首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The granulation and properties of aerobic sludge were studied in two sequencing batch airlift reactors (SBARs). The synthetic wastewater in the two reactors had initially different levels of COD (400 mg l−1 in R1 and 1600 mg l−1 in R2). A hydraulic cycle time of 3 and 12 h was conducted in the reactors R1 and R2, respectively and the process of granulation was observed by optical microscopy. It was found that the course of granulation at a cycle time of 3 h in R1 was shorter than that at cycle time of 12 h in R2 and the properties of aerobic granules were distinct in the reactors due to the different hydraulic cycle time. Under a cycle time of 3 h, granule diameter was around 1.0–2.0 mm, VSS ratio was 92.08% with stronger granule strength; under a cycle time of 12 h, granule diameter was around 0.5–1.0 mm, VSS ratio was 83.92% with weaker granule strength. In addition, the morphology of microorganisms in granules was obviously dissimilar when the hydraulic cycle time was different. It was concluded that the hydraulic cycle time plays a crucial role in the granulation and properties of aerobic granules. It is expected that the experimental findings will provide useful information on factors affecting aerobic granulation.  相似文献   

2.
Aerobic sludge granules are compact, strong microbial aggregates that have excellent settling ability and capability to efficiently treat high-strength and toxic wastewaters. Aerobic granules disintegrate under high organic loading rates (OLR). This study cultivated aerobic granules using acetate as the sole carbon and energy source in three identical sequencing batch reactors operated under OLR of 9–21.3 kg chemical oxygen demand (COD) m−3 day−1. The cultivated granules removed 94–96% of fed COD at OLR up to 9–19.5 kg COD m−3 day−1, and disintegrated at OLR of 21.3 kg COD m−3 day−1. Most tested isolates did not grow in the medium at >3,000 mg COD l−1; additionally, these strains lost capability for auto-aggregation and protein or polysaccharide productivity. This critical COD regime correlates strongly with the OLR range in which granules started disintegrating. Reduced protein quantity secreted by isolates was associated with the noted poor granule integrity under high OLR. This work identified a potential cause of biological nature for aerobic granules breakdown.  相似文献   

3.
Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading rate 6.0 to 12.0 kg chemical oxygen demand (COD) m−3 day−1 in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (μ overall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (k d), observed yield (Y obs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Y obs) is associated with an increased solid retention time, while k d and Y changed insignificantly and can be regarded as constants under different organic loading rates.  相似文献   

4.
Complete granulation of nitrifying sludge was achieved in a sequencing batch reactor. For the granular sludge, batch experiments were conducted to characterize the kinetic features of ammonia oxidizers (AOB) and nitrite oxidizers (NOB) in the granules using the respirometric method. A two-step nitrification model was established to determine the kinetic parameters of both AOB and NOB. In addition to nitrification reactions, the new model also took into account biomass maintenance and mass transfer through the granules. The yield coefficient, maximum specific growth rate, and affinity constant for ammonium for AOB were 0.21 g chemical oxygen demand (COD) g−1 N, 0.09 h−1, and 9.1 mg N L−1, respectively, whereas the corresponding values for NOB were 0.05 g COD g−1 N, 0.11 h−1, and 4.85 mg N L−1, respectively. The model developed in this study performed well in simulating the oxygen uptake rate and nitrogen conversion kinetics and in predicting the oxygen consumption of the AOB and NOB in aerobic granules.  相似文献   

