首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The accumulation of radioactively labelled acetylcholine (ACh) by perfused superior cervical ganglia of cats and by incubated brain slices from rats was studied in the presence of diisopropylphosphorofluoridate. Ganglia accumulated more labelled ACh than an extracellular marker (inulin), but the amount of ACh accumulated did not increase when ACh turnover was increased by preganglionic nerve stimulation. The ACh that accumulated in ganglia was not released when the preganglionic nerve was subsequently stimulated. Sliced cerebral cortex also accumulated labelled ACh but this was not released when the tissue was subsequently exposed to a high K+ medium. Thus accumulated ACh does not appear to mix with releasable transmitter stores. Chronically (7 days) decentralized ganglia lost most of their transmitter store but retained their ability to accumulate labelled ACh. Uptake of ACh by sliced cerebellum was not less than uptake of ACh by sliced cerebral cortex and the amount of ACh accumulated by synaptosomes isolated from cerebellum was similar to the amount of ACh accumulated by synaptosomes isolated from cerebral cortex. It is concluded that ACh uptake is not specifically into cholinergic nerve endings. Hexamethonium reduced ACh uptake by cerebral cortex slices but did not increase the amount of ACh collected from slices stimulated by raised K+.  相似文献   

2.
GABA release and uptake were examined in Genetic Absence Epilepsy Rats from Strasbourg and in non-epileptic control animals, using crude synaptosomes prepared from the cerebral cortex and thalamus. Uptake of [3H]GABA over time was reduced in thalamic synaptosomes from epileptic rats, compared to controls. The affinity of the uptake process in thalamic synaptosomes was lower in epileptic animals. NNC-711, a ligand for the GAT-1 uptake protein, reduced synaptosomal uptake by more than 95%; beta-alanine, an inhibitor selective for the uptake proteins GAT-2 and -3, did not significantly reduce synaptosomal uptake. Autoradiography studies using [3H]tiagabine, a ligand selective for GAT-1, revealed no differences between the strains in either affinity or levels of binding. Ethanolamine O-sulphate (100 microM), a selective inhibitor of GABA-transaminase, did not affect uptake levels. Aminooxyacetic acid (10-100 microM), an inhibitor of GABA-transaminase and, to a lesser extent, glutamate decarboxylase, caused an increase in measured uptake in both thalamic and cortical synaptosomes, in both strains. We found no difference in in vitro basal or KCl-stimulated endogenous GABA release between epileptic and control rats. These results indicate that GABA uptake in the thalamus of Genetic Absence Epilepsy Rats from Strasbourg was reduced, compared to control animals. The lower uptake affinity in the epileptic animals probably contributed to the reduction in uptake over time. Uptake appeared to be mediated primarily by the 'neuronal' transporter GAT-1. Autoradiography studies revealed no differences in the number or affinity of this uptake protein. It is therefore possible that altered functional modulation of GAT-1 caused the decrease in uptake shown in the epileptic animals. Inhibition of GABA-transaminase activity had no effect on measured GABA uptake, whereas a reduction in glutamate decarboxylase activity may have affected measured uptake levels.  相似文献   

3.
Parathyroid hormone (PTH) (0.1-10 ng/ml) evokes a dose-dependent increase in 45Ca2+ accumulation in synaptosomes isolated from the rat brain cortex. In the presence of PTH the fast (I sec) potential-dependent 45Ca2+ uptake was less than in the control. PTH had no effect on 3H-GABA uptake by synaptosomes (P2 fraction). Synaptosomes preincubated in the presence of PTH in Ca2+-free medium and transferred into Ca2+-containing normal medium released more 3H-GABA than control synaptosomes. In this case depolarization-evoked 3H-GABA release was diminished.  相似文献   

