首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After endocytosis, some membrane proteins recycle from early endosomes to the plasma membrane whereas others are transported to late endosomes and lysosomes for degradation. Conjugation with the small polypeptide ubiquitin is a signal for lysosomal sorting. Here we show that the hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, is involved in the endosomal sorting of ubiquitinated membrane proteins. Hrs contains a clathrin-binding domain, and by electron microscopy we show that Hrs localizes to flat clathrin lattices on early endosomes. We demonstrate that Hrs binds directly to ubiquitin by way of a ubiquitin-interacting motif (UIM), and that ubiquitinated proteins localize specifically to Hrs- and clathrin-containing microdomains. Whereas endocytosed transferrin receptors fail to colocalize with Hrs and rapidly recycle to the cell surface, transferrin receptors that are fused to ubiquitin interact with Hrs, localize to Hrs- and clathrin-containing microdomains and are sorted to the degradative pathway. Overexpression of Hrs strongly and specifically inhibits recycling of ubiquitinated transferrin receptors by a mechanism that requires a functional UIM. We conclude that Hrs sorts ubiquitinated membrane proteins into clathrin-coated microdomains of early endosomes, thereby preventing their recycling to the cell surface.  相似文献   

2.
Cell surface receptor proteins that have undergone endocytosis are transported to the endosome. From the endosome, ligand-activated receptor tyrosine kinases are further transported to the lysosome for degradation, a process called "receptor downregulation." By contrast, nutrient receptors, such as those for low-density lipoprotein and transferrin, are recycled back to the plasma membrane. Sorting of these two types of receptors occurs at the endosome, where ubiquitination of receptor proteins serves as the sorting signal. Namely, ubiquitinated receptors are incorporated into the lysosomal degradation pathway, whereas those that are not ubiquitinated are returned to the cell surface. Hrs and STAM are proteins that form a complex on the endosomal membrane. Recent studies have shown that the Hrs/STAM complex binds ubiquitin moieties and acts as sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes.  相似文献   

3.
STAM1 and STAM2, which have been identified as regulators of receptor signaling and trafficking, interact directly with Hrs, which mediates the endocytic sorting of ubiquitinated membrane proteins. The STAM proteins interact with the same coiled-coil domain that is involved in the targeting of Hrs to endosomes. In this work, we show that STAM1 and STAM2, as well as an endocytic regulator protein, Eps15, can be co-immunoprecipitated with Hrs both from membrane and cytosolic fractions and that recombinant Hrs, STAM1/STAM2, and Eps15 form a ternary complex. We find that overexpression of Hrs causes a strong recruitment of STAM2 to endosome membranes. Moreover, STAM2, like Hrs and Eps15, binds ubiquitin, and Hrs, STAM2, and Eps15 colocalize with ubiquitinated proteins in clathrin-containing endosomal microdomains. The localization of Hrs, STAM2, Eps15, and clathrin to endosome membranes is controlled by the AAA ATPase mVps4, which has been implicated in multivesicular body formation. Depletion of cellular Hrs by small interfering RNA results in a strongly reduced recruitment of STAM2 to endosome membranes and an impaired degradation of endocytosed epidermal growth factor receptors. We propose that Hrs, Eps15, and STAM proteins function in a multivalent complex that sorts ubiquitinated proteins into the multivesicular body pathway.  相似文献   

4.
Du X  Kazim AS  Brown AJ  Yang H 《Cell reports》2012,1(1):29-35
The endosomal sorting complex required for transport (ESCRT) plays a crucial role in the degradation of ubiquitinated endosomal membrane proteins. Here, we report that Hrs, a key protein of the ESCRT-0 complex, is required for the transport of low-density lipoprotein-derived cholesterol from endosomes to the endoplasmic reticulum. This function of Hrs in cholesterol transport is distinct from its previously defined role in lysosomal sorting and downregulation of membrane receptors via the ESCRT pathway. In line with this, knocking down other ESCRT proteins does not cause prominent endosomal cholesterol accumulation. Importantly, the localization and biochemical properties of key cholesterol-sorting proteins, NPC1 and NPC2, appear to be unchanged upon Hrs knockdown. Our data identify Hrs as a regulator of endosomal cholesterol trafficking and provide additional insights into the budding of intralumenal vesicles.  相似文献   