5.
The process of nitrification–denitrification via nitrite for nitrogen removal under real-time control mode was tested in two laboratory-scale sequencing batch reactors (SBRs) with flocculent activated sludge (R1) and aerobic granular sludge (R2) to compare operational performance and real-time control strategies. The results showed that the average ammonia nitrogen, total inorganic nitrogen (TIN), and chemical oxygen demand (COD) removal during aeration phase were 97.6%, 57.0%, and 90.1% in R2 compared with 98.6%, 48.7%, and 88.1% in R1. The TIN removed in both SBRs was partially due to the presence of simultaneous nitrification–denitrification via nitrite, especially in R2. The specific nitrification and denitrification rates in R2 were 0.0416 mgNH4+–N/gSS-min and 0.1889 mgNOX–N/gSS-min, which were 1.48 times and 1.35 times that of R1. The higher rates for COD removal, nitrification, and denitrification were achieved in R2 than R1 with similar influent quality. Dissolved oxygen (DO), pH, and oxidization reduction potential, corresponding to nutrient variations, were used as diagnostic parameters to control the organic carbon degradation and nitrification–denitrification via nitrite processes in both SBRs. The online control strategy of granular SBR was similar to that of the SBR with flocculent activated sludge. However, a unique U-type pattern on the DO curve in granular SBR was different from SBR with flocculent activated sludge in aerobic phase.  相似文献   

6.
It is possible to cultivate aerobic granular sludge at a low organic loading rate and organics-to-total nitrogen (COD/N) ratio in wastewater in the reactor with typical geometry (height/diameter = 2.1, superficial air velocity = 6 mm/s). The noted nitrification efficiency was very high (99%). At the highest applied ammonia load (0.3 ± 0.002 mg NH4+–N g total suspended solids (TSS)−1 day−1, COD/N = 1), the dominating oxidized form of nitrogen was nitrite. Despite a constant aeration in the reactor, denitrification occurred in the structure of granules. Applied molecular techniques allowed the changes in the ammonia-oxidizing bacteria (AOB) community in granular sludge to be tracked. The major factor influencing AOB number and species composition was ammonia load. At the ammonia load of 0.3 ± 0.002 mg NH4+–N g TSS−1 day−1, a highly diverse AOB community covering bacteria belonging to both the Nitrosospira and Nitrosomonas genera accounted for ca. 40% of the total bacteria in the biomass.  相似文献   

7.
Aerobic granules can be used for the treatment of industrial or municipal wastewater, but high aeration rate is required for the stable operation of the granular sludge system. Therefore, the aim of this research was to reduce aeration rate greatly to decrease the energy consumption for the technology of aerobic granules. Based on the characteristics of sequencing batch reactor with distinct feast and famine periods, aeration rate was reduced from 1.66 to 0.55 cm s−1 in the famine period after granules were formed. It was found that the settleability of aerobic granules in reactor R1 with reduced aeration was the same as that of aerobic granules in reactor R2 with constant aeration rate of 1.66 cm s−1. However, the outer morphology of aerobic granules gradually changed from round shape to long shape, and minor population showed certain shift after aeration rate was reduced in the famine period. Since good settleability is the most essential feature of aerobic granules, it can be said that reducing aeration rate in famine period did not influence the stable operation of aerobic granular sludge system. Furthermore, the experimental results indicated that aeration rate in feast period was much more important to the stable operation of aerobic granules than that in famine period.  相似文献   

8.
Two sequencing batch reactors were synchronously operated to investigate the effect of manganese (II) (Mn2+) augmentation on aerobic granulation. Reactor 1 (R1) was added with 10 mg/L Mn2+, while there was no Mn2+ augmentation in reactor 2 (R2). Results showed that R1 had a faster granulation process than R2 and R1 performed better in chemical oxygen demand (COD) and ammonium nitrogen (NH4+–N) removal efficiencies. Moreover, the mature granules augmented with Mn2+ behaved better on their physical characteristics and size distributions, and they also had higher production of extracellular polymeric substances (EPS) content. The result of three-dimensional excitation and emission matrix fluorescence showed that Mn2+ had the function of causing organic material diversity (especially proteins diversity) in EPS fraction from granules. Polymerase chain reaction and denaturing gradient gel electrophoresis techniques were employed to analyze the microbial and genetic characteristics in mature granules. The results exhibited that Mn2+ augmentation was mainly responsible for the higher microbial diversity of granules from R1 compared with that from R2. Uncultured sludge bacterium A16 (AF234726) and Rhodococcus sp. WTZ-R2 (HM004214) were the major species in R1, while only uncultured sludge bacterium A16 (AF234726) in R2. Moreover, there were eight species of organisms found in both two aerobic granules, and three species were found only in aerobic granules from R1. It could be concluded that Mn2+ could enhance the sludge granulation process and have a key effect role on the biological properties during the sludge granulation.  相似文献   