4.
Dophamine-H3 uptake by synaptosomes and glial cells of the cerebral cortex in rabbits and by the synaptosomes of the cerebral cortex in rats was studied. KM value of the dophamine-H3 uptake was found to be the same (0.075 +/- +/- 0.01 micrometer) in case of synaptosomes and glial cells. The rate of dophamine-H3 uptake by the rabbit cerebral cortex synaptosomes was twice that of the gial cells (as compared by protein). Among the psychotropic agents studied the most active symaptosome uptake inhibitors were phenamine and cocaine; they were less active in respect to glial uptake. Both types of uptake were inhibited by neuroleptics and antidepressants to the same degree. Results of this work conformed to the view on the participation of the strial dophaminergic link in the action mechanism of psychostimulants.  相似文献   

5.
1. K(+)-stimulated 45Ca2+ uptake by synaptosomes was measured with respect to the strain differences between Sprague-Dawley (SD), Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). 2. 45Ca2+ uptake by synaptosomes isolated from cerebral cortex of SD, WKY and SHR was measured at 15, 30, 60, 120 and 240 sec time periods. 3. The sequence of both the magnitude and rate of resting and depolarization-dependent 45Ca2+ uptake was SHR greater than WKY greater than SD. 4. The fastest rates of resting and depolarization-dependent 45Ca2+ uptake occurred in each rat during the first 15 sec and uptake rates dropped off quickly in both resting and depolarization states. 5. At 15 sec, there were significant differences between SHR and WKY, while there were no significant differences between WKY and SD. 6. The results suggest that an important alteration in Ca2+ channel characteristics may occur in SHR brain synaptosomes.  相似文献   

6.
The nucleoside guanosine (GUO) increases glutamate uptake by astrocytes and acts as antioxidant, thereby providing neuroprotection against glutamatergic excitotoxicity, as we have recently demonstrated in an animal model of chronic hepatic encephalopathy. Here, we investigated the neuroprotective effect of GUO in an acute ammonia intoxication model. Adult male Wistar rats received an intraperitoneal (i.p.) injection of vehicle or GUO 60 mg/kg, followed 20 min later by an i.p. injection of vehicle or 550 mg/kg of ammonium acetate. Afterwards, animals were observed for 45 min, being evaluated as normal, coma (i.e., absence of corneal reflex), or death status. In a second cohort of rats, video-electroencephalogram (EEG) recordings were performed. In a third cohort of rats, the following were measured: (i) plasma levels of glucose, transaminases, and urea; (ii) cerebrospinal fluid (CSF) levels of ammonia, glutamine, glutamate, and alanine; (iii) glutamate uptake in brain slices; and (iv) brain redox status and glutamine synthetase activity in cerebral cortex. GUO drastically reduced the lethality rate and the duration of coma. Animals treated with GUO had improved EEG traces, decreased CSF levels of glutamate and alanine, lowered oxidative stress in the cerebral cortex, and increased glutamate uptake by astrocytes in brain slices compared with animals that received vehicle prior to ammonium acetate administration. This study provides new evidence on mechanisms of guanine-derived purines in their potential modulation of glutamatergic system, contributing to GUO neuroprotective effects in a rodent model of by acute ammonia intoxication.  相似文献   

7.
It has been suggested that neurosteroids with agonist properties at the central GABA-A receptor are implicated in the pathogenesis of hepatic encephalopathy (HE) in chronic liver disease. In order to address this issue, gas chromatography/mass spectrometry was used to measure the neurosteroids pregnenolone, allopregnanolone, and tetrahydrodeoxycorticosterone (THDOC) in postmortem brain tissue from controls, cirrhotic patients who died without HE, a patient who died in uremic coma, and cirrhotic patients who died in hepatic coma. Exposure of rat cerebral cortical membranes to brain extracts from hepatic coma patients resulted in a 53% (p < 0.001) increase in binding of [3H]muscimol, a GABA-A receptor ligand. Subsequent GC/MS analysis showed that concentrations of the GABA-A receptor agonist neurosteroid allopregnanolone were significantly increased in brain tissue from hepatic coma patients compared to patients without HE or controls (p < 0.001). Brain allopregnanolone concentrations were significantly correlated with the magnitude of induction of [3H]muscimol binding (r2 = 0.82, p < 0.0001). Concentrations of allopregnanolone comparable to those observed in hepatic coma brains are pathophysiologically relevant. Concentrations of the neurosteroid precursor pregnenolone were also increased in brain tissue from hepatic coma patients, while those of a second neurosteroid THDOC were below the levels of detection in all groups. Brain concentrations of benzodiazepine receptor ligands estimated by radioreceptor assay were not significantly increased in cirrhotic patients with or without hepatic coma. These findings suggest that increased levels of allopregnanolone rather than "endogenous benzodiazepines" offer a cogent explanation for the phenomenon of "increased GABAergic tone" previously proposed in HE.  相似文献   

