首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The group of 2502 transmembrane (TM) protein sequences with seven TM segments (7-tms) registered in SWISS-PROT 46.0 contains 2200 G-protein-coupled receptors (GPCRs), indicating that GPCR candidates can be detected with a reliability of 87.9% in the eukaryotic genomes merely by correctly predicting the number of TM segments as 7-tms. The predictive accuracies of TM topology-prediction methods proposed so far are not as high as expected; even the best method, HMMTOP 2.0, can only achieve a capture rate of 7-tms sequences of 77.6%. It is necessary to improve this performance as much as possible, even if by only a few percentage points, in order to identify as many novel GPCR candidate genes as possible among the increasing number of newly sequenced genomes. In this study, we propose a simple but useful prediction method for detecting as many 7-tms TM protein sequences as GPCR candidates in eukaryotic genomes as possible. This is achieved by employing a two-step prediction procedure. The first step involves collecting 7-tms sequences by the best prediction method (HMMTOP 2.0), and the second involves picking up the remaining 7-tms sequences by the second-best method (TMHMM 2.0). By this procedure, the capture rate of 7-tms TM protein sequences in SWISS-PROT can be improved considerably from 77.6% to 84.5%, and the number of GPCR candidate sequences predicted as 7-tms in the human genome (Build 35) is increased from 790 (by HMMTOP 2.0) to 903. These 790 and 903 candidate sequences include, respectively, 587 and 636 of the known human GPCRs of the 717 registered in SWISS-PROT 46.0, demonstrating that the proposed combinatorial method is effective in detecting GPCR candidate genes in eukaryotic genomes.  相似文献   

2.
G-protein coupled receptors (GPCRs) are a class of seven-helix transmembrane proteins that have been used in bioinformatics as the targets to facilitate drug discovery for human diseases. Although thousands of GPCR sequences have been collected, the ligand specificity of many GPCRs is still unknown and only one crystal structure of the rhodopsin-like family has been solved. Therefore, identifying GPCR types only from sequence data has become an important research issue. In this study, a novel technique for identifying GPCR types based on the weighted Levenshtein distance between two receptor sequences and the nearest neighbor method (NNM) is introduced, which can deal with receptor sequences with different lengths directly. In our experiments for classifying four classes (acetylcholine, adrenoceptor, dopamine, and serotonin) of the rhodopsin-like family of GPCRs, the error rates from the leave-one-out procedure and the leave-half-out procedure were 0.62% and 1.24%, respectively. These results are prior to those of the covariant discriminant algorithm, the support vector machine method, and the NNM with Euclidean distance.  相似文献   

3.
Guo Y  Li M  Lu M  Wen Z  Huang Z 《Proteins》2006,65(1):55-60
Determining G-protein coupled receptors (GPCRs) coupling specificity is very important for further understanding the functions of receptors. A successful method in this area will benefit both basic research and drug discovery practice. Previously published methods rely on the transmembrane topology prediction at training step, even at prediction step. However, the transmembrane topology predicted by even the best algorithm is not of high accuracy. In this study, we developed a new method, autocross-covariance (ACC) transform based support vector machine (SVM), to predict coupling specificity between GPCRs and G-proteins. The primary amino acid sequences are translated into vectors based on the principal physicochemical properties of the amino acids and the data are transformed into a uniform matrix by applying ACC transform. SVMs for nonpromiscuous coupled GPCRs and promiscuous coupled GPCRs were trained and validated by jackknife test and the results thus obtained are very promising. All classifiers were also evaluated by the test datasets with good performance. Besides the high prediction accuracy, the most important feature of this method is that it does not require any transmembrane topology prediction at either training or prediction step but only the primary sequences of proteins. The results indicate that this relatively simple method is applicable. Academic users can freely download the prediction program at http://www.scucic.net/group/database/Service.asp.  相似文献   

