首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human embryonic stem (ES) cells have the capacity for self-renewal and are able to differentiate into any cell type. However, obtaining high-efficient neural differentiation from human ES cells remains a challenge. This study describes an improved 4-stage protocol to induce a human ES cell line derived from a Chinese population to differentiate into neural cells. At the first stage, embryonic bodies (EBs) were formed in a chemically-defined neural inducing medium rather than in traditional serum or serum-replacement medium. At the second stage, rosette-like structures were formed. At the third stage, the rosette-like structures were manually selected rather than enzymatically digested to form floating neurospheres. At the fourth stage, the neurospheres were further differentiated into neurons. The results show that, at the second stage, the rate of the formation of rosette-like structures from EBs induced by noggin was 88+/-6.32%, higher than that of retinoic acid 55+/-5.27%. Immunocytochemistry staining was used to confirm the neural identity of the cells. These results show a major improvement in obtaining efficient neural differentiation of human ES cells.  相似文献   

2.
Embryonic stem (ES) cells are omnipotent; they can differentiate into every cell type of the body. The development of culture conditions that allow their differentiation has made it conceivable to produce large numbers of cells with lineage-specific characteristics in vitro. Here, we describe a method by which murine ES cells can be differentiated into cells with characteristics of epidermal keratinocytes. Keratinocyte-like cells were isolated from embryoid bodies and grown in culture. Potential applications of this method are the in vitro differentiation of cells of interest from ES cells of mice with lethal phenotypes during embryonic development and the production of genetically modified epidermal keratinocytes that could be used as temporary wound dressing or as carriers of genes of interest in gene therapeutic treatments.  相似文献   

3.
Hepatic differentiation of murine embryonic stem cells.   总被引:49,自引:0,他引:49  
Murine embryonic stem (ES) cells can replicate indefinitely in culture and can give rise to all tissues, including the germline, when reimplanted into a murine blastocyst. ES cells can also be differentiated in vitro into a wide range of cell types. We have utilized a liver-specific marker to demonstrate that murine ES cells can differentiate into hepatocytes in vitro. We have used ES cells carrying a gene trap vector insertion (I.114) into an ankyrin repeat-containing gene (Gtar) that we have previously shown provides an exclusive beta-galactosidase marker for the early differentiation of hepatocytes in vivo. beta-Galactosidase-positive cells were differentiated from I.114 ES cells in vitro. The identity of these cells was confirmed by the expression of the proteins alpha-fetoprotein, albumin, and transferrin and by the fact that they have an ultrastructural appearance consistent with that of embryonic hepatocytes. We propose that this model system of hepatic differentiation in vitro could be used to define factors that are involved in specification of the hepatocyte lineage. In addition, human ES cells have recently been derived and it has been proposed that they may provide a source of differentiated cell types for cell replacement therapies in the treatment of a variety of diseases.  相似文献   

4.
胚胎干细胞向造血细胞分化研究   总被引:2,自引:0,他引:2  
刘革修  张洹 《生命科学》2003,15(1):21-25
胚胎干(embryonic stem,ES)细胞是来源于囊胚的内细胞团(inner cell mass,ICM),具有发育的全能性或多能性,能嵌合到早期胚胎,在体内可以参与各种组织发育甚至包括生殖细胞;在体外分化培养条件下,可以顺序分化出各种组织细胞,与体内完整胚胎发育过程相符合,而且可以通过调节ES细胞某些基因的表达而调节其分化。因此,ES细胞是研究哺乳动物早期胚胎发育、细胞分化及其关键基因鉴定的理想模型。另外,胚胎生殖脊(embryonic germ,EG)细胞系也具有同样的生物学特性,它是由早期胚胎的原始生殖脊(primordial germ,PG)细胞建株而来。最近研究显示:ES细胞在体外不但可以分化为所有造血细胞系,而且还可以分化为具有长期增殖能力的造血干细胞。作者就胚胎干细胞向造血细胞和造血干细胞分化及其诱导因子和调控基因的表达作一综述。  相似文献   