8.
Serum apoproteins A and B and LCAT activities were estimated in 80 patients, 46 with posthepatic cirrhosis and 34 with alcoholic cirrhosis. The cirrhosis patients were also divided into compensated, decompensated, and hepatic coma subgroups. Apo-A and LCAT activities were significantly decreased in both cirrhotic groups without any significant difference between posthepatitic and alcoholic cirrhotic groups, while Apo-B was decreased in hepatic coma patients only. The decompensated cirrhosis patients showed lower Apo-A levels than the compensated cirrhosis patients and hepatic coma patients showed still lower levels compared to decompensated subgroup, while no significant decrease was observed in LCAT activities between compensated and decompensated cirrhosis patients. Apo-A level was correlated more significantly with serum albumin level than the LCAT activity. The study confirms that Apo-A level is highly related to the degree of liver injury and also suggests that this decrease may be mainly due to impaired liver synthesis and that the serum levels of Apo-A and Apo-B can be utilized in the differential diagnosis of chronic liver diseases.  相似文献   

9.
The effects of phenothiazine neuropleptics--chlorpromazine, trifluoperazine, fluphenazine and of antidepressants-imipramine and phthoracizine on the GABA-H3 accumulation by synaptosomes of the rat cerebral cortex were studied. All neuroleptics were found to inhibit the process of neurotransmitter uptake by the brain synaptosomes. Antidepressants were less potent. Chlorpromazine had the highest inhibitory effect on GABA uptake and phthoracizine--the lowest. It is suggested that the influence of neurolptics on GABA uptake could play a certain role in the mode of a synaptic action of these drugs.  相似文献   

10.
Abstract— The activities of each enzyme associated with the pentose phosphate pathway as well as the non-enzymatic intermediates in this pathway were measured in synaptosomes isolated from rat cerebral cortex. The specific activities of transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2) were significantly lower in synaptosomes than cerebral cortex; however, the specific activities of glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ribosephosphate isomerase (EC 5.3.1.6) and ribulosephosphate epimerase (EC 5.1.3.1.) were comparable in homogenates of synaptosomal fractions and cerebral cortex. Concentrations of most intermediates of the pentose pathway were also similar in extracts of synaptosomes and brain homogenates. Six hours after treatment of rats with the nicotinamide analog, 6-aminonicotinamide (6-AN), 6-phosphogluconate levels in synaptosomes were increased 5-fold; however, glucose-6-phosphate levels remained unchanged. During a 30 min in uitro incubation 6-phosphogluconate levels increased approx 2-fold in synaptosomes obtained from 6-AN treated rats but did not change in synaptosomes from untreated rats. During the same period glucose-6-phosphate levels decreased in synaptosomes from both control and 6-AN treated rats. The conversion of both [1-14C]glucose and [6-14C]glucose to 14CO2 was depressed in synaptosomes from 6-AN treated rats; however, the ratio of the two isotopes converted to 14CO2 was essentially the same. It is concluded that the pentose phosphate pathway is active in nerve endings both in vivo and in vitro.  相似文献   

