首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
GD3 ganglioside and apoptosis   总被引:9,自引:0,他引:9  
Lipid and glycolipid mediators are important messengers of the adaptive responses to stress, including apoptosis. In mammalian cells, the intracellular accumulation of ganglioside GD3, an acidic glycosphingolipid, contributes to mitochondrial damage, a crucial event during the apoptopic program. GD3 is a minor ganglioside in most normal tissues. Its expression increases during development and in pathological conditions such as cancer and neurodegenerative disorders. Intriguingly, GD3 can mediate additional biological events such as cell proliferation and differentiation. These diverse and opposing effects indicate that tightly regulated mechanisms, including 9-O-acetylation, control GD3 function, by affecting intracellular levels, localization and structure of GD3, and eventually dictate biological outcomes and cell fate decisions.  相似文献   

2.
3.
4.
Insulin-like growth factor-1 (IGF-1) inhibited N-acetylsphingosine (C2-ceramide)-induced HL-60 cell apoptosis via relieving oxidative damage. This inhibitory action of IGF-1 was blocked by a phosphatidylinositol-3 (PI-3) kinase inhibitor wortmannin and enhanced by overexpression of the p110 catalytic subunit of PI-3 kinase. Either IGF-1 pretreatment or PI-3 kinase overexpression restored ceramide-depleted catalase function, and this restoration was inhibited by wortmannin. A catalase inhibitor 3-amino-1h-1, 2, 4-triazole (ATZ) blocked the inhibitory action of IGF-1 on ceramide-induced apoptosis, whereas exogenous purified catalase enhanced it. Ceramide-activated caspase-3 was inhibited by IGF-1/PI-3 kinase and enhanced by wortmannin, while the addition of a specific caspase-3 inhibitor DMQD-CHO significantly enhanced the restoration by IGF-1 of ceramide-depleted catalase function. Moreover, IGF-1 inhibited C2-ceramide-induced decrease of mitochondrial membrane potential, and increase of cytochrome c release, caspase-3 cleavage and caspase-3 activity as judged by PhiPhiLux cleaving method. In summary, these results suggest that IGF-1/PI-3 kinase inhibited C2-ceramide-induced apoptosis due to relieving oxidative damage, which resulted from the inhibition of catalase by activated caspase-3.  相似文献   

5.
Four kinds of anti-GD3 monoclonal antibodies, DSG-1, -2, -3, and -4, of the IgM class were obtained by the immunization of BALB/c mice with enzootic bovine leukosis tumor tissue-derived ganglioside GD3 inserted into liposomes with Salmonella minnesota R595 lipopolysaccharides. The specificities of the monoclonal antibodies obtained were defined by complement-dependent liposome immune lysis assay and by enzyme immunostaining on thin-layer chromatography. The reactivities of the monoclonal antibodies obtained to four ganglioside GD3 variants [GD3(NeuAc-NeuAc), GD3(NeuAc-NeuGc), GD3(NeuGc-NeuAc), and GD3(NeuGc-NeuGc)] were tested. All of the monoclonal antibodies were found to react with GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc) but not with GD3(NeuGc-NeuAc) or GD3(NeuGc-NeuGc). Furthermore, various purified glycosphingolipids were used to determine the specificity of these monoclonal antibodies. All 4 antibodies reacted only with ganglioside GD3 [GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc)], but not with several gangliosides linking the GalNAc, Gal beta 1-3GalNAc, NeuAc alpha 2-3Gal beta 1-3GalNAc, or NeuAc alpha 2-8NeuAc alpha 2-3Gal beta 1-3GalNAc residue to the Gal moiety of ganglioside GD3 (GD2, GD1b, GT1b, or GQ1b, respectively), ganglioside GT1a having the same terminal NeuAc alpha 2-8NeuAc alpha 2-3Gal residue as ganglioside GD3, other gangliosides, and neutral glycosphingolipids. These findings suggest that the 4 monoclonal antibodies obtained may be specific for the epitope of NeuAc-alpha 2-8Sia alpha 2-3Gal beta 1-4Glc residue of ganglioside GD3.  相似文献   

