机体的DNA修复既可能发生HDR,也可能发生非同源末端连接(nonhomologous end joining, NHEJ),并且两者之间存在竞争关系,因此激活HDR或抑制NEHJ都可提高定点整合转基因的效率。本文结合影响定点整合的因素,对提高定点整合效率最新探索方面进行了综述。  相似文献   

9.
To more fully characterize the internal structure of transgene loci and to gain further understanding of mechanisms of transgene locus formation, we sequenced more than 160 kb of complex transgene loci in two unrelated transgenic oat (Avena sativa L.) lines transformed using microprojectile bombardment. The transgene locus sequences from both lines exhibited extreme scrambling of non-contiguous transgene and genomic fragments recombined via illegitimate recombination. A perfect direct repeat of the delivered DNA, and inverted and imperfect direct repeats were detected in the same transgene locus indicating that homologous recombination and synthesis-dependent mechanism(s), respectively, were also involved in transgene locus rearrangement. The most unexpected result was the small size of the fragments of delivered and genomic DNA incorporated into the transgene loci via illegitimate recombination; 50 of the 82 delivered DNA fragments were shorter than 200 bp. Eleven transgene and genomic fragments were shorter than the DNA lengths required for Ku-mediated non-homologous end joining. Detection of these small fragments provided evidence that illegitimate recombination was most likely mediated by a synthesis-dependent strand-annealing mechanism that resulted in transgene scrambling. Taken together, these results indicate that transgene locus formation involves the concerted action of several DNA break-repair mechanisms.  相似文献   

10.
The occurrence of homologous DNA recombination in chloroplasts is well documented, but little is known about the molecular mechanisms involved or their biological significance. The endosymbiotic origin of plastids and the recent finding of an Arabidopsis nuclear gene, encoding a chloroplast-localized protein homologous to Escherichia coli RecA, suggest that the plastid recombination system is related to its eubacterial counterpart. Therefore, we examined whether dominant negative mutants of the E. coli RecA protein can interfere with the activity of their putative homolog in the chloroplast of the unicellular green alga Chlamydomonas reinhardtii. Transformants expressing these mutant RecA proteins showed reduced survival rates when exposed to DNA-damaging agents, deficient repair of chloroplast DNA, and diminished plastid DNA recombination. These results strongly support the existence of a RecA-mediated recombination system in chloroplasts. We also found that the wild-type E. coli RecA protein enhances the frequency of plastid DNA recombination over 15-fold, although it has no effect on DNA repair or cell survival. Thus, chloroplast DNA recombination appears to be limited by the availability of enzymes involved in strand exchange rather than by the level of initiating DNA substrates. Our observations suggest that a primary biological role of the recombination system in plastids is in the repair of their DNA, most likely needed to cope with damage due to photooxidation and other environmental stresses. This hypothesis could explain the evolutionary conservation of DNA recombination in chloroplasts despite the predominantly uniparental inheritance of their genomes.  相似文献   

11.
We investigated whether mouse short interspersed elements (SINEs) could influence the recombination frequency of foreign DNA. Vectors harboring a reporter gene in combinations of SINEs B1 and/or B2 or a portion of long interspersed element-1 were prepared and tested in vitro by a colony assay using HC11 murine mammary epithelial cells and in vivo by microinjection into fertilized mouse eggs. In transfected HC11 cells, the number of colonies surviving G418 selection increased by 3.5-fold compared with control when the reporter was flanked by fused B1-B2 sequences. Similar results were obtained from microinjection study; in fetuses 11.5 days post coitum, transgene positives in control and SINE-flanked vectors were 16 and 53%, respectively. Individual B1- and B2-harboring vectors showed equivalent activities with each other, as determined by the colony assay (2.8-fold versus 3.2-fold compared with control). We determined the contribution of homologous recombination to the SINE-mediated increase in integration frequency through a polymerase chain reaction-based strategy; in more than half of embryos transgenes underwent homologous recombinations involving B1 sequences. These results demonstrate that the SINE sequences can increase the integration rate of foreign DNA and that such an increase is most likely due to the enhancement of homologous recombination.  相似文献   