5.
Hrs mediates downregulation of multiple signalling receptors in Drosophila   总被引:3,自引:0,他引:3  
Jékely G  Rørth P 《EMBO reports》2003,4(12):1163-1168
Endocytosis and subsequent lysosomal degradation of activated signalling receptors can attenuate signalling. Endocytosis may also promote signalling by targeting receptors to specific compartments. A key step regulating the degradation of receptors is their ubiquitination. Hrs/Vps27p, an endosome-associated, ubiquitin-binding protein, affects sorting and degradation of receptors. Drosophila embryos mutant for hrs show elevated receptor tyrosine kinase (RTK) signalling. Hrs has also been proposed to act as a positive mediator of TGF-β signalling. We find that Drosophila epithelial cells devoid of Hrs accumulate multiple signalling receptors in an endosomal compartment with high levels of ubiquitinated proteins: not only RTKs (EGFR and PVR) but also Notch and receptors for Hedgehog and Dpp (TGF-β related). Hrs is not required for Dpp signalling. Instead, loss of Hrs increases Dpp signalling and the level of the type-I receptor Thickveins (Tkv). Finally, most hrs-dependent receptor turnover appears to be ligand independent. Thus, both active and inactive signalling receptors are targeted for degradation in vivo and Hrs is required for their removal.  相似文献   

6.
The ubiquitin-binding protein Hrs and endosomal sorting complex required for transport (ESCRT)-I and ESCRT-III are involved in sorting endocytosed and ubiquitinated receptors to lysosomes for degradation and efficient termination of signaling. In this study, we have investigated the role of the ESCRT-II subunit Vps22/EAP30 in degradative protein sorting of ubiquitinated receptors. Vps22 transiently expressed in HeLa cells was detected in endosomes containing endocytosed epidermal growth factor receptors (EGFRs) as well as Hrs and ESCRT-I and ESCRT-III. Depletion of Vps22 by small interfering RNA, which was accompanied by decreased levels of other ESCRT-II subunits, greatly reduced degradation of EGFR and its ligand EGF as well as the chemokine receptor CXCR4. EGFR accumulated on the limiting membranes of early endosomes and aberrantly small multivesicular bodies in Vps22-depleted cells. Phosphorylation and nuclear translocation of extracellular-signal-regulated kinase1/2 downstream of the EGF-activated receptor were sustained by depletion of Hrs or the ESCRT-I subunit Tsg101. In contrast, this was not the case when Vps22 was depleted. These results indicate an important role for Vps22 in ligand-induced EGFR and CXCR4 turnover and suggest that termination of EGF signaling occurs prior to ESCRT-II engagement.  相似文献   

7.
The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcεRI) expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcεRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcεRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment.  相似文献   

8.
Down-regulation of activated and ubiquitinated growth factor (GF) receptors by endocytosis and subsequent lysosomal degradation ensures attenuation of GF signaling. The ubiquitin-binding adaptor protein Eps15 (epidermal growth factor receptor [EGFR] pathway substrate 15) functions in endocytosis of such receptors. Here, we identify an Eps15 isoform, Eps15b, and demonstrate its expression in human cells and conservation across vertebrate species. Although both Eps15 and Eps15b interact with the endosomal sorting protein Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) in vitro, we find that Hrs specifically binds Eps15b in vivo (whereas adaptor protein 2 preferentially interacts with Eps15). Although Eps15 mainly localizes to clathrin-coated pits at the plasma membrane, Eps15b localizes to Hrs-positive microdomains on endosomes. Eps15b overexpression, similarly to Hrs overexpression, inhibits ligand-mediated degradation of EGFR, whereas Eps15 is without effect. Similarly, depletion of Eps15b but not Eps15 delays degradation and promotes recycling of EGFR. These results indicate that Eps15b is an endosomally localized isoform of Eps15 that is present in the Hrs complex via direct Hrs interaction and important for the sorting function of this complex.  相似文献   

