首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A diversion of Mississippi River water into Lake Pontchartrain, Louisiana, USA by way of the Bonnet Carre Spillway has been proposed as a restoration technique to help offset regional wetland loss. An experimental diversion of Mississippi River water into Lake Pontchartrain was carried out in April 1994 to monitor the fate of nutrients and sediments in the spillway and Lake Pontchartrain. Approximately 6.4×108 m3 of Mississippi River water was diverted into Lake Pontchartrain over 42 days. As water passed through the Bonnet Carre Spillway, there were reductions in total suspended sediment concentrations of 82–83%, nitrite+nitrate (NOx) of 28–42%, in total nitrogen (TN) of 26–30%, and in total phosphorus (TP) of 50–59%. 3.9±1.1 cm of accretion was measured in the spillway. Nutrient concentrations at the freshwater plume edge in Lake Pontchartrain compared to the Mississippi River were lower for NOx (44–81%), TN (37–57%), and TP (40–70%), and generally higher for organic nitrogen (−7–57%). The Si:N ratio generally increased and the N:P ratio decreased from the river to the plume edge. Nutrient stoichiometric ratios indicate water at the plume edge was not silicate limited, suggesting conditions favoring diatomic phytoplankton.  相似文献   

2.
Phytoplankton dynamics in Lake Müggelsee, a eutrophic and polymictic lake in Berlin, and in the inflowing lowland River Spree have been comprehensively investigated during the last two decades. Zooplankton dynamics, nutrient supply, light climate, duration of ice cover and of summer stratification have also been regularly measured to help to explain phytoplankton development. The first period (1978–1990) was characterised by high nutrient loads and dominance of cyanobacteria from spring to autumn. Since then, loads of phosphorus and nitrogen have been lowered by 40–50%. Oscillatoria-like cyanobacteria (Limnothrix redekei, Planktothrix agardhii) were favoured under hypertrophic conditions in both the polymictic lake and the river, but they have disappeared nearly completely after nutrient reduction. Development of these species depended on meteorological conditions and nutrient supply in spring rather than on seasonal averages of nutrient concentrations. Diatoms have became dominant and chlorophytes have increased their share of the biomass since the nutrient load was reduced. Species com- position changed even within the algal groups. Retention time of water and duration of thermal stratification of the water column modified phytoplankton structure. Mobile algae like Microcystisor Ceratium occurred in the lake during stratification periods. Otherwise, species composition in the shallow, polymictic lake was very similar to that in the inflowing lowland river. Species with high starting biomass, fed by high riverine import, resting stages or perennation were selected in this flushed system.  相似文献   

3.
Light, nutrient concentrations and phytoplankton photosynthesis were studied in a Lake Tahoe sediment plume during maximum spring runoff. They were compared with conditions in clear lake waters not influenced by inlets. In the plume, nutrient concentrations increased in proportion to sediment density whereas light transmission of water was reduced with little effect on the spectral composition except for red light. Light inhibition of photosynthesis at the lake surface was less pronounced in the plume than in clear water and light limitation occurred more rapidly in deeper layers. Evidence from both lake experiments and laboratory bioassays suggests that iron had the greatest stimulatory effect on both photosynthetic activity and biomass growth at maximum sediment densities near the stream inlet. Because of less surface inhibition, photosynthetic light energy utilization efficiency was usually higher in the sediment plume which occurred in relatively shallow areas near the shore. In order to estimate overall effects of enhanced turbidity associated with nutrient loading on Lake Tahoe's primary productivity, profiles taken in shallow areas near the lakeshore were extrapolated to the maximum depth of photosynthesis. Light limitation would cause decreasing productivity, but nutrient stimulation would make this effect less pronounced. The overall effect would depend on the extent of sediment loading relative to nutrient loading.  相似文献   