5.
Similarities in the differentiation of mouse embryos and ES cell embryoid bodies suggest that aspects of early mammalian embryogenesis can be studied in ES cell embryoid bodies. In an effort to understand the regulation of cellular differentiation during early mouse embryogenesis, we altered the expression of the Pem homeobox-containing gene in ES cells. Pem is normally expressed in the preimplantation embryo and expressed in a lineage-restricted fashion following implantation, suggesting a role for Pem in regulating cellular differentiation in the early embryo. Here, we show that the forced expression of Pem from the mouse Pgk-1 promoter in ES cells blocks the in vitro and in vivo differentiation of the cells. In particular, embryoid bodies produced from these Pgk-Pem ES cells do not differentiate into primitive endoderm or embryonic ectoderm, which are prominent features of early embryoid bodies from normal ES cells. This Pgk-Pem phenotype is also different from the null phenotype, as embryoid bodies derived from ES cells in which endogenous Pem gene expression has been blocked show a pattern of differentiation similar to that of normal ES cells. When the Pgk-Pem ES cells were introduced into subcutaneous sites of nude mice, only undifferentiated EC-like cells were found in the teratomas derived from the injected cells. The Pem-dependent block of ES cell differentiation appears to be cell autonomous; Pgk-Pem ES cells did not differentiate when mixed with normal, differentiating ES cells. A block to ES cell differentiation, resulting from the forced expression of Pem, can also be produced by the forced expression of the nonhomeodomain region of Pem. These studies are consistent with a role for Pem in regulating the transition between undifferentiated and differentiated cells of the early mouse embryo.  相似文献   

6.
Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug discovery, drug testing and repair of damaged or diseased tissues via transplantation.  相似文献   

7.
In vivo studies, transgenic and knock-out mice have demonstrated that p63 isoforms play pivotal roles in ectodermal and epidermal development but their respective function remains highly controversial. Since embryonic stem (ES) cells can be differentiated into many cell types, they represent an effective tool to recapitulate in vitro the main steps of embryonic development. We recently reported the efficient derivation of ectodermal and epidermal cells from murine ES cells and clarified the function of BMP-4 in the binary neuroectodermal choice by stimulating sox-1+ neural precursors to undergo specific apoptosis while inducing epidermal differentiation through ΔNp63 gene activation. ΔNp63 is not required for ectodermal fate but enhances ES-derived ectodermal cell proliferation and epidermal commitment. This unique cellular model should further provide a powerful tool for identifying the molecular mechanisms controlling normal skin development and in p63-ectodermal dysplasia human congenital pathologies.  相似文献   

8.
Embryonic stem (ES) cells can differentiate into neurons in vitro, which provides hope for the treatment of some neurodegenerative diseases through cell transplantation. However, it remains a challenge to efficiently induce ES cells to differentiate into neurons. Here, we show that murine ES cells can efficiently differentiate into neurons when cultured in glial cell- conditioned medium (GCM) under attaching conditions without the formation of embryoid bodies. In comparison with murine embryonic fibroblast-conditioned medium, we found that GCM has a positive effect on limiting the generation of non-neuronal cells, such as astrocytes. In addition, compared with suspension conditions, attaching conditions delay the differentiation process of ES cells.  相似文献   

9.
10.
Mouse embryonic stem cells can differentiate in vitro into cells of the nervous system, neurons and glia. This differentiation mimics stages observed in vivo, including the generation of primitive ectoderm and neurectoderm in embryoid body culture. We demonstrate here that embryonic stem cell lines mutant for components of the Hedgehog signaling cascade are deficient at generating neurectoderm-containing embryoid bodies. The embryoid bodies derived from mutant cells are also unable to respond to retinoic acid treatment by producing nestin-positive neural stem cells, a response observed in cultures of heterozygous cells, and contain cores apparently arrested at the primitive ectoderm stage. The mutant cultures are also deficient in their capacity to differentiate into mature neurons and glia. These data are consistent with a role for Hedgehog signaling in generating neurectoderm capable of producing the appropriate neuronal and glial progenitors in ES cell culture.  相似文献   

11.
胚胎干细胞治疗心肌梗死的研究进展   总被引:6,自引:0,他引:6  
Cai WJ  Zhu YC 《生理科学进展》2004,35(3):205-209
胚胎干细胞 (ES细胞 )是一种多能细胞 ,来源于囊胚期胚胎 ,具有很强的自我更新能力 ,并能分化成很多细胞类型。体外 ,ES细胞能自发聚集形成胚胎体 (EB) ,分化成许多种细胞类型 ;ES细胞注射到免疫缺陷的小鼠体内 ,产生畸胎瘤 ,其中包含有三个胚层的细胞。添加生长因子或与其它细胞共培养等方法可以促进ES细胞体外分化为心肌细胞 ,筛选后移植到梗死的心肌 ,可以提高心脏功能 ,是治疗心肌梗死的一种很有潜力的方法  相似文献   