9.
Efficient nitrification and denitrification of wastewater containing 1,700 mgl−1 of ammonium-nitrogen was achieved using aerobic granular sludge cultivated at medium-to-high organic loading rates. The cultivated granules were tested in a sequencing batch reactor (SBR) fed with 6.4 or 10.2 kg NH4+-N m−3 day−1, a loading significantly higher than that reported in literature. With alternating 2 h oxic and 2 h anoxic operation (OA) modes, removal rate was 45.5 mg NH4+-N g−1 volatile suspended solids−1 h−1 at 6.4 kg NH4+-N m−3 day−1 loading and 41.3 ± 2.0 at 10.2 kg NH4+-N m−3 day−1 loading. Following the 60 days SBR test, granules were intact. The fluorescence in situ hybridization and confocal laser scanning microscopy results indicate that the SBR-OA granules have a distribution with nitrifers outside and heterotrophs outside that can effectively expose functional strains to surrounding substrates at high concentrations with minimal mass transfer limit. This microbial alignment combined with the smooth granule surface achieved nitrification–denitrification of wastewaters containing high-strength ammonium using aerobic granules. Conversely, the SBR continuous aeration mode yielded a distribution with nitrifers outside and heterotrophs inside with an unsatisfactory denitrification rate and floating granules as gas likely accumulated deep in the granules.  相似文献   

10.
The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0 mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m−3 d−1. The biomass concentration was 7600 mg L−1 while the sludge volume index (SVI) was 31.3 mL g SS−1 indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment.  相似文献   

11.
Three sequencing batch reactors, R1, R2 and R3, with a 1.5-h, 4-h and 8-h cycle time, respectively, were used to cultivate aerobic granules with the same synthetic wastewater containing 1000 mg l(-1) COD. As the initial COD concentrations in the cycles were the same, three different cycle times led to three different starvation times in repeated cycles of the three reactors. It was found that 63 cycles were needed to form granules with the longest starvation time in R3 while it took 256 cycles in R1 with the shortest starvation time. However, as far as the formation time was concerned, granules were formed on day 16 with 1.5-h cycle time while on day 21 with 8-h cycle time, which indicated that a shorter cycle time with a shorter starvation time speeded up the granulation. This was mainly due to the stronger hydraulic selection pressure at shorter cycle time. However, it was found that granules formed with cycle time of 1.5h were unstable. Fluffy granules with poor settling ability were observed in R1 in the 4th month, which led to the collapse of R1 after 160-day of operation. Granules in R2 and R3 showed good stability during the long-term operation. Therefore, a reasonable starvation time was necessary to maintain the long-term stability of aerobic granules.  相似文献   

12.
Variable aeration in sequencing batch reactor with aerobic granular sludge   总被引:2,自引:0,他引:2  
This study investigated the effects of reduced aeration in famine period on the performance of sequencing batch reactor (SBR) with aerobic granular sludge. Aerobic granules were first cultivated in two SBRs (R1 and R2) with acetate as sole carbon source. From operation day 27, aeration rate in R1 was reduced from 1.66 to 0.55 cm s(-1) from 110 min to the end of each cycle and further reduced from 30 min to the end of each cycle from day 63. R2 as a control was operated with a constant aeration rate of 1.66 cm s(-1) in the whole cycle during the entire experimental period. Results showed that changing trends of SVI, concentration, average size and VSS/SS of biomass with time in R1 and R2 were similar although different aeration modes were adopted. At steady state, SVI of aerobic granules and biomass concentration maintained at about 40 ml g(-1) and 6 g l(-1), respectively. Average size of granules was about 750 microm in R1 while 550 microm in R2. This is the first study to demonstrate that aerobic granular sludge could be stable at reduced aeration rate in famine period during more than 3-month operation. Such an operation strategy with reduced aeration rate will lead to a significant reduction of energy consumption, which makes the aerobic granular sludge technology more competitive over conventional activated sludge process. Furthermore, the stability of aerobic granular system with variable aeration further indicates that the difference of physiology and kinetics of aerobic granule in feast and famine periods results in the different requirements of oxygen and shear stress for the stability of granules, which will deepen the understanding of mechanism of aerobic granulation in sequencing batch reactor.  相似文献   