11.
Abstract: Histidine transport and metabolism in rat brain synptosomes were investigated to study the possible role of histidine uptake in the synthesis of the putative neurotransmitter histamine (HA). Histidine uptake was found to be regionally distributed and temperature sensitive and was not totally independent of sodium or possium ions. Transport was inhibited by metabolic inhibitors, as well as by promethazine and quinacrine. A number of other HA-related agents and several histidine metabolites had no effect. Kinetic analyses of histidine transport revealed the presence of both high- and lowaffinity systems in cerebral cortex. Histidine uptake increased following preexposure of synaptosomes to depolarizing concentrations of potassium. This effect was dependent on the presence of calcium ions during the preincubation. No newly formed [3H]HA was detectable in rat brain synaptosomes following [3H]histidine transport. Lesions of the medial forebrain bundle did not alter histidine uptake in the hippocampus or cerebral cortex. Ontogenic studies indicated that the histidine uptake system developed rapidly and reached a peak during postnatal days 12–17. Overall, the present findings do not support a role for histidine transport in the regulation or maintenance of neurotransmitter pools of HA in rat brain.  相似文献   

12.
Hepatic coma was induced in rats chronically treated with CCl4, by means of a single injection of ammonium acetate. The activities of glutamate decarboxylase (GAD) and GABA transaminase (GABA-T), as well as the synaptosomal uptake and release of [3H]GABA, were measured in the following brain areas of the comatose rats: cortex, striatum, hypothalamus, hippocampus, midbrain and cerebellum. Hepatic coma was associated with a general decrease of GAD activity, whereas GABA-T activity was diminished only in the hypothalamus, striatum and midbrain. During hepatic coma, the K+-stimulated [3H]GABA release was notably diminished in the striatum and cerebellum, whereas a significant increase was observed in the hippocampus. [3H]GABA uptake increased in most regions after CCl4 treatment, independently of the presence of coma. The results indicate that GABAergic transmission seems to be decreased in most cerebral regions during hepatic coma.  相似文献   

13.
Hyperammonemia has been suggested to induce enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis and accumulation, and finally net glutamine release into the blood stream, but this has never been confirmed in liver insufficiency models. Therefore, cerebral cortex ammonia- and glutamine-related metabolism was studied during liver insufficiency-induced hyperammonemia by measuring plasma flow and venous-arterial concentration differences of ammonia and amino acids across the cerebral cortex (enabling estimation of net metabolite exchange), 1 day after portacaval shunting and 2, 4, and 6 h after hepatic artery ligation (or in controls). The intra-organ effects were investigated by measuring cerebral cortex tissue ammonia and amino acids 6 h after liver ischemia induction or in controls. Arterial ammonia and glutamine increased in portacaval-shunted rats versus controls, and further increased during liver ischemia. Cerebral cortex net ammonia uptake, observed in portacaval-shunted rats, increased progressively during liver ischemia, but net glutamine release was only observed after 6 h of liver ischemia. Cerebral cortex tissue glutamine, gamma-aminobutyric acid, most other amino acids, and ammonia levels were increased during liver ischemia. Glutamate was equally decreased in portacaval-shunted and liver-ischemia rats. The observed net cerebral cortex ammonia uptake, cerebral cortex tissue ammonia and glutamine accumulation, and finally glutamine release into the blood suggest that the rat cerebral cortex initially contributes to net ammonia removal from the blood during liver insufficiency-induced hyperammonemia by augmenting tissue glutamine and ammonia pools, and later by net glutamine release into the blood. The changes in cerebral cortex glutamate and gamma-aminobutyric acid could be related to altered ammonia metabolism.  相似文献   