4.
Nitrogen dynamics and microbial food web structure were characterized in subtropical, eutrophic, large (2,338 km2), shallow (1.9 m mean depth), and polymictic Lake Taihu (China) in Sept–Oct 2002 during a cyanobacterial bloom. Population growth and industrialization are factors in trophic status deterioration in Lake Taihu. Sites for investigation were selected along a transect from the Liangxihe River discharge into Meiliang Bay to the main lake. Water column nitrogen and microbial food web measurements were combined with sediment–water interface incubations to characterize and identify important processes related to system nitrogen dynamics. Results indicate a gradient from strong phosphorus limitation at the river discharge to nitrogen limitation or co-limitation in the main lake. Denitrification in Meiliang Bay may drive main lake nitrogen limitation by removing excess nitrogen before physical transport to the main lake. Five times higher nutrient mineralization rates in the water column versus sediments indicate that sediment nutrient transformations were not as important as water column processes for fueling primary production. However, sediments provide a site for denitrification, which, along with nitrogen fixation and other processes, can determine available nutrient ratios. Dissimilatory nitrate reduction to ammonium (DNRA) was important, relative to denitrification, only at the river discharge site, and nitrogen fixation was observed only in the main lake. Reflecting nitrogen cycling patterns, microbial food web structure shifted from autotrophic (phytoplankton dominated) at the river discharge to heterotrophic (bacteria dominated) in and near the main lake.  相似文献   

5.
Scale and frequency of changes in a lake’s physical structure, light dynamics, and availability of nutrients are closely related to phytoplankton ecology. Since phytoplankton assemblages were first described, phytoplankton ecologists concluded that these assemblages provide insight into phytoplankton responses to environmental changes. Objectives of this study were to investigate ecology of phytoplankton during a complete hydrological cycle in the deepest natural lake in Brazil, Dom Helvécio, and to sort species into the list of assemblages, checking its accordance with environmental changes in a tropical system within the middle Rio Doce Lake district, South-East Brazil. Canonical Correspondence Analysis, t-test, Mann–Whitney U-test, and Kruskal–Wallis test were used to analyze climatological, environmental, and plankton data, which were obtained monthly in 2002. A new phytoplankton assemblage, NA (atelomixis-dependent desmids), is suggested because atelomixis (robust movement of water occurring once a day) contributed to replacement of species in Dom Helvécio Lake. Stability of stratification, water chemistry, and composition of phytoplankton assemblages characterized two periods. The first period occurred in six rainy months (Jan–Mar and Oct–Dec) when the lake was stratified and phytoplankton was dominated by two assemblages: NA and F. The second period occurred in six dry months (Apr–Sep) when the lake was nonstratified and phytoplankton was dominated by four assemblages: S2, X1, A, and LO. Results suggest that phytoplankton in Dom Helvécio Lake was shaped by seasonal and daily changes of water temperature, even with its lower amplitude of variation within 2002 (El Niño year). These changes promoted water column stratification or mixing, reduced light, and increased nutrient availability. Temperature, therefore, is similarly important to phytoplankton ecology in tropical regions as it is in temperate ones. Sorting phytoplankton species into assemblages matched well with environmental changes and periods identified so it is also suggested that this can be further used as an appropriate tool to manage water quality when evaluating tropical lakes.  相似文献   

6.
Lake Baikal, Russian Siberia, was sampled in July 1990 during the period of spring mixing and initiation of thermal stratification. Vertical profiles of temperature, dissolved nutrients (nitrate and soluble reactive phosphorus), phytoplankton biomass, and primary productivity were determined in an eleven-station transect encompassing the entire 636 km length of the lake. Pronounced horizontal variability in hydrodynamic conditions was observed, with the southern region of the lake being strongly thermally stratified while the middle and north basins were largely isothermal through July. The extent of depletion of surface water nutrients, and the magnitude of phytoplankton biomass and productivity, were found to be strongly correlated with the degree of thermal stratification. Horizontal differences likely reflected the contribution of two important factors: variation in the timing of ice-out in different parts of the lake (driving large-scale patterns of thermal stratification and other limnological properties) and localized effects of river inflows that may contribute to the preliminary stabilization of the water column in the face of intense turbulent spring mixing (driving meso-scale patterns). Examination of the relationships between surface water inorganic N and P depletion suggested that during the spring and early summer, phytoplankton growth in unstratified portions of the lake was largely unconstrained by nutrient supplies. As summer progressed, the importance of co-limitation by both N and P became more apparent. Uptake and regeneration rates, measured directly using the stable isotope 15N, revealed that phytoplankton in stratified portions of the lake relied primarily on NH4 as their N source. Rates of NH4 regeneration were in approximate equilibrium with uptake; both processes were dominated by organisms <2 µm. This pattern is similar to that observed for oligotrophic marine systems. Our study underscores the importance of hydrodynamic conditions in influencing patterns of biological productivity and nutrient dynamics that occur in Lake Baikal during its brief growing season.  相似文献   