6.
Detachment of most untransformed adherent cells from the extracellular matrix promotes apoptosis, in a process termed anoikis [1] [2]. The death signalling mechanisms involved in this process are not known, although adhesion or transformation by ras oncogenes have been shown to protect epithelial cells from apoptosis through activation of phosphatidylinositol 3-kinase and protein kinase B (PKB/Akt) [3]. Here we show that detachment-induced apoptosis (anoikis) is blocked by the expression of a dominant-negative form of FAS-associated death domain protein (FADD) in a number of untransformed epithelial cell lines. Because the soluble extracellular domains of the death receptors CD95, DR4 and DR5 failed to block anoikis, we conclude that ligand-dependent activation of these death receptors is not involved in this process. Detachment induced strong activation of caspase 8 and caspase 3. Detachment-induced caspase-8 activation did not require the function of downstream caspases but was blocked by overexpression of the anti-apoptotic proteins Bcl-2 or Bcl-X(L). We propose that caspase-8 activation is the initiating event in anoikis, which is subsequently subject to a positive-feedback loop involving mitochondrial events.  相似文献   

7.
Green tea polyphenol-(-)epigallocatechin-3-gallate (EGCG)-is a potent chemopreventive agent in many test systems and has been shown to inhibit tumor promotion and induce apoptosis. In this study we describe a novel observation that EGCG displayed strong inhibitory effects on the proliferation and viability of HTB-94 human chondrosarcoma cells in a dose-dependent manner and induced apoptosis. Investigation of the mechanism of EGCG-induced apoptosis revealed that treatment with EGCG resulted in DNA fragmentation, induction of caspase-3/CPP32 activity, and cleavage of the death substrate poly(ADP-ribose)polymerase (PARP). Pretreatment of cells with a synthetic pan-caspase inhibitor (Z-VAD-FMK) and a caspase-3-specific inhibitor (DEVD-CHO) prevented EGCG-induced PARP cleavage. The induction of apoptosis by EGCG via activation of caspase-3/CPP32-like proteases may provide a mechanistic explanation for its antitumor effects.  相似文献   

8.
We have studied the effects of GD3 ganglioside on mitochondrial function in isolated mitochondria and intact cells. In isolated mitochondria, GD3 ganglioside induces complex changes of respiration that depend on the substrate being oxidized. However, these effects are secondary to opening of the cyclosporin A-sensitive permeability transition pore and to the ensuing swelling and cytochrome c depletion rather than to an interaction with the respiratory chain complexes. By using a novel in situ assay based on the fluorescence changes of mitochondrially entrapped calcein (Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999) Biophys. J. 76, 725-734), we unequivocally show that GD3 ganglioside also induces the mitochondrial permeability transition in intact cells and that this event precedes apoptosis. The mitochondrial effects of GD3 ganglioside are selective, in that they cannot be mimicked by either GD1a or GM3 gangliosides, and they are fully sensitive to cyclosporin A, which inhibits both the mitochondrial permeability transition in situ and the onset of apoptosis induced by GD3 ganglioside. These results provide compelling evidence that opening of the permeability transition pore is causally related to apoptosis.  相似文献   

9.
R24, a mouse IgG3 mAb against GD3 ganglioside, was shown to bind to itself in a homophilic manner. This was demonstrated by augmented binding of 125I-labeled R24 to the cell surface of GD3+ cells by unlabeled R24 and by direct binding of biotinylated R24 to R24 adsorbed on solid phase. Although homophilic binding was evident when R24 was bound to solid phase, R24-R24 aggregates could not be detected in solution under otherwise identical conditions. R24 bound to four other mAb (two IgG3, one IgG2a, one IgM) directed against GD3 but did not bind to a panel of 21 other mAb including other IgG3 mAb and mAb directed against non-GD3 ganglioside. Evidence implicating the GD3-binding site of R24 in homophilic binding included the following observations: 1) F(ab')2 fragments of R24 could bind to R24, 2) an antiidiotypic mAb against the GD3-binding site of R24 inhibited R24 homophilic binding, 3) an IgM anti-GD3 mAb also demonstrated homophilic binding to R24, and 4) homophilic binding was a function of immunoreactivity and avidity for GD3. R24 variants with 40-fold lower avidity for GD3 demonstrated a similar decrease in homophilic binding. Inasmuch as R24 bound to R24 F(ab')2 fragments and specifically to anti-GD3 mAb, it appeared that the target for homophilic binding was an epitope within the V region of anti-GD3 mAb. It is likely that homophilic interactions result in increased affinity of R24 for GD3 through increased effective valency of antibody-Ag complexes.  相似文献   

