首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNase T1 is the best known representative of a large family of ribonucleolytic proteins secreted by fungi, mostly Aspergillus and Penicillium species. Ribotoxins stand out among them by their cytotoxic character. They exert their toxic action by first entering the cells and then cleaving a single phosphodiester bond located within a universally conserved sequence of the large rRNA gene, known as the sarcin-ricin loop. This cleavage leads to inhibition of protein biosynthesis, followed by cellular death by apoptosis. Although no protein receptor has been found for ribotoxins, they preferentially kill cells showing altered membrane permeability, such as those that are infected with virus or transformed. Many steps of the cytotoxic process have been elucidated at the molecular level by means of a variety of methodological approaches and the construction and purification of different mutant versions of these ribotoxins. Ribotoxins have been used for the construction of immunotoxins, because of their cytotoxicity. Besides this activity, Aspf1, a ribotoxin produced by Aspergillus fumigatus, has been shown to be one of the major allergens involved in allergic aspergillosis-related pathologies. Protein engineering and peptide synthesis have been used in order to understand the basis of these pathogenic mechanisms as well as to produce hypoallergenic proteins with potential diagnostic and immunotherapeutic applications.  相似文献   

2.
Aspergillus fumigatus is a mold causing most of the invasive fungal lung infections in the immunocompromised host. In addition, the species is the causative agent of certain allergic diseases. Both in invasive and in allergic diseases, the conidial surface mediates the first contact with the human immune system. Thus, conidial surface proteins may be reasonable vaccine candidates as well as important allergens. To broaden the list of those antigens, intact viable Aspergillus conidia were extracted with mild alkaline buffer at pH 8.5 in the presence of a 1,3-beta-glucanase. The proteome of this fraction was separated by two- dimensional gel electrophoresis (2-DE) and analyzed by liquid chromatography coupled with tandem mass spectrometry. Altogether 26 different A. fumigatus proteins were identified, twelve of which contain a signal for secretion. Among these were the known major conidial surface protein rodlet A, one acid protease PEP2, one lipase, a putative disulfide isomerase and a putative fructose-1,6-biphosphatase. The known allergen Aspf 3 was identified among the proteins without a signal for secretion. On the basis of the recently annotated A. fumigatus genome (Nature 2005, 438, 1151-1156), proteome analysis is now a powerful tool to confirm expression of hypothetical proteins and, thereby to identify additional vaccine candidates and possible new allergens of this important fungal pathogen.  相似文献   

3.
Seeds of common buckwheat (Fagopyrum esculentum) contain valuable nutritive substances but also allergenic proteins that cause hypersensitive reactions. Thus, the development of hypoallergenic buckwheat would make this important pseudo-cereal available to allergic people. A major allergenic protein of buckwheat is Fag e 1. We isolated the respective cDNA, coding for a 22 kDa protein, from a recently developed autogamous strain of common buckwheat and confirmed its immunoglobulin E (IgE)-binding activity using recombinant Fag e 1 and sera of allergic patients. The derived amino acid sequence from Fag e 1 cDNA was used to synthesize an overlapping peptide library on nitrocellulose membranes for the determination of the Fag e 1 epitopes. We identified eight epitopes and the critical amino acids for IgE-binding within the epitopes. This epitope analysis of a major allergenic protein of buckwheat should help therapeutic efforts and aid in the development of hypoallergenic buckwheat.  相似文献   

4.
5.
Ribotoxins are a family of highly specific fungal ribonucleases that inactivate the ribosomes by hydrolysis of a single phosphodiester bond of the 28 S rRNA. alpha-Sarcin, the best characterized member of this family, is a potent cytotoxin that promotes apoptosis of human tumor cells after internalization via endocytosis. This latter ability is related to its interaction with phospholipid bilayers. These proteins share a common structural core with nontoxic ribonucleases of the RNase T1 family. However, significant structural differences between these two groups of proteins are related to the presence of a long amino-terminal beta-hairpin in ribotoxins and to the different length of their unstructured loops. The amino-terminal deletion mutant Delta(7-22) of alpha-sarcin has been produced in Escherichia coli and purified to homogeneity. It retains the same conformation as the wild-type protein as ascertained by complete spectroscopic characterization based on circular dichroism, fluorescence, and NMR techniques. This mutant exhibits ribonuclease activity against naked rRNA and synthetic substrates but lacks the specific ability of the wild-type protein to degrade rRNA in intact ribosomes. The results indicate that alpha-sarcin interacts with the ribosome at two regions, i.e. the well known sarcin-ricin loop of the rRNA and a different region recognized by the beta-hairpin of the protein. In addition, this latter protein portion is involved in interaction with cell membranes. The mutant displays decreased interaction with lipid vesicles and shows behavior compatible with the absence of one vesicle-interacting region. In agreement with this conclusion, the deletion mutant exhibits a very low cytotoxicity on human rhabdomyosarcoma cells.  相似文献   