12.
Heaney JD  Rettew AN  Bronson SK 《Genomics》2004,83(6):1072-1082
The hypoxanthine phosphoribosyltransferase (Hprt) locus has been shown to have minimal influence on transgene expression when used as a surrogate site in the mouse genome. We have developed a method to transfer bacterial artificial chromosomes (BACs) as a single copy into the partially deleted Hprt locus of embryonic stem cells. BACs were modified by Cre/loxP recombination to contain the sequences necessary for homologous recombination into and complementation of the partially deleted Hprt locus. Modified BACs were shown to undergo homologous recombination into the genome intact, to be stably transmitted through the germ line of transgenic mice, and to be expressed in the proper tissue-specific manner. This technology will facilitate many studies in which correct interpretation of data depends on developmentally appropriate transgene expression in the absence of rearrangements or deletions of endogenous DNA.  相似文献   

13.
Removal of antibiotic resistance genes from transgenic tobacco plastids   总被引:24,自引:0,他引:24  
Iamtham S  Day A 《Nature biotechnology》2000,18(11):1172-1176
Removal of antibiotic resistance genes from genetically modified (GM) crops removes the risk of their transfer to the environment or gut microbes. Integration of foreign genes into plastid DNA enhances containment in crops that inherit their plastids maternally. Efficient plastid transformation requires the aadA marker gene, which confers resistance to the antibiotics spectinomycin and streptomycin. We have exploited plastid DNA recombination and cytoplasmic sorting to remove aadA from transplastomic tobacco plants. A 4.9 kbp insert, composed of aadA flanked by bar and uidA genes, was integrated into plastid DNA and selected to remove wild-type plastid genomes. The bar gene confers tolerance to the herbicide glufosinate despite being GC-rich. Excision of aadA and uidA mediated by two 174 bp direct repeats generated aadA-free T(0) transplastomic plants containing the bar gene. Removal of aadA and bar by three 418 bp direct repeats allowed the isolation of marker-free T(2) plants containing a plastid-located uidA reporter gene.  相似文献   

14.
Untargeted plasmid integration into mammalian cell genomes remains a poorly understood and inefficient process. The formation of plasmid concatemers and their genomic integration has been ascribed either to non‐homologous end‐joining (NHEJ) or homologous recombination (HR) DNA repair pathways. However, a direct involvement of these pathways has remained unclear. Here, we show that the silencing of many HR factors enhanced plasmid concatemer formation and stable expression of the gene of interest in Chinese hamster ovary (CHO) cells, while the inhibition of NHEJ had no effect. However, genomic integration was decreased by the silencing of specific HR components, such as Rad51, and DNA synthesis‐dependent microhomology‐mediated end‐joining (SD‐MMEJ) activities. Genome‐wide analysis of the integration loci and junction sequences validated the prevalent use of the SD‐MMEJ pathway for transgene integration close to cellular genes, an effect shared with matrix attachment region (MAR) DNA elements that stimulate plasmid integration and expression. Overall, we conclude that SD‐MMEJ is the main mechanism driving the illegitimate genomic integration of foreign DNA in CHO cells, and we provide a recombination engineering approach that increases transgene integration and recombinant protein expression in these cells. Biotechnol. Bioeng. 2017;114: 384–396. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.  相似文献   