10.
J Willers  A Lucchese  D Kanduc  S Ferrone 《Peptides》1999,20(9):1021-1026
We have analyzed sequence homologies between nonimmunogenic phage displayed peptides mimicking GD3 ganglioside and human/mouse self-proteins. The GD3 ganglioside phagotopes showed homology to proteins involved in carbohydrate metabolism/transport. Besides this expected homology, molecular mimicry of critical regulatory proteins was found. These data contribute to our understanding of the structural relatedness of antigenic determinants defined by specific anti-GD3 monoclonal antibodies and, in addition, suggest that molecular mimicry might explain the nonimmunogenicity of these peptides otherwise characterized by specificity to the mAb counterpart. We conclude that construction of peptides harboring motifs absent or scarcely represented in endogenous self-proteins might be a useful approach in melanoma immunotherapy.  相似文献   

11.
Whilst the role of ceramide, a second messenger of the sphingolipid family, in the initiation of receptor-mediated apoptosis is controversial, a growing body of evidence is emerging for a role of ceramide in the amplification of apoptosis via mitochondrial perturbations that culminate in the activation of execution caspases. Treatment of Jurkat T cells with the cell-permeable analog, C2-ceramide, resulted in the rapid onset of apoptosis as evidenced by Annexin V-FITC staining of externalised phosphatidylserine residues. Cells bearing this early apoptotic marker had a reduced mitochondrial transmembrane potential (m) that was preceded by the release of cytochrome c from mitochondria. Subsequent activation of caspase-3 provides the link between these ceramide-induced mitochondrial changes and execution caspases that ultimately result in the physical destruction of the cell. Collectively these results demonstrate that ceramide signalling results in caspase-mediated apoptosis via mitochondrial cytochrome c release and are further supportive of the role of ceramide in the amplification of apoptosis.  相似文献   

12.
13.
Early events in apoptotic cascades initiated by ceramides or by activation of the surface receptor CD95 (Fas/APO-1) include the formation of ganglioside GD3. GD3 appears to be both necessary and sufficient to propagate this lipid-mediated apoptotic pathway. Later events common to many apoptotic pathways include induction of the mitochondrial permeability transition (PT) and cytochrome c release, which in turn triggers downstream caspases and cell death. The links between GD3 formation and downstream stages of apoptosis are unknown. We report that ganglioside GD3 directly induces the PT in isolated rat liver mitochondria at 30-100 microM in the presence of exogenous substrate (succinate) and at approximately 3 microM in the absence of exogenous substrate. In contrast, other gangliosides tested (e.g. GM1) have only weak stimulatory effects in the presence of succinate and protect against PT induction in the absence of respiratory substrates. GD3-mediated induction of PT was antagonized by known PT inhibitors, namely cyclosporin A, ADP, trifluoperazine, and Mg(2+). GD3 induced PT even in the presence of submicromolar Ca(2+); GD3 is therefore the first biological PT inducer identified that does not require elevated Ca(2+). Exposure to GD3 also led to mitochondrial cytochrome c release. In contrast, C(2)-ceramide, which can initiate the lipid-mediated apoptotic cascade in susceptible cells, failed to either induce PT or release cytochrome c. These observations suggest that GD3 propagates apoptosis by inducing the PT and cytochrome c release. This model provides a mechanistic link between the earlier and later stages of CD95-induced/ceramide-mediated apoptosis.  相似文献   