7.
This study relates to the ecology of Dictyosphaerium pulchellum Wood in Delamere Lake in Cheshire, UK. Dictyosphaerium pulchellum is a cosmopolitan, green colonial phytoplankton species that occasionally forms dense, monospecific populations in lakes. Delamere Lake is a small, shallow, acid lake (mean pH, 4.5) with very high phytoplankton biomass (annual mean chlorophyll a, 290 μg l−1) and devoid of any significant cladoceran population, the efficient grazers of phytoplankton. A predominantly unicellular form of D. pulchellum was the dominant species in Lake Delamere, and it comprised on average ca. 80% (maximum >99%) of the lake phytoplankton biovolume. Laboratory and lake experiments were conducted on this species showed that its pH tolerance varied between 2.4 and 10.7, and its optimum tolerance range between 3.3 and 8.5 depending on other environmental variables. Low pH was not responsible for the unicellular habit of this alga, but a very high nutrient regime could be an important factor. Bioassays revealed that in Delamere Lake this species was limited by nitrogen, but nitrogen did not hamper high growth in the lake. Dictyosphaerium pulchellum can persist at low light levels, tolerate CO2-deficiency and can grow in polyhumic water with water colour around 300 mg Pt l−1, but probably not in darker waters. The dominance of D. pulchellum in Delamere Lake is apparently due to a combination of several factors: its ability to tolerate both low pH and high turbidity, exploit high nutrient conditions, absence of effective grazing pressure by zooplankton and being a superior competitor.  相似文献   

8.
Lake Inba is one of the most eutrophic lakes in Japan. In this study, field sampling and nutrient enrichment bioassays were conducted to determine the seasonal patterns of nutrient limitation for phytoplankton growth in this lake. Phytoplankton biomass increased significantly with the additions of phosphorus (P) on almost all sampling dates, indicating P limitation of phytoplankton growth from spring to autumn. However, nitrogen (N) limitation was also observed during summer (i.e., 19 August). On 10 August, a typhoon struck Lake Inba. After this event, dissolved inorganic nitrogen (DIN) and phosphorus concentrations increased, probably because of increased river discharge. At the same time, phytoplankton growth in the control treatment became relatively high, with the addition of neither P nor N stimulating the growth. However, 10 days after the typhoon, the phytoplankton growth rate in the control treatment decreased, with only the addition of N having a significant positive effect on phytoplankton growth. N limitation during summer is caused by the low concentrations of DIN, as well as changes in the N:P ratio due to allochthonous nutrient loads. These results indicate that a reduction of both P and N input is necessary to control phytoplankton blooms in Lake Inba.  相似文献   

9.
10.
SUMMARY 1. The summertime phytoplankton assemblage in abysmally deep (Zmax: 589 m) Crater Lake, Oregon, consists of over 100 species, which are variously distributed in the upper 200 m of the vertical water column. The depth distribution of the lake's three most prevalent species follows a predictabk pattern: Nitzschia gracilis in the 0–20 m stratum, Tribonema sp. at mid–depth (80–20 m), and Stephanodiscus hantzschii in the lowermost stratum (160–200 m). These major species, which account for approximately 80% or more of the lake's total phytoplankton biomass and primary production, exist under atypical temperature, light, and nutrient conditions.
2. The spatial distribution of phytoplankton in Crater Lake resembles a three-tier structure. Unlike most lakes, where the entire phytoplankton communities exist in less disparate environmental conditions, or are vertically mixed periodically by storm events and seasonal lake turnover. the Crater Lake community is partitioned into stratified environments.
5. The disparate and unusual characteristics of these environments, and the hydrological and limnological stability of the lake basin, are perhaps important factors regulating the diversity, dominance. and partitioning of the lake's phytoplankton populations.  相似文献   