12.
带有GFP基因的ESD3细胞系是一个良好的可以用于研究体内和体外细胞分化和组织产生的模型。用磷酸钙共沉淀法将质粒pEGFP-N2导入小鼠胚胎干细胞D3细胞系中 ,在荧光显微镜下以 488nm激发光检查阳性克隆 ,并进行初步扩增。经G4 18筛选后 ,机械挑取EGFP强阳性表达的克隆 ,并在丝裂霉素C处理的小鼠胚胎成纤维细胞的饲养层上 ,在无选择性压力的条件下 ,进一步扩大培养 ,获得纯化的转染细胞系。20代以后 ,转染细胞仍然表达绿色荧光蛋白。PCR检测表明 8代和 18代转染细胞均携带有GFP标志基因。对稳定表达EGFP的干细胞系进行碱性磷酸酶染色、拟胚体和畸胎瘤形成的检测 ,证明这些细胞具有干细胞的特征。经拟胚体 ,可进一步分化成具有搏动能力的心肌细胞 ,分化百分率为 30 %~ 4 0 % ,较未转染细胞 60 %~ 70 %的分化率低 ,造成低分化率机制还不清楚。这些细胞在激光共聚焦显微镜下呈绿色荧光 ,免疫组化染色显示具心肌细胞特异的cTnT分子标志。该EGFP标记的干细胞系带有可进行原位、实时检测的绿色荧光 ,可应用于细胞移植和体内分化的研究.  相似文献   

13.
Embryonic stem cell-specific MicroRNAs   总被引:31,自引:0,他引:31  
We have identified microRNAs (miRNAs) in undifferentiated and differentiated mouse embryonic stem (ES) cells. Some of these appear to be ES cell specific, have related sequences, and are encoded by genomic loci clustered within 2.2 kb of each other. Their expression is repressed as ES cells differentiate into embryoid bodies and is undetectable in adult mouse organs. In contrast, the levels of many previously described miRNAs remain constant or increase upon differentiation. Our results suggest that miRNAs may have a role in the maintenance of the pluripotent cell state and in the regulation of early mammalian development.  相似文献   

14.
AIM:To find a safe source for dopaminergic neurons,we generated neural progenitor cell lines from human embryonic stem cells.METHODS:The human embryonic stem(hES)cell line H9 was used to generate human neural progenitor(HNP)cell lines.The resulting HNP cell lines were differentiated into dopaminergic neurons and analyzed by quantitative real-time polymerase chain reaction and immunofluorescence for the expression of neuronal differentiation markers,including beta-III tubulin(TUJ1)and tyrosine hydroxylase(TH).To assess the risk of teratoma or other tumor formation,HNP cell lines and mouse neuronal progenitor(MNP)cell lines were injected subcutaneously into immunodeficient SCID/beige mice.RESULTS:We developed a fairly simple and fast protocol to obtain HNP cell lines from hES cells.These cell lines,which can be stored in liquid nitrogen for several years,have the potential to differentiate in vitro into dopaminergic neurons.Following day 30 of differentiation culture,the majority of the cells analyzed expressed the neuronal marker TUJ1 and a high proportion of these cells were positive for TH,indicating differentiation into dopaminergic neurons.In contrast to H9 ES cells,the HNP cell lines did not form tumors in immunodeficient SCID/beige mice within 6 mo after subcutaneous injection.Similarly,no tumors developed after injection of MNP cells.Notably,mouse ES cells or neuronal cells directly differentiated from mouse ES cells formed teratomas in more than 90%of the recipients.CONCLUSION:Our findings indicate that neural progenitor cell lines can differentiate into dopaminergic neurons and bear no risk of generating teratomas or other tumors in immunodeficient mice.  相似文献   

15.
Mouse embryonic stem (ES) cells can be differentiated into neural lineage cells, but the differentiation efficiency remains low. This study revealed two important factors that influence the neural differentiation efficiency of mouse ES cells: the first is the quality of embryonic bodies (EBs); good quality of EBs consistently originated from a suspension culture of 1 × 105 ES cells/ml serum-free chemically defined neural inducing medium and they exhibited a smooth round shape, with a dark central region surrounded by a light band. Such EBs are capable of attaining high neural differentiation efficiency. However, poor quality EBs originated from a suspension culture of 1 × 106 ES cells/ml serum-free chemically defined neural inducing medium and exhibited an irregular shape or adhered to the bottom of the dish; they displayed low neural differentiation efficiency. The second factor is the seeding density of EBs: a low seeding density (5 EBs/cm2) induced cells to differentiate into a more caudalized subtypes compared to the cells obtained from high seeding density (20 EBs/cm2). These findings provided fresh insight into the neural induction of mouse ES cells.  相似文献   