4.
Understanding the coupling specificity between G protein-coupled receptors (GPCRs) and specific classes of G proteins is important for further elucidation of receptor functions within a cell. Increasing information on GPCR sequences and the G protein family would facilitate prediction of the coupling properties of GPCRs. In this study, we describe a novel approach for predicting the coupling specificity between GPCRs and G proteins. This method uses not only GPCR sequences but also the functional knowledge generated by natural language processing, and can achieve 92.2% prediction accuracy by using the C4.5 algorithm. Furthermore, rules related to GPCR-G protein coupling are generated. The combination of sequence analysis and text mining improves the prediction accuracy for GPCR-G protein coupling specificity, and also provides clues for understanding GPCR signaling.  相似文献   

5.
Multiple sequence alignments become biologically meaningful only if conserved and functionally important residues and secondary structural elements preserved can be identified at equivalent positions. This is particularly important for transmembrane proteins like G-protein coupled receptors (GPCRs) with seven transmembrane helices. TM-MOTIF is a software package and an effective alignment viewer to identify and display conserved motifs and amino acid substitutions (AAS) at each position of the aligned set of homologous sequences of GPCRs. The key feature of the package is to display the predicted membrane topology for seven transmembrane helices in seven colours (VIBGYOR colouring scheme) and to map the identified motifs on its respective helices /loop regions. It is an interactive package which provides options to the user to submit query or pre-aligned set of GPCR sequences to align with a reference sequence, like rhodopsin, whose structure has been solved experimentally. It also provides the possibility to identify the nearest homologue from the available inbuilt GPCR or Olfactory Receptor cluster dataset whose association is already known for its receptor type. AVAILABILITY: The database is available for free at mini@ncbs.res.in.  相似文献   

6.
The metabotropic glutamate receptors (mGluRs) have been predicted to have a classical seven transmembrane domain structure similar to that seen for members of the G-protein-coupled receptor (GPCR) superfamily. However, the mGluRs (and other members of the family C GPCRs) show no sequence homology to the rhodopsin-like GPCRs, for which this seven transmembrane domain structure has been experimentally confirmed. Furthermore, several transmembrane domain prediction algorithms suggest that the mGluRs have a topology that is distinct from these receptors. In the present study, we set out to test whether mGluR5 has seven true transmembrane domains. Using a variety of approaches in both prokaryotic and eukaryotic systems, our data provide strong support for the proposed seven transmembrane domain model of mGluR5. We propose that this membrane topology can be extended to all members of the family C GPCRs.  相似文献   

7.
Naveed M  Khan A  Khan AU 《Amino acids》2012,42(5):1809-1823
G protein-coupled receptors (GPCRs) are transmembrane proteins, which transduce signals from extracellular ligands to intracellular G protein. Automatic classification of GPCRs can provide important information for the development of novel drugs in pharmaceutical industry. In this paper, we propose an evolutionary approach, GPCR-MPredictor, which combines individual classifiers for predicting GPCRs. GPCR-MPredictor is a web predictor that can efficiently predict GPCRs at five levels. The first level determines whether a protein sequence is a GPCR or a non-GPCR. If the predicted sequence is a GPCR, then it is further classified into family, subfamily, sub-subfamily, and subtype levels. In this work, our aim is to analyze the discriminative power of different feature extraction and classification strategies in case of GPCRs prediction and then to use an evolutionary ensemble approach for enhanced prediction performance. Features are extracted using amino acid composition, pseudo amino acid composition, and dipeptide composition of protein sequences. Different classification approaches, such as k-nearest neighbor (KNN), support vector machine (SVM), probabilistic neural networks (PNN), J48, Adaboost, and Naives Bayes, have been used to classify GPCRs. The proposed hierarchical GA-based ensemble classifier exploits the prediction results of SVM, KNN, PNN, and J48 at each level. The GA-based ensemble yields an accuracy of 99.75, 92.45, 87.80, 83.57, and 96.17% at the five levels, on the first dataset. We further perform predictions on a dataset consisting of 8,000 GPCRs at the family, subfamily, and sub-subfamily level, and on two other datasets of 365 and 167 GPCRs at the second and fourth levels, respectively. In comparison with the existing methods, the results demonstrate the effectiveness of our proposed GPCR-MPredictor in classifying GPCRs families. It is accessible at .  相似文献   