13.
The cultivation of stable aerobic granules as well as granular structure and stability in sequencing batch reactors under different shear force were investigated in this study. Four column sequencing batch reactors (R1–R4) were operated under various shear force, in terms of superficial upflow air velocity of 0.8, 1.6, 2.4, and 3.2 cm s−1, respectively. Aerobic granules were formed in all reactors in the experiment. It was found that the magnitude of shear force has an important impact on the granule stability. At shear force of 2.4 and 3.2 cm s−1, granules can maintain a robust structure and have the potential of long-term operation. Granules developed in low shear force (R1, 0.8 cm s−1 and R2, 1.6 cm s−1) deteriorated to large-sized filamentous granules with irregular shape, loose structure and resulted in poor performance and operation instability. Granules cultivated under high shear force (R3, 2.4 cm s−1 and R4, 3.2 cm s−1) stabilized to clear outer morphology, dense and compact structure, and with good performance in 120 days operation. Fractal dimension (Df) represents the internal structure of granules and can be used as an important indicator to describe the structure and stability of granules. Due to the combined effects of shear force and growth force, the mature granules developed in R3 and R4 also displayed certain differences in granular structure and characteristics.  相似文献   

14.
Extracellular polymeric substances (EPS) were quantified in flocculent and aerobic granular sludge developed in two sequencing batch reactors with the same shear force but different settling times. Several EPS extraction methods were compared to investigate how different methods affect EPS chemical characterization, and fluorescent stains were used to visualize EPS in intact samples and 20-μm cryosections. Reactor 1 (operated with a 10-min settle) enriched predominantly flocculent sludge with a sludge volume index (SVI) of 120 ± 12 ml g−1, and reactor 2 (2-min settle time) formed compact aerobic granules with an SVI of 50 ± 2 ml g−1. EPS extraction by using a cation-exchange resin showed that proteins were more dominant than polysaccharides in all samples, and the protein content was 50% more in granular EPS than flocculent EPS. NaOH and heat extraction produced a higher protein and polysaccharide content from cell lysis. In situ EPS staining of granules showed that cells and polysaccharides were localized to the outer edge of granules, whereas the center was comprised mostly of proteins. These observations confirm the chemical extraction data and indicate that granule formation and stability are dependent on a noncellular, protein core. The comparison of EPS methods explains how significant cell lysis and contamination by dead biomass leads to different and opposing conclusions.  相似文献   

15.
Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m3/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.  相似文献   

16.
High-rate biological conversion of sulfide and nitrate in synthetic wastewater to, respectively, elemental sulfur (S0) and nitrogen-containing gas (such as N2) was achieved in an expanded granular sludge bed (EGSB) reactor. A novel strategy was adopted to first cultivate mature granules using anaerobic sludge as seed sludge in sulfate-laden medium. The cultivated granules were then incubated in sulfide-laden medium to acclimate autotrophic denitrifiers. The incubated granules converted sulfide, nitrate, and acetate simultaneously in the same EGSB reactor to S0, N-containing gases and CO2 at loading rates of 3.0 kg S m−3 d−1, 1.45 kg N m−3 d−1, and 2.77 kg Ac m−1 d−1, respectively, and was not inhibited by sulfide concentrations up to 800 mg l−1. Effects of the C/N ratio on granule performance were identified. The granules cultivated in the sulfide-laden medium have Pseudomonas spp. and Azoarcus sp. presenting the heterotrophs and autotrophs that co-work in the high-rate EGSB-SDD (simultaneous desulfurization and denitrification) reactor.  相似文献   