14.
The high-affinity uptake of L-[3H]glutamate and L-[3H]aspartate into synaptosomes prepared from rat cerebral cortical, hippocampal, and cerebellar tissue was reduced by a number of structural analogues of L-glutamate and L-aspartate. threo-3-Hydroxy-L-aspartic acid was a more potent inhibitor of L-glutamate uptake than of L-aspartate uptake in the cerebral cortex, but not in the hippocampus or cerebellum. A similar pattern of selectivity was observed for cis-1-aminocyclobutane-1,3-dicarboxylic acid. Dihydrokainate was also more potent against L-glutamate than against L-aspartate in the cerebral cortex, but in the hippocampus, it was more potent against L-aspartate than against L-glutamate. By contrast, L-alpha-aminoadipate was significantly more potent in the cerebellum than in the cerebral cortex and hippocampus as an antagonist of both L-glutamate and L-aspartate. These results support other evidence that there is regional heterogeneity in acidic amino acid uptake sites and that the amino acids L-glutamate and L-aspartate may be taken up by a number of transport systems with overlapping substrate specificity but different inhibitor profiles.  相似文献   

15.
Abstract: 45Ca2+ uptake by synaptosomes isolated from cerebral cortex, cerebellum, midbrain, and brain stem of male Sprague-Dawley rats was measured at 1-, 3-, 5-, 15-, 30-, and 60-s time periods. The fastest rate of depolarization-dependent calcium uptake occurred in each brain region between 0 and 1 s. Uptake rates dropped off quickly with 3–5-s rates at approximately 15–20% of those observed at 0–1 s in cerebral cortex, cerebellum, and midbrain. Uptake rates at the 1–3-s interval were maintained at a relatively high rate in these three brain regions suggesting mixed fast- and slow-phase processes. The magnitude and rate of 45Ca2+ uptake were similar in synaptosomes from cerebral cortex, cerebellum, and midbrain but were significantly less in brain stem synaptosomes. These results suggest a fast and a slow component to voltage-dependent 45Ca2+ uptake by presynaptic nerve terminals from various brain regions.  相似文献   

16.
Abstract: Ethyl analogues of homocholine were synthesized and used to describe further the specificities of the processes involved in choline uptake and acetylation and acetylcholine storage and release. Monoethylhomocholine, diethylhomocholine, and triethylhomocholine decreased the transport of choline into rat brain synaptosomes. The mono- and diethyl compounds were taken up into synaptosomes with similar affinity for the transport system as choline (5.8, 8.5, and 5.5 μ M , respectively) but at a somewhat slower rate (11.3, 8.5, and 37.3 nmol/g original tissue/h, respectively); the triethyl analogue was not transported at the concentrations tested, which further defines the structural specificity of the transport system. l -Carnitine did not affect the transport of the analogues. The in situ acetylation of mono- and diethyl-homocholine by slices of rat cerebral cortex was measurable, but the in vitro acetylation by choline acetyl-transferase solubilized from rat forebrain was not. Acetylation of the diethyl analogue by slices of cerebellar cortex was <20% of that by slices of cerebral cortex. Subcellular fractionation of cerebral slices showed that acetyldiethylhomocholine localized preferentially to the cytosolic rather than vesicular stores, indicating specificity of the mechanism responsible for the incorporation of acetylated product into the vesicles. The release of acetyldiethylhomocholine and of acetylcholine was tested from sliced brain that had been incubated with the precursors. Both esters were released spontaneously but stimulation with increased K+ concentration enhanced the release of acetylcholine without changing the release of acetyldiethylhomocholine, suggesting that evoked transmitter release occurred from a vesicular store.  相似文献   