11.
Zohary  T.  Fishbein  T.  Kaplan  B.  Pollingher  U. 《Wetlands Ecology and Management》1998,6(2-3):133-142
The dynamics of the algal populations of Lake Agmon, a newly created shallow lake in the Hula Valley, Israel, were monitored following its filling in April 1994 through 1996. Additional limited field observations and measurements were taken throughout 1997. Following an initial establishment period, the dynamics of the algal populations showed a repetitive annual pattern comprised of three phases: I. a clear water phase in January–February, with low phytoplankton biomass and no metaphyton; II. a metaphyton dominance phase during March–June when mats of filamentous chlorophytes covered most of the lake's sediments while phytoplankton biomass remained low; and III. an intense phytoplankton bloom phase from June till December. The shifts from phase I to II and from phase II to III were gradual, resulting from interplay between phosphorus availability, the underwater light climate, temperature effects and zooplankton grazing pressure. The shift from phase III back to phase I was abrupt, due to winter flushing of Lake Agmon. The summer phytoplankton blooms intensified from 1994 to 1996 and shifted from chlorophyte dominance in 1994 and 1995 to cyanobacteria-dominance in 1996 and 1997. These observations, jointly with the nutrient chemistry of Lake Agmon, suggest intense eutrophication. Criteria based on phytoplankton taxonomy also indicate that Lake Agmon is eutrophic to hypertrophic. Due to the typical unstable nature of hypertrophic systems, careful management is essential to maintain the delicate ecological balance needed to ensure that the lake will fulfill its intended role as a center for eco-tourism.  相似文献   

12.
We examined the potential effects of environmental variables, and their interaction, on phytoplankton community succession in spring using long-term data from 1992 to 2012 in Lake Taihu, China. Laboratory experiments were additionally performed to test the sensitivity of the phytoplankton community to nutrient concentrations and temperature. A phytoplankton community structure analysis from 1992 to 2012 showed that Cryptomonas (Cryptophyta) was the dominant genus in spring during the early 1990s. Dominance then shifted to Ulothrix (Chlorophyta) in 1996 and 1997. However, Cryptomonas again dominated in 1999, 2000, and 2002, with Ulothrix regaining dominance from 2003 to 2006. The bloom-forming cyanobacterial genus Microcystis dominated in 1995, 2001 and 2007–2012. The results of ordinations indicated that the nutrient concentration (as indicated by the trophic state index) was the most important factor affecting phytoplankton community succession during the past two decades. In the laboratory experiments, shifts in dominance among phytoplankton taxa occurred in all nutrient addition treatments. Results of both long term monitoring and experiment indicated that nutrients exert a stronger control than water temperature on phytoplankton communities during spring. Interactive effect of nutrients and water temperature was the next principal factor. Overall, phytoplankton community composition was mediated by nutrients concentrations, but this effect was strongly enhanced by elevated water temperatures.  相似文献   

13.
For the many lakes world‐wide with short residence times, changes to the rate of water throughput may have important effects on lake ecology. We studied relationships between current and predicted residence times and phytoplankton biomass using a eutrophic lake in the north‐west of England with an annual residence time averaging about 20 days, as a test case. Using 32 years of recent hydrological flow data for Bassenthwaite Lake, multiple sets of scaled flow for each year, and the process‐based phytoplankton response model, PROTECH, we modelled the effects of changing river flow on phytoplankton biomass in the lake. The impact on biomass was shown to depend on seasonal changes in flow rather than annual changes. Furthermore, there was a qualitative difference in impact depending on whether the nutrient loading to the lake came principally from flow‐independent sources, or from flow‐dependent ones. Predictions for changes in river flow under future climate scenarios in the north‐west of England have suggested that, despite little change in the annual flow magnitude, there will be a shift to greater flow in the winter and lesser flow in the summer. Applying these flow predictions to our modelling of Bassenthwaite Lake revealed that, with flow‐independent nutrient loading, and no overall increase in nutrient load, phytoplankton abundance in the summer could increase by up to 70%, including an increased proportion of Cyanobacteria. Conversely, were the loading completely dependent on the flow, the biomass would fall. In many parts of the world, river flow is expected to decrease in the summer even more than in England, suggesting these areas may expect substantial changes to seasonal phytoplankton biomass as a result of climate‐driven changes to seasonal river flow. Such changes would be in addition to any other changes owing to warming effects or eutrophication.  相似文献   