9.
Members of the STAM family of proteins, STAM1 and STAM2, are associated with Hrs through their coiled-coil regions. Both Hrs and STAM bind ubiquitin and are involved in endosomal sorting of ubiquitinated cargo proteins for trafficking to the lysosome. Here we examined the biological significance of STAM binding to Hrs. Endogenous STAM1 and STAM2 were mostly localized on the early endosome, suggesting that they are resident endosomal proteins. A STAM2 mutant that lacks the coiled-coil region and does not bind Hrs, in contrast, mislocalized to the cytoplasm. Deletion of a region located N-terminal to the coiled-coil region and conserved among STAM proteins also severely affected Hrs binding and the endosomal localization of STAM2, suggesting that this region is also involved in these activities. Depletion of endogenous Hrs by RNA interference similarly caused the mislocalization of exogenously expressed STAM2 to the cytoplasm. These results indicate that STAM is localized to the early endosome by binding to Hrs on the target membrane. In addition, the expression level of endogenous STAM proteins was drastically reduced in Hrs-depleted cells, suggesting that STAM is stabilized by binding to Hrs. Finally, STAM2 mutants lacking the Hrs-binding activity were defective in causing the enlargement of early endosomes, accumulating ubiquitinated proteins on this aberrant organelle, and inhibiting the degradation of ligand-activated epidermal growth factor receptors, suggesting that the association with Hrs is a prerequisite for STAM function.  相似文献   

10.
After internalization, ubiquitinated signaling receptors are delivered to early endosomes. There, they are sorted and incorporated into the intralumenal invaginations of nascent multivesicular bodies, which function as transport intermediates to late endosomes. Receptor sorting is achieved by Hrs—an adaptor-like protein that binds membrane PtdIns3P via a FYVE motif—and then by ESCRT complexes, which presumably also mediate the invagination process. Eventually, intralumenal vesicles are delivered to lysosomes, leading to the notion that EGF receptor sorting into multivesicular bodies mediates lysosomal targeting. Here, we report that Hrs is essential for lysosomal targeting but dispensable for multivesicular body biogenesis and transport to late endosomes. By contrast, we find that the PtdIns3P-binding protein SNX3 is required for multivesicular body formation, but not for EGF receptor degradation. PtdIns3P thus controls the complementary functions of Hrs and SNX3 in sorting and multivesicular body biogenesis.  相似文献   

11.
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is an endosomal protein essential for the efficient sorting of activated growth factor receptors into the lysosomal degradation pathway. Hrs undergoes ligand-induced tyrosine phosphorylation on residues Y329 and Y334 downstream of epidermal growth factor receptor (EGFR) activation. It has been difficult to investigate the functional roles of phosphoHrs, as only a small proportion of the cellular Hrs pool is detectably phosphorylated. Using an HEK 293 model system, we found that ectopic expression of the protein Cbl enhances Hrs ubiquitination and increases Hrs phosphorylation following cell stimulation with EGF. We exploited Cbl's expansion of the phosphoHrs pool to determine whether Hrs tyrosine phosphorylation controls EGFR fate. In structure-function studies of Cbl and EGFR mutants, the level of Hrs phosphorylation and rapidity of apparent Hrs dephosphorylation correlated directly with EGFR degradation. Differential expression of wild-type versus Y329,334F mutant Hrs in Hrs-depleted cells revealed that one or both tyrosines regulate ligand-dependent Hrs degradation, as well as EGFR degradation. By modulating Hrs ubiquitination, phosphorylation, and protein levels, Cbl may control the composition of the endosomal sorting machinery and its ability to target EGFR for lysosomal degradation.  相似文献   

12.
Many signaling receptors require covalent modification by ubiquitin for agonist-induced down-regulation via endocytic trafficking to lysosomes, a process that is mediated by a conserved set of endosome-associating proteins also required for vacuolar protein-sorting (VPS) in yeast. The delta opioid receptor (DOR) is a G protein-coupled receptor that can undergo agonist-induced proteolysis via endocytic trafficking to lysosomes but does not require covalent modification by ubiquitin to do so. This raises the question of whether lysosomal down-regulation of this "ubiquitination-independent" GPCR is mediated by a completely distinct biochemical mechanism or if similar VPS machinery is involved. Agonist-induced proteolysis of DOR was significantly inhibited by dominant negative mutant versions of Vps4/Skd1, an AAA-family ATPase required for a late step in lysosomal sorting of ubiquitinated membrane cargo. Furthermore, overexpression and interfering RNA-mediated knockdown indicated that lysosomal trafficking of opioid receptors is also dependent on Hrs, a VPS protein that mediates an early step in lysosomal sorting of ubiquitinated cargo. However, interfering RNA-mediated knockdown of Tsg101, a VPS protein that is essential for an intermediate step of the conserved lysosomal sorting mechanism, did not detectably affect agonist-induced proteolysis of DOR in the same cells in which (ubiquitination-dependent) lysosomal trafficking of epidermal growth factor receptors was clearly inhibited. These results indicate that opioid receptors, despite their ability to undergo efficient agonist-induced trafficking to lysosomes in the absence of covalent modification by ubiquitin, utilize some (Vps4 and Hrs) but perhaps not all (Tsg101) of the VPS machinery required for lysosomal sorting of ubiquitinated membrane cargo.  相似文献   