16.
Neural progenitors from human embryonic stem cells.   总被引:36,自引:0,他引:36  
The derivation of neural progenitor cells from human embryonic stem (ES) cells is of value both in the study of early human neurogenesis and in the creation of an unlimited source of donor cells for neural transplantation therapy. Here we report the generation of enriched and expandable preparations of proliferating neural progenitors from human ES cells. The neural progenitors could differentiate in vitro into the three neural lineages--astrocytes, oligodendrocytes, and mature neurons. When human neural progenitors were transplanted into the ventricles of newborn mouse brains, they incorporated in large numbers into the host brain parenchyma, demonstrated widespread distribution, and differentiated into progeny of the three neural lineages. The transplanted cells migrated along established brain migratory tracks in the host brain and differentiated in a region-specific manner, indicating that they could respond to local cues and participate in the processes of host brain development. Our observations set the stage for future developments that may allow the use of human ES cells for the treatment of neurological disorders.  相似文献   

17.
18.
The remarkable developmental potential and replicative capacity of human embryonic stem (ES) cells promise an almost unlimited supply of specific cell types for transplantation therapies. Here we describe the in vitro differentiation, enrichment, and transplantation of neural precursor cells from human ES cells. Upon aggregation to embryoid bodies, differentiating ES cells formed large numbers of neural tube-like structures in the presence of fibroblast growth factor 2 (FGF-2). Neural precursors within these formations were isolated by selective enzymatic digestion and further purified on the basis of differential adhesion. Following withdrawal of FGF-2, they differentiated into neurons, astrocytes, and oligodendrocytes. After transplantation into the neonatal mouse brain, human ES cell-derived neural precursors were incorporated into a variety of brain regions, where they differentiated into both neurons and astrocytes. No teratoma formation was observed in the transplant recipients. These results depict human ES cells as a source of transplantable neural precursors for possible nervous system repair.  相似文献   

19.
Differentiation of monkey embryonic stem cells into neural lineages   总被引:5,自引:0,他引:5  
Embryonic stem (ES) cells are self-renewing, pluripotent, and capable of differentiating into all of the cell types found in the adult body. Therefore, they have the potential to replace degenerated or damaged cells, including those in the central nervous system. For ES cell-based therapy to become a clinical reality, translational research involving nonhuman primates is essential. Here, we report monkey ES cell differentiation into embryoid bodies (EBs), neural progenitor cells (NPCs), and committed neural phenotypes. The ES cells were aggregated in hanging drops to form EBs. The EBs were then plated onto adhesive surfaces in a serum-free medium to form NPCs and expanded in serum-free medium containing fibroblast growth factor (FGF)-2 before neural differentiation was induced. Cells were characterized at each step by immunocytochemistry for the presence of specific markers. The majority of cells in complex/cystic EBs expressed antigens (alpha-fetal protein, cardiac troponin I, and vimentin) representative of all three embryonic germ layers. Greater than 70% of the expanded cell populations expressed antigenic markers (nestin and musashi1) for NPCs. After removal of FGF-2, approximately 70% of the NPCs differentiated into neuronal phenotypes expressing either microtubule-associated protein-2C (MAP2C) or neuronal nuclear antigen (NeuN), and approximately 28% differentiated into glial cell types expressing glial fibrillary acidic protein. Small populations of MAP2C/NeuN-positive cells also expressed tyrosine hydroxylase (approximately 4%) or choline acetyltransferase (approximately 13%). These results suggest that monkey ES cells spontaneously differentiate into cells of all three germ layers, can be induced and maintained as NPCs, and can be further differentiated into committed neural lineages, including putative neurons and glial cells.  相似文献   

20.
The connections existing between vessels and nerves go beyond the structural architecture of vascular and nervous systems to comprise cell fate determination. The analysis of functional/molecular links that interconnect endothelial and neural commitments requires a model in which the two differentiation programs take place at the same time in an artificial controllable environment. To this regard, this work presents an in vitro model to differentiate embryonic stem (ES) cells simultaneously into mature neurons and endothelial cells. Murine ES cells are differentiated within an artificial environment composed of PA6 stromal cells and a serum-free medium. Upon these basal culture conditions ES cells preferentially differentiate into neurons. The addition of basic fibroblast growth factor (FGF2) to the medium allows the simultaneous maturation of neurons and endothelial cells, whereas bone morphogenetic protein (BMP)4 drives endothelial differentiation to the disadvantage of neural commitment. The responsiveness of the system to exogenous cytokines was confirmed by genes expression analysis that revealed a significant up-regulation of endothelial genes in presence of FGF2 and a massive down-regulation of the neural markers in response to BMP4. Furthermore, the role played by single genes in determining endothelial and neural fate can be easily explored by knocking down the expression of the target gene with lentiviruses carrying the corresponding shRNA sequence. The possibility to address the neural and the endothelial fate separately or simultaneously by exogenous stimuli combined with an efficient gene silencing strategy make this model an optimal tool to identify environmental signals and genes pathways involved in both endothelial and neural specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号