8.
G-protein-coupled receptors (GPCRs) constitute a remarkable protein family of receptors that are involved in a broad range of biological processes. A large number of clinically used drugs elicit their biological effect via a GPCR. Thus, developing a reliable computational method for predicting the functional roles of GPCRs would be very useful in the pharmaceutical industry. Nowadays, researchers are more interested in functional roles of GPCRs at the finest subtype level. However, with the accumulation of many new protein sequences, none of the existing methods can completely classify these GPCRs to their finest subtype level. In this paper, a pioneer work was performed trying to resolve this problem by using a hierarchical classification method. The first level determines whether a query protein is a GPCR or a non-GPCR. If it is considered as a GPCR, it will be finally classified to its finest subtype level. GPCRs are characterized by 170 sequence-derived features encapsulating both amino acid composition and physicochemical features of proteins, and support vector machines are used as the classification engine. To test the performance of the present method, a non-redundant dataset was built which are organized at seven levels and covers more functional classes of GPCRs than existing datasets. The number of protein sequences in each level is 5956, 2978, 8079, 8680, 6477, 1580 and 214, respectively. By 5-fold cross-validation test, the overall accuracy of 99.56%, 93.96%, 82.81%, 85.93%, 94.1%, 95.38% and 92.06% were observed at each level. When compared with some previous methods, the present method achieved a consistently higher overall accuracy. The results demonstrate the power and effectiveness of the proposed method to accomplish the classification of GPCRs to the finest subtype level.  相似文献   

9.
G-protein coupled receptors (GPCRs) represent one of the most important classes of drug targets for pharmaceutical industry and play important roles in cellular signal transduction. Predicting the coupling specificity of GPCRs to G-proteins is vital for further understanding the mechanism of signal transduction and the function of the receptors within a cell, which can provide new clues for pharmaceutical research and development. In this study, the features of amino acid compositions and physiochemical properties of the full-length GPCR sequences have been analyzed and extracted. Based on these features, classifiers have been developed to predict the coupling specificity of GPCRs to G-protelns using support vector machines. The testing results show that this method could obtain better prediction accuracy.  相似文献   

10.
We have developed an alignment-independent method for classification of G-protein coupled receptors (GPCRs) according to the principal chemical properties of their amino acid sequences. The method relies on a multivariate approach where the primary amino acid sequences are translated into vectors based on the principal physicochemical properties of the amino acids and transformation of the data into a uniform matrix by applying a modified autocross-covariance transform. The application of principal component analysis to a data set of 929 class A GPCRs showed a clear separation of the major classes of GPCRs. The application of partial least squares projection to latent structures created a highly valid model (cross-validated correlation coefficient, Q(2) = 0.895) that gave unambiguous classification of the GPCRs in the training set according to their ligand binding class. The model was further validated by external prediction of 535 novel GPCRs not included in the training set. Of the latter, only 14 sequences, confined in rapidly expanding GPCR classes, were mispredicted. Moreover, 90 orphan GPCRs out of 165 were tentatively identified to GPCR ligand binding class. The alignment-independent method could be used to assess the importance of the principal chemical properties of every single amino acid in the protein sequences for their contributions in explaining GPCR family membership. It was then revealed that all amino acids in the unaligned sequences contributed to the classifications, albeit to varying extent; the most important amino acids being those that could also be determined to be conserved by using traditional alignment-based methods.  相似文献   