17.
Thermophilic aerobic wastewater treatment is reviewed. Thermophilic processes have been studied in laboratory and pilot-scale while full-scale applications are rare. The paper focuses on the microbiology of aerobic thermophiles, performance of the aerobic wastewater treatments, sludge yield, and alternatives to enhance performance of thethermophilic process. Thermophilic processes have been shown to operate under markedly high loading rates (30–180 kg COD m−3d−1).Reported sludge production values under thermophilic conditions vary between 0.05 and0.3 kg SS kg CODremoved, which are about the same or lower than generally obtained in mesophilic processes. Compared to analogous mesophilic treatment, thermophilic treatment commonly suffers from poorer effluent quality, measured by lower total COD and filtrated (GF-A) COD removals. However, in the removal of soluble (bacterial membrane filtered) COD both mesophilic and thermophilic treatments have produced similar results. Sludge settle ability in thermophilic processes have been reported to be better or poorer than in analogous mesophilic processes, although cases with better settling properties are rare. Combining thermophilic with mesophilic treatment or ultrafiltration may in some cases markedly improve effluent quality. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The effect of three different types of glycerol on the performance of up-flow anaerobic sludge blanket (UASB) reactors treating potato processing wastewater was investigated. High COD removal efficiencies were obtained in both control and supplemented UASB reactors (around 85%). By adding 2 ml glycerol product per liter of raw wastewater, the biogas production could be increased by 0.74 l biogas ml−1 glycerol product, which leads to energy values in the range of 810–1270 kWhelectric per m3 product. Moreover, a better in-reactor biomass yield was observed for the supplemented UASB reactor (0.012 g VSS g−1 CODremoved) compared to the UASB control (0.002 g VSS g−1 CODremoved), which suggests a positive effect of glycerol on the sludge blanket growth.  相似文献   

19.
Degrading high-strength phenol using aerobic granular sludge   总被引:1,自引:0,他引:1  
Aerobic granules were adopted to degrade high-strength phenol wastewater in batch experiments. The acclimated granules effectively degraded phenol at a concentration of up to 5,000 mg l−1 without severe inhibitory effects. The biodegradation of phenol by activated sludge was inhibited at phenol concentrations >3,000 mg l−1. The granules were composed of cells embedded in a compact extracellular matrix. After acid or alkaline pretreatment, the granules continued to degrade phenol at an acceptable rate. The polymerase chain reaction-denaturing gradient gel electrophoresis technique was employed to monitor the microbial communities of the activated sludge and the aerobic granules following their being used to treat high concentrations of phenol in batch tests.  相似文献   

20.
The characteristics of aerobic granules at steady state and the effects of starvation time on the stability of aerobic granules during the long-term operation were investigated in three sequencing batch reactors (SBRs R1–R3). The SBRs were operated with a cycle time of 1.5, 4.0, and 8.0 h, respectively, which resulted in a starvation time of 0.8, 3.3, and 7.3 h in three reactors, respectively. Results showed that aerobic granules were successfully cultivated in the three reactors, but the granules in R2 with a starvation time of 3.3 h showed the highest density and the best settleability at steady state. It is obvious that the starvation time has an optimum value in terms of settleability of granules. In addition, it was found that the coexistence of a minority of fluffy granules with smooth granules was the potential unstable factor in R1 with a starvation time of 0.8 h at the steady state. The sudden dominance of fluffy granules in R1 after the 160-day operation led to the operation failure of the reactor R1, whereas the granules in R2 with a starvation time of 3.3 h and R3 with a starvation time of 7.3 h showed good stability during the long-term operation. As short starvation time leads to the instability of granules, and long starvation time is not advisable for practical application due to low efficiency, starvation time should be controlled in a reasonable range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号