13.
14.
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is well known to terminate cell signaling by sorting activated receptors to the MVB/lysosomal pathway. Here we identify a distinct role of Hrs in promoting rapid recycling of endocytosed signaling receptors to the plasma membrane. This function of Hrs is specific for receptors that recycle in a sequence-directed manner, in contrast to default recycling by bulk membrane flow, and is distinguishable in several ways from previously identified membrane-trafficking functions of Hrs/Vps27p. In particular, Hrs function in sequence-directed recycling does not require other mammalian Class E gene products involved in MVB/lysosomal sorting, nor is receptor ubiquitination required. Mutational studies suggest that the VHS domain of Hrs plays an important role in sequence-directed recycling. Disrupting Hrs-dependent recycling prevented functional resensitization of the beta(2)-adrenergic receptor, converting the temporal profile of cell signaling by this prototypic G protein-coupled receptor from sustained to transient. These studies identify a novel function of Hrs in a cargo-specific recycling mechanism, which is critical to controlling functional activity of the largest known family of signaling receptors.  相似文献   

15.
Heterotrimeric G proteins have been implicated in the regulation of membrane trafficking, but the mechanisms involved are not well understood. Here, we report that overexpression of the stimulatory G protein subunit (Galphas) promotes ligand-dependent degradation of epidermal growth factor (EGF) receptors and Texas Red EGF, and knock-down of Galphas expression by RNA interference (RNAi) delays receptor degradation. We also show that Galphas and its GTPase activating protein (GAP), RGS-PX1, interact with hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), a critical component of the endosomal sorting machinery. Galphas coimmunoprecipitates with Hrs and binds Hrs in pull-down assays. By immunofluorescence, exogenously expressed Galphas colocalizes with myc-Hrs and GFP-RGS-PX1 on early endosomes, and expression of either Hrs or RGS-PX1 increases the localization of Galphas on endosomes. Furthermore, knock-down of both Hrs and Galphas by double RNAi causes greater inhibition of EGF receptor degradation than knock-down of either protein alone, suggesting that Galphas and Hrs have cooperative effects on regulating EGF receptor degradation. These observations define a novel regulatory role for Galphas in EGF receptor degradation and provide mechanistic insights into the function of Galphas in endocytic sorting.  相似文献   

16.
Clague MJ 《Current biology : CB》2002,12(15):R529-R531
Lysosomally directed receptors are concentrated at a 'bilayered' clathrin coat on the face of sorting endosomes. This coat is highly enriched in Hrs protein, which can potentially serve as an adaptor between ubiquitinated receptors and clathrin.  相似文献   

17.
Ligand-activated receptor tyrosine kinases undergo endocytosis and are transported via endosomes to lysosomes for degradation. This "receptor down-regulation" process is crucial to terminate the cell proliferation signals produced by activated receptors. During the process, ubiquitination of the receptors serves as a sorting signal for their trafficking from endosomes to lysosomes. Here, we describe the role of a deubiquitinating enzyme UBPY/USP8 in the down-regulation of epidermal growth factor (EGF) receptor (EGFR). Overexpression of UBPY reduced the ubiquitination level of EGFR and delayed its degradation in EGF-stimulated cells. Immunopurified UBPY deubiquitinated EGFR in vitro. In EGF-stimulated cells, UBPY underwent ubiquitination and bound to EGFR. Overexpression of Hrs or a dominant-negative mutant of SKD1, proteins that play roles in the endosomal sorting of ubiquitinated receptors, caused the accumulation of endogenous UBPY on exaggerated endosomes. A catalytically inactive UBPY mutant clearly localized on endosomes, where it overlapped with EGFR when cells were stimulated with EGF. Finally, depletion of endogenous UBPY by RNA interference resulted in elevated ubiquitination and accelerated degradation of EGF-activated EGFR. We conclude that UBPY negatively regulates the rate of EGFR down-regulation by deubiquitinating EGFR on endosomes.  相似文献   