11.
Soyer OS  Dimmic MW  Neubig RR  Goldstein RA 《Biochemistry》2003,42(49):14522-14531
G-Protein-coupled receptors (GPCRs) are an important superfamily of transmembrane proteins involved in cellular communication. Recently, it has been shown that dimerization is a widely occurring phenomenon in the GPCR superfamily, with likely important physiological roles. Here we use a novel hidden-site class model of evolution as a sequence analysis tool to predict possible dimerization interfaces in GPCRs. This model aims to simulate the evolution of proteins at the amino acid level, allowing the analysis of their sequences in an explicitly evolutionary context. Applying this model to aminergic GPCR sequences, we first validate the general reasoning behind the model. We then use the model to perform a family specific analysis of GPCRs. Accounting for the family structure of these proteins, this approach detects different evolutionarily conserved and accessible patches on transmembrane (TM) helices 4-6 in different families. On the basis of these findings, we propose an experimentally testable dimerization mechanism, involving interactions among different combinations of these helices in different families of aminergic GPCRs.  相似文献   

12.
It has been shown that the progress in the determination of membrane protein structure grows exponentially, with approximately the same growth rate as that of the water-soluble proteins. In order to investigate the effect of this, on the performance of prediction algorithms for both α-helical and β-barrel membrane proteins, we conducted a prospective study based on historical records. We trained separate hidden Markov models with different sized training sets and evaluated their performance on topology pred...  相似文献   

13.
On the hierarchical classification of G protein-coupled receptors   总被引:1,自引:0,他引:1  
MOTIVATION: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs. RESULTS: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases.  相似文献   

14.
Imai T  Fujita N 《Proteins》2004,56(4):650-660
G-protein-coupled receptors (GPCRs) play a crucial role in signal transduction and receive a wide variety of ligands. GPCRs are a major target in drug design, as nearly 50% of all contemporary medicines act on GPCRs. GPCRs are membrane proteins possessing a common structural feature, seven transmembrane helices. In order to design an effective drug to act on a GPCR, knowledge of the three-dimensional (3D) structure of the target GPCR is indispensable. However, as GPCRs are membrane bound, their 3D structures are difficult to obtain. Thus we conducted statistical sequence analyses to find information about 3D structure and ligand binding using the receptors' primary sequences. We present statistical sequence analyses of 270 human GPCRs with regard to entropy (Shannon entropy in sequence alignment), hydrophobicity and volume, which are associated with the alpha-helical periodicity of the accessibility to the surrounding lipid. We found periodicity such that the phase changes once in the middle of each transmembrane region, both in the entropy plot and in the hydrophobicity plot. The phase shift in the entropy plot reflects the variety of ligands and the generality of the mechanism of signal transduction. The two periodic regions in the hydrophobicity plot indicate the regions facing the hydrophobic lipid chain and the polar phospholipid headgroup. We also found a simple periodicity in the plot of volume deviation, which suggests conservation of the stable structural packing among the transmembrane helices.  相似文献   

15.
Transmembrane proteins affect vital cellular functions and pathogenesis, and are a focus of drug design. It is difficult to obtain diffraction quality crystals to study transmembrane protein structure. Computational tools for transmembrane protein topology prediction fill in the gap between the abundance of transmembrane proteins and the scarcity of known membrane protein structures. Their prediction accuracy is still inadequate: TMHMM, the current state-of-the-art method, has less than 52% accuracy in topology prediction on one set of transmembrane proteins of known topology. Based on the observation that there are functional domains that occur preferentially internal or external to the membrane, we have extended the model of TMHMM to incorporate functional domains, using a probabilistic approach originally developed for computational gene finding. Our extension is better than TMHMM in predicting the topology of transmembrane proteins. As prediction of functional domain improves, our system's prediction accuracy will likely improve as well.  相似文献   