17.
Presynaptic muscarinic and nicotinic receptors in the cerebral cortex reportedly inhibit and increase acetylcholine (ACh) release, respectively. In this study, we investigated whether these receptors reside on cholinergic nerve terminals projecting to the cerebral cortex from the nucleus basalis magnocellularis (nbm). Adult male rats received unilateral infusions of ibotenic acid (5 micrograms/1 microliter) in the nbm. Two weeks later, cerebral cortical cholinergic markers (choline acetyltransferase activity, high-affinity choline uptake, and coupled ACh synthesis) were significantly reduced in synaptosomes prepared from the lesioned hemispheres compared to contralateral controls. The depolarization-induced release of [3H]ACh from these synaptosomes was also reduced in the lesioned hemispheres, reflecting the reduced synthesis of transmitter. However, the nbm lesions had no effect on the inhibition of release induced by 100 microM oxotremorine. Synaptosomal [3H]ACh release was not altered by nicotine or the nicotinic agonists anabaseine and 2-(3-pyridyl)-1,4,5,6-tetrahydropyrimidine. Nicotine (10-100 microM) did increase [3H]ACh release in control and lesioned hemispheres in cortical minces, but to a similar extent. These results suggest that neither muscarinic nor nicotinic receptors modulating ACh release reside on nbm-cholinergic terminals.  相似文献   

18.
Brain tissue was obtained at autopsy from nine cirrhotic patients dying in hepatic coma and from an equal number of controls, free from neurological, psychiatric, or hepatic diseases, matched for age and time interval from death to freezing of dissected brain samples. Glutamine, glutamate, aspartate, and gamma-aminobutyric acid (GABA) levels were measured in homogenates of cerebral cortex (prefrontal and frontal), caudate nuclei, hypothalamus, cerebellum (cortex and vermis), and medulla oblongata as their o-phthalaldehyde derivatives by HPLC using fluorescence detection. Glutamine concentrations were found to be elevated two- to fourfold in all brain structures, the largest increases being observed in prefrontal cortex and medulla oblongata. Glutamate levels were selectively decreased in prefrontal cortex (by 20%), caudate nuclei (by 27%), and cerebellar vermis (by 17%) from cirrhotic patients. On the other hand, GABA content of autopsied brain tissue from these patients was found to be within normal limits in all brain structures. It is suggested that such region-selective reductions of glutamate may reflect loss of the amino acid from the releasable (neurotransmitter) pool. These findings may be of significance in the pathogenesis of hepatic encephalopathy resulting from chronic liver disease.  相似文献   

19.
Synaptosomes and synaptoneurosomes were prepared from rat cerebral cortex. Comparison of the amino acid levels in the two types of organelles and of the effects of gabaculine thereon indicated that the neurosome portion of synaptoneurosomes constituted the major influencing component of the organelles. Administration to rats of inhibitors of gamma-aminobutyric acid (GABA) degradation, such as gabaculine and L-cycloserine, resulted in elevated GABA levels in synaptoneurosomes and a decrease in muscimol-stimulated Cl- up-take by the organelles. Addition of gabaculine directly to the incubation medium for the uptake assay had no effect on the Cl- transport. In contrast, administration to rats of isonicotinic acid hydrazide, an inhibitor of GABA synthesis, decreased the GABA level in synaptoneurosomes and increased the muscimol-stimulated Cl- uptake by the organelles. Although the evidence is not unequivocal, it does support the concept of GABA released from nerve endings being taken up by the postsynaptic cell, from where it exerts a regulatory influence on the functioning of the GABA receptor/ion channel complex.  相似文献   

20.
Abstract: Quinolinic acid (QUIN), an excitotoxic tryptophan metabolite, has been identified and measured in human cerebrospinal fluid (CSF) using a mass-fragmentographic method. Furthermore, its content has been evaluated in frontal cortex obtained at autopsy from the cadavers of patients who died after hepatic coma. During the coma, the concentration of QUIN in the CSF was 152 ± 38 pmol ml-1. In contrast, the concentration in control patients affected by different pathologies was 22 ± 7 pmol ml-1. In the frontal cortex of patients who died after episodes of hepatic encephalopathy, the content of QUIN was three times higher than in controls (2.6 ± 0.6 versus 0.80 ± 0.08 nmol/g wet weight). As a result of these investigations we are now able to extend our previous observations on the increase of QUIN in the brains of rats used as experimental models of hepatic encephalopathy to man. QUIN should therefore be added to the list of compounds possibly involved in the pathogenesis and symptomatology of brain disorders associated with liver failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号