15.
16.
Biomanufacturing by chloroplast transgene expression has the potential to produce significant amounts of biopharmaceuticals, endow plants with novel commercial or humanitarian capabilities, enhance phytoremediation methods and harden plants against adverse environments. Plastid bioengineering exploits the phenomenon of homologous recombination to specifically integrate heterologous sequences into the plastid genome. Previous research suggests the plastid genome 16S–23S internal transcribed spacer provides an advantageous integration site for transgene expression. To characterize the suitability of the 16S–23S region for interspecific recombination, we developed primers against conserved plastid sequences and amplified ∼2.6 kb from 25 plant species. We analyzed the amplicons with nine species from Genbank for homeology, phylogenetic relationships, potential to form chimeric rDNA elements disruptive to translational/replication systems, and the potential number of recombination events for various minimal essential processing segments (MEPS) lengths. Multiple sequence alignment of the 34 species revealed considerable conservation, with identities exceeding 95% among the angiosperms. Substitutions were statistically clustered, generally in noncoding sites, although proposed functional elements such as the OriA region and 3′ terminus of the 16S rRNA exhibited unexpected variation. The nonrandom distribution of substitutions undermines the established, statistical method of estimating the number of recombination initiation sites. This finding is further substantiated by comparing statistical estimates of the number of MEPS sites to a direct count at three different MEPS lengths. We frame this in silico analysis in terms of the potential of the 16S–23S region as a target for interspecific transformation, and describe a ‘primer-to-plastid’ system to rapidly generate species-specific flanking regions for transformation vectors.  相似文献   

17.
Incorporation of a selectable marker gene in the plastid genome is essential to uniformly alter the thousands of genome copies in a tobacco cell. When transformation is accomplished, however, the marker gene becomes undesirable. Here we describe plastid transformation vectors, the method of plastid transformation using tobacco leaves and alternative protocols for marker gene excision with the P1 bacteriophage Cre-loxP site-specific recombination system. Plastid vectors carry a marker gene flanked with directly oriented loxP sites and a gene of interest, which are introduced into plastids by the biolistic process. The transforming DNA integrates into the plastid genome by homologous recombination via plastid targeting sequences. Marker gene excision is accomplished by a plastid-targeted Cre protein expressed from a nuclear gene. Expression may be from an integrated gene introduced by Agrobacterium transformation (Transformation Protocol), by pollination (Pollination Protocol) or from a transient, non-integrated T-DNA (Transient Protocol). Transplastomic plants are obtained in about 3 months, yielding seed after 2 months. The time required to remove the plastid marker and nuclear genes and to obtain seed takes 10-16 months, depending on which protocol is used.  相似文献   

18.
We have established a simple and efficient plastid transformation system for liverwort, Marchantia polymorpha L., suspension-culture cells, which are homogenous, chloroplast-rich and␣rapidly growing. Plasmid pCS31 was constructed to integrate an aadA expression cassette for spectinomycin-resistance into the trnI–trnA intergenic region of the liverwort plastid DNA by homologous recombination. Liverwort suspension-culture cells were bombarded with pCS31-coated gold projectiles and selected on a medium containing spectinomycin. Plastid transformants were reproducibly isolated from the obtained spectinomycin-resistant calli. Selection on a sucrose-free medium greatly improved the efficiency of selection of plastid transformants. Homoplasmic plastid transformant lines were established by␣successive subculturing for 14 weeks or longer on the spectinomycin-containing medium. The plastid transformation system of liverwort suspension-culture cells should facilitate the investigation of the fundamental genetic systems of plastid DNA, such as replication.  相似文献   

19.
The concept of using animal mammary glands asbioreactors to produce recombinant pharmaceuticalproteins has been widely accepted for great potentialcommercial interests [1]. Up to now, the main method tomake transgenic animals is microinjection [2,3]. Lowlevel and unpredictability of the foreign gene expressionwere found among transgenic lines. The major reason isthat the microinjected foreign gene is integrated into thegenome randomly as a stretch of multiple copies, and thesurrounding chromat…  相似文献   

20.
Cultured animal cells rearrange foreign DNA very efficiently by homologous recombination. The individual steps that constitute the mechanism(s) of homologous recombination in transfected DNA are as yet undefined. In this study, we examined the topological requirements by using the genome of simian virus 40 (SV40) as a probe. By assaying homologous recombination between defective SV40 genomes after transfection into CV1 monkey cells, we showed that linear molecules are preferred substrates for homologous exchanges, exchanges are distributed around the SV40 genome, and the frequency of exchange is not diminished significantly by the presence of short stretches of non-SV40 DNA at the ends. These observations are considered in relation to current models of homologous recombination in mammalian cells, and a new model is proposed. The function of somatic cell recombination is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号