14.
Excessive activation of glutamate receptors mediates neuronal death in a number of neurodegenerative diseases. The intracellular signaling pathways that mediate this type of neuronal death are only partly understood. Following mild insults via NMDA receptor activation, central neurons undergo apoptosis, but with more fulminant insults, necrosis intervenes. Caspases are important in several forms of apoptosis in vivo and in vitro. Previously, we have demonstrated that caspases are important in excitotoxicity-mediated apoptosis of cerebrocortical neurons. To determine the possible activation of caspase-3 in NMDA-induced neuronal apoptosis, we used an affinity-labeling technique: Biotinylated N-acetyl-Asp-Glu-Val-Asp-aldehyde (DEVD.CHO) preferentially labels conformationally active caspase-3-like proteases, allowing us to visualize affinity-labeled caspases with streptavidin-fluorescein isothiocyanate under confocal microscopy. NMDA-induced apoptosis of cerebrocortical neurons was associated with a time-dependent increase in conformationally active caspase-3-like proteases. The activation of caspases was apparent within 20 min of NMDA stimulation and was localized primarily in the cytosol. However, following incubation of neurons for 18-24 h, conformationally active caspase-3-like proteases were also detectable in nuclei. Double labeling with propidium iodide to detect chromatin condensation indicated that affinity-labeled caspase-3-like proteases were specifically expressed in apoptotic cells. To further confirm this, we used an antibody specific for the conformationally active fragment of caspase-3 and found largely concordant results. Moreover, preincubation with DEVD.CHO prevented NMDA-induced apoptosis. Our results suggest that caspase-3-like proteases play a major role in excitotoxin-induced neuronal apoptosis.  相似文献   

15.
Four monoclonal antibodies, M-T21, M-T32, M-T41 and UM4D4, which belong to the new CDw 60 cluster of antibodies specific for a subpopulation of human T-lymphocytes, were found to bind mainly to acetylated forms of ganglioside GD3. After O-deacetylation of the antigen, binding was reduced ("M-T"-antibodies) or abolished (UM4D4).  相似文献   

16.
We have recently reported that the disialoganglioside GD3 is found in cellular lipid extracts of T-cell acute lymphoblastic malignancies (T-ALL) but is not detectable by resorcinol staining in extracts of non-T acute lymphoblastic leukemia blasts (non-T-ALL). We have now extended this study to assess the detectability of GD3 in T-ALL vs non-T-ALL utilizing an anti-GD3 antibody, R24. Gangliosides isolated from T-ALL and non-T-ALL blasts by two different methods were separated by thin-layer chromatography and stained with anti-GD3 and a control antibody specific for GM3 and sialosylparagloboside (SPG). Anti-GD3 reactivity was observed in extracts from T-ALL cells in all cases, whereas GD3 was not detected in any of the non-T-ALL samples. The anti-GM3/SPG antibody stained GM3 in all of the leukemic samples analyzed as well as SPG in the non-T-ALL samples. Indirect immunofluorescence was used to assess the expression of GD3 at the surface of leukemic blasts. Fluorescence-activated cell sorting analysis with R24 showed that whereas T-ALL blasts were highly reactive with this antibody, non-T-ALL blasts were totally unreactive. In an analysis of a larger number of leukemia patients by fluorescence microscopy, 20 out of 28 samples with the T-ALL phenotype were positive for R24, whereas zero out of 11 non-T-ALL samples were reactive. These results confirm our earlier finding of the specificity of GD3 to the T-ALL subclass of childhood leukemias and furthermore suggest the potential value of anti-GD3 as an immunological tool for the diagnosis and therapy of T-cell ALL.  相似文献   