18.
Ligand-stimulated growth factor receptors are rapidly internalized and transported to early endosomes. Unstimulated receptors are also internalized constitutively, although at a slower rate, and delivered to the same organelle. At early endosomes, stimulated receptors are sorted for the lysosomal degradation pathway, whereas unstimulated receptors are mostly recycled back to the cell surface. To investigate the role of Hrs, an early endosomal protein, in this sorting process, we overexpressed Hrs in HeLa cells and examined the intracellular trafficking of epidermal growth factor receptor (EGFR) in EGF-stimulated and unstimulated cells. Overexpression of Hrs inhibited the trafficking of EGFR from early endosomes, resulting in an accumulation of EGFR on early endosomes in both ligand-stimulated and unstimulated cells. On the other hand, overexpression of Hrs mutants with a deletion or a point mutation within the FYVE domain did not inhibit the trafficking. These results suggest that Hrs regulates the sorting of ligand-stimulated and unstimulated growth factor receptors on early endosomes, and that the FYVE domain, which is required for Hrs to reside in a microdomain of early endosomes, plays an essential role in the function of Hrs.  相似文献   

19.
Hrs has an essential role in sorting of monoubiquitinated receptors to multivesicular bodies for lysosomal degradation, through recognition of ubiquitinated receptors by its ubiquitin-interacting motif (UIM). Here, we present the structure of a complex of Hrs-UIM and ubiquitin at 1.7-A resolution. Hrs-UIM forms a single alpha-helix, which binds two ubiquitin molecules, one on either side. These two ubiquitin molecules are related by pseudo two-fold screw symmetry along the helical axis of the UIM, corresponding to a shift by two residues on the UIM helix. Both ubiquitin molecules interact with the UIM in the same manner, using the Ile44 surface, with equal binding affinities. Mutational experiments show that both binding sites of Hrs-UIM are required for efficient degradative protein sorting. Hrs-UIM belongs to a new subclass of double-sided UIMs, in contrast to its yeast homolog Vps27p, which has two tandem single-sided UIMs.  相似文献   

20.
The human endothelial vascular endothelial growth factor receptor 2 (VEGFR2/kinase domain region, KDR/fetal liver kinase-1, Flk-1) tyrosine kinase receptor is essential for VEGF-mediated physiological responses including endothelial cell proliferation, migration and survival. How VEGFR2 kinase activation and trafficking are co-coordinated in response to VEGF-A is not known. Here, we elucidate a mechanism for endothelial VEGFR2 response to VEGF-A dependent on constitutive endocytosis co-ordinated with ligand-activated ubiquitination and proteolysis. The selective VEGFR kinase inhibitor, SU5416, blocked the endosomal sorting required for VEGFR2 trafficking and degradation. Inhibition of VEGFR2 tyrosine kinase activity did not block plasma membrane internalization but led to endosomal accumulation. Lysosomal protease activity was required for ligand-stimulated VEGFR2 degradation. Activated VEGFR2 codistributed with the endosomal hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)/signal-transducing adaptor molecule (STAM) complex in a ligand and time-dependent manner, implying a role for this factor in sorting of ubiquitinated VEGFR2. Increased tyrosine phosphorylation of the Hrs subunit in response to VEGF-A links VEGFR2 activation and Hrs/STAM function. In contrast, VEGFR2 in quiescent cells was present on both the endothelial plasma membrane and early endosomes, suggesting constitutive recycling between these two compartments. This pathway was clathrin-linked and dependent on the AP2 adaptor complex as the A23 tyrphostin inhibited VEGFR2 trafficking. We propose a mechanism whereby the transition of endothelial VEGFR2 from a constitutive recycling itinerary to a degradative pathway explains ligand-activated receptor degradation in endothelial cells. This study outlines a mechanism to control the VEGF-A-mediated response within the vascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号