14.
Increasing degradation of the water quality, caused by overuse and salinization, leads to considerable changes of the phytoplankton composition in Kenyan Rift Valley lakes. Exemplarily, the phytoplankton communities and biomasses of deteriorating freshwater Lake Naivasha and salinizing Lake Oloidien were studied between 2001 and 2005, accompanied by physico-chemical measurements (pH, total phosphorus and nitrogen, alkalinity, conductivity). Over the last three decades, the ecology of these two water basins has been subjected to dramatic changes, caused by excessive use of water and catchment area by man. In L. Naivasha a shift in the dominance of coccoid cyanobacteria towards dominance of Chlorophyceae (Botryococcus terribilis) was observed. Lake Oloidien exhibited a shift in the dominance of coccoid Chlorophyceae towards dominance of cyanobacteria (Arthrospira fusiformis, Anabaenopsis elenkinii). Phytoplankton findings and chemical data demonstrate that L. Naivasha has developed towards a eutrophic freshwater lake while L. Oloidien has progressed towards a hypereutrophic alkaline-saline lake. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: J. Padisak  相似文献   

15.
C. Raj Murthy 《Hydrobiologia》1996,322(1-3):109-116
The results of integrated multidisciplinary studies of the transport and pathways of toxic contaminants entering Lake Ontario through the Niagara River are summarized. The factors controlling the transport and distribution of contaminants are: (i) Niagara River mixing characteristics; (ii) prevailing local wind conditions and large scale lake-wide circulation features, and (iii) suspended sediment load and the partitioning of the contaminants onto the suspended solids. Physical limnological studies included a variety of direct measurements to delineate the nearfield and farfield mixing characteristics of the river plume in terms of the prevailing winds and large scale lake circulation. In the nearfield region of the plume, around the river mouth, contaminant transport was affected by the initial momentum and buoyancy of the river water mass and a sharp thermal front that is generally present through the stratified season. After the initial momentum is dissipated, the weakly buoyant river plume responds to the prevailing winds and lake-wide circulation. Adsorbed contaminants rapidly settle once the initial momentum of the river plume is dissipated but the dissolved contaminants are transported into the farfield regions in the lake and after becoming entrained in the strong south shore eastward flowing boundary current are carried toward the St. Lawrence River outflow. Only about ten percent of this eastward flowing transport exits via the St. Lawrence River, the remainder is recirculated back into the main lake. A contaminant transport model of the Niagara River Plume incorporating a hydrodynamic model, observed plume mixing characteristics and chemical partitioning was used to simulate the compartmental distribution (adsorbed vs dissolved) of selected toxic chemicals distribution observed in the nearfield region of the plume.  相似文献   

16.
We test the hypothesis that phytoplankton biomass decrease upon entry into the St. Lawrence River from headwaters in Lake Ontario is attributable to a range of causal factors including, decreased photosynthetic fitness due to turbulence, cell loss due to increased flocculation and subsequent sedimentation, decreases in nutrients, and loss due to grazing. In order to test this, changes in phytoplankton and crustacean zooplankton concentrations were examined during four transects along the river, from 8 km offshore in Lake Ontario to the hydroelectric power dam 180 km downstream. Both phytoplankton biomass, measured as chlorophyll-a, and zooplankton decreased markedly upon entry of lake water into the river. Phytoplankton community composition and size changed little over the river reach and tended to reflect that in Lake Ontario. Total phosphorus increased with transit of river water downstream despite low tributary inputs of water into this reach of river. Light availability was high, photosynthetic efficiency suggested that phytoplankton were not physiologically stressed during transit in turbulent waters, and there was no direct evidence of flocculation causing sedimentation of phytoplankton. Grazing by the benthic community (filtering insect larvae and dreissenid mussels) is inferred to be a dominant biological factor as is the geomorphology in this reach of the river, which includes large littoral areas, shoals, and reaches of high water velocity that can increase particle contact in the water column with benthic grazers. The findings of this study have a bearing on understanding how changing water levels in a regulated river might alter areas of benthic grazing.  相似文献   