17.
Lipid and glycolipid diffusible mediators are involved in the intracellular progression and amplification of apoptotic signals. GD3 ganglioside is rapidly synthesized from accumulated ceramide after the clustering of death-inducing receptors and triggers apoptosis. Here we show that GD3 induces dissipation of DeltaPsim and swelling of isolated mitochondria, which results in the mitochondrial release of cytochrome c, apoptosis inducing factor, and caspase 9. Soluble factors released from GD3-treated mitochondria are sufficient to trigger DNA fragmentation in isolated nuclei. All these effects can be blocked by cyclosporin A, suggesting that GD3 is acting at the level of the permeability transition pore complex. We found that endogenous GD3 accumulates within mitochondria of cells undergoing apoptosis after ceramide exposure. Accordingly, suppression of GD3 synthase (ST8) expression in intact cells substantially prevents ceramide-induced DeltaPsim dissipation, indicating that endogenously synthesized GD3 induces mitochondrial changes in vivo. Finally, enforced expression of bcl-2 significantly prevents GD3-induced mitochondrial changes, caspase 9 activation, and apoptosis. These results show that mitochondria are a key destination for apoptogenic GD3 ganglioside along the lipid pathway to programmed cell death and indicate that relevant GD3 targets are under bcl-2 control.  相似文献   

18.
Zhu XF  Liu ZC  Xie BF  Li ZM  Feng GK  Xie HH  Wu SJ  Yang RZ  Wei XY  Zeng YX 《Life sciences》2002,70(11):1259-1269
Annonaceous acetogenins have potent antitumor effect in vitro and in vivo. Squamocin is one of the annonaceous acetogenins and has been reported to have antiproliferative effect on cancer cells. Our results from this study showed that squamocin inhibited proliferation of HL-60 cells with IC50 value of 0.17 microg/ml and induced apoptosis of HL-60 cells. Investigation of the mechanism of squamocin-induced apoptosis revealed that treatment of HL-60 cells with squamocin resulted in extensive nuclear condensation. DNA fragmentation, cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and induction of caspase-3 activity. Pretreatment of HL-60 cells with caspase-3 specific inhibitor DEVD-CHO prevented squamocin-induced DNA fragmentation, PARP cleavage and cell death. The expression levels of protein bcl-2, bax have no change in response to squamocin treatment in HL-60 cells, whereas stress-activated protein kinase (SAPK/JNK) was activated after treatment with squamocin in HL-60 cells. These results suggest that apoptosis of HL-60 cells induced by squamocin requires caspase-3 activation and is related to SAPK activation.  相似文献   

19.
Mammalian sialidases are key enzymes in the degradation of glycoconjugates. Neu4L sialidase is localized to mitochondria and specifically expressed in brain. To elucidate the pathophysiological roles of Neu4L in the nervous system, we investigated the possible involvement of Neu4L in the apoptotic neurodegeneration under the existence of catechol metabolites generated by tyrosinase. We demonstrated that: (i) the expression level of Neu4L was dramatically decreased prior to apoptosis; (ii) the apoptotic phenotype was characterized by cytochrome c release into cytosol concomitant with the trafficking of ganglioside GD3 to mitochondria; and (iii) the inhibitor of glucosylceramide synthase partially recovered cell viability. Neu4L and its substrate GD3 may act as key molecules in the mitochondrial apoptotic pathway in neuronal cells.  相似文献   

20.
Reactive nitrogen species (RNS) are implicated in the pathophysiology of inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease. The molecular mechanisms and signaling events involved in lung cell injury by RNS are still poorly understood. In the current study, we observe a novel anti-apoptotic response to nitric oxide (NO) exposure (via the NO donors 3-morpholine-syndnonimine (SIN1) or papa-NONOate) of human airway epithelial (HAE) cells. NO exposure via the NO donors increased cellular ceramide levels via ceramide synthase but did not trigger an apoptotic response. Rather, exposure to the NO donors promoted an increase in the protein-protein interaction between acidic sphingomyelinase (aSMase) and caspase-3, with aSMase sequestering caspase-3 and preventing its cleavage. In contrast, when aSMase was silenced in HAE cells or was knocked out in mice, an increase in cleaved caspase-3 was observed. This elevated caspase-3 cleavage was further augmented upon NO exposure (via SIN1 or papa-NONOate) of HAE cells and could be prevented by an inhibitor to ceramide synthase. These results demonstrate a novel mechanism of NO modulation of apoptosis, in which HAE cells exposed to NO via an NO donor induces ceramide generation via ceramide synthase. However, this ceramide induction does not lead to apoptosis unless aSMase is knocked down, allowing the release of caspase-3, its activation and execution of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号