16.
Filizola M  Weinstein H 《The FEBS journal》2005,272(12):2926-2938
To achieve a structural context for the analysis of G-protein coupled receptor (GPCR) oligomers, molecular modeling must be used to predict the corresponding interaction interfaces. The task is complicated by the paucity of detailed structural data at atomic resolution, and the large number of possible modes in which the bundles of seven transmembrane (TM) segments of the interacting GPCR monomers can be packed together into dimers and/or higher-order oligomers. Approaches and tools offered by bioinformatics can be used to reduce the complexity of this task and, combined with computational modeling, can serve to yield testable predictions for the structural properties of oligomers. Most of the bioinformatics methods take advantage of the evolutionary relation that exists among GPCRs, as expressed in their sequences and measurable in the common elements of their structural and functional features. These common elements are responsible for the presence of detectable patterns of motifs and correlated mutations evident from the alignment of the sequences of these complex biological systems. The decoding of these patterns in terms of structural and functional determinants can provide indications about the most likely interfaces of dimerization/oligomerization of GPCRs. We review here the main approaches from bioinformatics, enhanced by computational molecular modeling, that have been used to predict likely interfaces of dimerization/oligomerization of GPCRs, and compare results from their application to rhodopsin-like GPCRs. A compilation of the most frequently predicted GPCR oligomerization interfaces points to specific regions of TMs 4-6.  相似文献   

17.
G-protein coupled receptor (GPCR) is a protein family that is found only in the Eukaryotes. They are used for the interfacing of cell to the outside world and are involved in many physiological processes. Their role in drug development is evident. Hence, the prediction of GPCRs is very much demanding. Because of the unavailability of 3D structures of most of the GPCRs; the statistical and machine learning based prediction of GPCRs is much demanding. The GPCRs are classified into family, sub family and sub-sub family levels in the proposed approach. We have extracted features using the hybrid combination of Pseudo amino acid, Fast Fourier Transform and Split amino acid techniques. The overall feature vector is then reduced using Principle component analysis. Mostly, GPCRs are composed of two or more sub units. The arrangement and number of sub units forming a GPCR are referred to as quaternary structure. The functions of GPCRs are closely related to their quaternary structure. The classification in the present research is performed using grey incidence degree (GID) measure, which can efficiently analyze the numerical relation between various components of GPCRs. The GID measure based classification has shown remarkable improvement in predicting GPCRs.  相似文献   

18.
MOTIVATION: Many important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion are mediated by membrane proteins. Unfortunately, as these proteins are not water soluble, it is extremely hard to experimentally determine their structure. Therefore, improved methods for predicting the structure of these proteins are vital in biological research. In order to improve transmembrane topology prediction, we evaluate the combined use of both integrated signal peptide prediction and evolutionary information in a single algorithm. RESULTS: A new method (MEMSAT3) for predicting transmembrane protein topology from sequence profiles is described and benchmarked with full cross-validation on a standard data set of 184 transmembrane proteins. The method is found to predict both the correct topology and the locations of transmembrane segments for 80% of the test set. This compares with accuracies of 62-72% for other popular methods on the same benchmark. By using a second neural network specifically to discriminate transmembrane from globular proteins, a very low overall false positive rate (0.5%) can also be achieved in detecting transmembrane proteins. AVAILABILITY: An implementation of the described method is available both as a web server (http://www.psipred.net) and as downloadable source code from http://bioinf.cs.ucl.ac.uk/memsat. Both the server and source code files are free to non-commercial users. Benchmark and training data are also available from http://bioinf.cs.ucl.ac.uk/memsat.  相似文献   

19.
Although the sequence information on G-protein coupled receptors (GPCRs) continues to grow, many GPCRs remain orphaned (i.e. ligand specificity unknown) or poorly characterized with little structural information available, so an automated and reliable method is badly needed to facilitate the identification of novel receptors. In this study, a method of fast Fourier transform-based support vector machine has been developed for predicting GPCR subfamilies according to protein's hydrophobicity. In classifying Class B, C, D and F subfamilies, the method achieved an overall Matthew's correlation coefficient and accuracy of 0.95 and 93.3%, respectively, when evaluated using the jackknife test. The method achieved an accuracy of 100% on the Class B independent dataset. The results show that this method can classify GPCR subfamilies as well as their functional classification with high accuracy. A web server implementing the prediction is available at http://chem.scu.edu.cn/blast/Pred-GPCR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号