17.
Lake Bukoni is one of the crater lakes in western Uganda. Investigations into this lake is limited compared to other African lakes. Data on phytoplankton ecology in the lake are lacking. Phytoplankton consists of a community of photosynthetic, microscopic plants adapted to suspension in water. They constitute ‘hidden flora’ which make an important contribution to the primary productivity of a water mass. Some phytoplankton taxa, among them species belonging to Cyanophyta, are known to influence ecological transformations and to cause health hazards in water bodies that are used by humans. From July 2004 to December 2005, phytoplankton was collected from two sites (inshore and offshore) in Lake Bukoni. An inverted microscope, Sedgwick counting chamber and multiple tally denominator were used to quantify the phytoplankton. Phytoplankton was dominated by nonheterocystous cyanoprokaryotes especially Lyllgbya limnetica followed by the diatoms Synedra ulna and Fragillaria mutabilis. The inshore site had more phytoplankton species. Differences in phytoplankton diversity and density were mainly attributed to mixing and presence of macrophytes. The occurrence of large numbers of cyanoprokaryotes poses a potential health hazard to the local people who utilize the water from Lake Bukoni. The dominance of cyanoprokaryotes might result in ecological transformations like loss of biodiversity.  相似文献   

18.
Chemical and biological components of the Selenga River waters, the largest tributary of Lake Baikal, differ significantly from the lake waters. Active transformation processes of river waters into the lake ones occur in the vast barrier-like zone in the river-sea boundary areas. This study presents results on the spatial distribution and dynamics of water chemistry as well as the quantity and diversity of phyto- and bacterioplankton at a distance of 14 km off the Selenga River mouth. The most representative tracers of river and lake waters are total amount of ions and sulphates. Principal changes of chemical and biological parameters were fixed at 1–3 km off the Selenga River mouth that was determined as a mixing zone. Intense development of phytoplankton and eukaryotic picoplankton causing the decrease of nitrate and phosphate concentrations and organic matter rise were registered in this area. Gradual replacement of river phytoplankton by the lake one, abundance reduction of microorganisms and organotrophic bacteria and percentage increase of oligotrophic and psychrotolerant bacteria occurred in the mixing zone. Replacement of PC-rich picocyanobacteria by PE-rich ones was also recorded here. At a distance of 5–7 km off the shore, nutrient concentration and plankton composition were similar to those of Lake Baikal.  相似文献   

19.
Macroinvertebrates were studied during the first five years after closure and freshening of the lake system Volkerak-Zoom, two lakes interconnected by a channel. Before embankment, in 1987, these lakes were part of the tidal eastern Scheldt estuary in the south-western part of the Netherlands. Four months after embankment, the first freshwater species were found. In general, the colonization process followed the same pattern as was reported for newly created reservoirs. In Lake Volkerak-Zoom differences in colonization time were observed between distinguished depth zones. Within the chironomid assemblages, dominance of Chironomus muratensis was followed by a dominance of Procladius, Glyptotendipes and Cladotanytarsus. The succession was related to changes in phytoplankton concentrations. Although in 1991 changes in macrofauna composition were less pronounced as compared to previous years, succession was still going on.  相似文献   

20.
Julius  M. L.  &Goad  L. 《Journal of phycology》2000,36(S3):34-34
Lake Michigan provides an ideal location for comparing episodic physical forcing effects (storm events) on phytoplankton processes and the more persistent seasonal variability of phytoplankton communities. This is because of the duration and extent of the highly turbid, recurrent coastal plume (RCP) in the lake during the winter/early spring. Although the RCP coincides with the initiation of the basin wide spring diatom bloom, linkages between the duration and intensity of the plume and the prominent role of light availability in regulating Lake Michigan phytoplankton growth during the spring isothermal period have been postulated, but not verified. As such the concurrent physical and biological events provide a novel opportunity to examine how variations in biological rate processes, coupled with transport and resuspension phenomena associated with the RCP, affect the distributions of organisms, evolution of communities, and growth and primary production of Lake Michigan phytoplankton. In this study, phytoplankton assemblages from pre, post, and active plume events are examined from three stations in Lake Michigan. Species assemblages include chlorophytes, chrysophytes, and diatoms. The diatom flora was particularly abundant. Species composition changed rapidly during storm events, with resting cell forming taxa playing a significant role in these modifications. Ephemeral species appeared during the circulation event and decreased once storm activity subsided. Other taxa were able to establish themselves in the phytoplankton community during the plume events and persisted after storm activity subsided. Understanding activity during these circulation events will lead to a better understanding of overall community structure development throughout the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号