6.
The prevalence of allergic disease has increased world wide during the last decades. Pollen allergy is the most typical form of allergic disease. The increase in its frequency during recent years is the most evident. Environmental factors play an important role in the problem of pollen allergy in large cities. The aim of this research is determination of allergenicity of Canna pollen in polluted and non-polluted conditions, detection of their allergenic proteins and also elucidation of some microscopic effects of air pollutants on pollen structure and proteins. Mature and immature pollen grains of Canna indica were collected from polluted and non-polluted areas. Pollen grains were studied by scanning electron microscopy. Mice were sensitized by injection of pollen extract and an adjuvant for five times. Allergy potency of different pollen extracts were compared by means of skin test, blood eosinophills number and IgE levels in sensitized and treated animals. Pollen proteins were studied by SDS-PGE and allergenic proteins were detected by immunoblotting techniques. Scanning electron microscope study of the pollen grains showed that in polluted areas, air born particles accumulated on the surface of pollen and changed both pollen's shape and pollen's tectum. Also many vesicles were released out of polluted pollen and the pollen material agglomerated on the surface of pollen. SDS-PAGE showed that different proteins exist in mature and immature pollen. In pollen collected from polluted area, some of protein bands between 22 and 45 kDa were disappeared . Also in all polluted pollen grains, protein content of pollen decreased in response to air pollution causing the release of pollen proteins. According to our experiments and regarding induction of allergic symptoms, the polluted pollen is more effective than non-polluted one, and mature pollen has more allergy potency than immature one.  相似文献   

7.
Mutations in the LIS1 gene may result in severe abnormalities of brain cortical layering known as lissencephaly. Most lissencephaly-causing LIS1 mutations are deletions that encompass the entire gene, therefore the mechanism of the disease is regarded as haploinsufficiency. So far, 13 different intragenic mutations have been reported: one point mutation, H149R; deletion of exon 9, which results in deleted acids Delta301-334; deletion of exon 4, which results in deleted amino acids Delta40-64; 10 mutations resulting in truncated proteins and one predicted to result in extra amino acids. We studied the consequences of the point mutation, deletion mutation and one of the reported truncations. In order to study LIS1 structure function, we introduced an additional point mutation and other truncations in different regions of the protein. The consequences of these mutations to protein folding were studied by gel filtration, sucrose density gradient centrifugation and measuring resistance to trypsin cleavage. On the basis of our results, we suggest that all truncation mutations and lissencephaly-causing point mutations or internal deletion result in a reduction in the amount of correctly folded LIS1 protein.  相似文献   

8.
9.
The role of the herpes simplex virus tegument protein VP22 is not yet known. Here we describe the characterization of a virus in which the entire VP22 open reading frame has been deleted. We show that VP22 is not essential for virus growth but that virus lacking VP22 (Delta22) displays a cell-specific replication defect in epithelial MDBK cells. Virus particles assembled in the absence of VP22 show few obvious differences to wild-type (WT) particles, except for a moderate reduction in glycoproteins gD and gB. In addition, the Delta22 virus exhibits a general delay in the initiation of virus protein synthesis, but this is not due to a glycoprotein-related defect in virus entry. Intriguingly, however, the absence of VP22 has an obvious effect on the intracellular level of the immediate-early (IE) protein ICP0. Moreover, following translocation from the nucleus to the cytoplasm, ICP0 is unable to localize to the characteristic cytoplasmic sites observed in a WT infection. We demonstrate that, in WT-infected cells, VP22 and ICP0 are concentrated in the same cytoplasmic sites. Furthermore, we show that, while ICP0 and ICP4 are components of WT extracellular virions, the altered localization of ICP0 in the cytoplasm of Delta22-infected cells correlates with an absence of both ICP0 and ICP4 from Delta22 virions. Hence, while a role has not yet been defined for virion IE proteins in virus infection, our results suggest that their incorporation is a specific event requiring the tegument protein VP22. This report provides the first direct evidence that VP22 influences virus assembly.  相似文献   

10.
An in vitro assembly system was developed to study prolate capsid assembly of phage ?29 biochemically, and to identify regions of scaffolding protein required for its functions. The crowding agent polyethylene glycol can induce bacteriophage ?29 monomeric capsid protein and dimeric scaffolding protein to co-assemble to form particles which have the same geometry as either prolate T=3 Q=5 procapsids formed in vivo or previously observed isometric particles. The formation of particles is a scaffolding-dependent reaction. The balance between the fidelity and efficiency of assembly is controlled by the concentration of crowding agent and temperature. The assembly process is salt sensitive, suggesting that the interactions between the scaffolding and coat proteins are electrostatic. Three N-terminal ?29 scaffolding protein deletion mutants, Delta 1-9, Delta 1-15 and Delta 1-22, abolish the assembly activity. Circular dichroism spectra indicate that these N-terminal deletions are accompanied by a loss of helicity. The inability of these proteins to dimerize suggests that the N-terminal region of the scaffolding protein contributes to the dimer interface and maintains the structural integrity of the dimeric protein. Two C-terminal scaffolding protein deletion mutants, Delta 79-97 and Delta 62-97, also fail to promote assembly. However, the secondary structure and the dimerization ability of these mutants are unchanged relative to wild-type, which suggests that the C terminus is the likely site of interaction with the capsid protein.  相似文献   

11.
Allergies are caused by the binding of IgE antibodies onto specific sites on allergens. However, in the assessment of exposure to airborne allergens, current techniques such as whole spore counts fail to account for the presence of these allergenic epitopes that trigger allergic reactions. The objective of the research is to develop a DNA aptamer for the Asp f 1 allergen of the pathogenic fungus Aspergillus fumigatus, using an IgE-binding epitope of the allergen as the target for aptamer selection. Through in vitro SELEX, an aptamer has been produced that binds with nanomolar affinity to the Asp f 1 IgE-epitope. The aptamer is also able to recognize the native Asp f 1 allergen, and does not bind to allergenic proteins from non-target mold species such as Alternaria alternata. Production of this aptamer provides proof-of-principle that allergen measurement methods can be developed to indicate the potent fraction, or allergenicity, of allergens.  相似文献   

12.
Dolichyl monophosphate (Dol-P) is a polyisoprenoid glycosyl carrier lipid essential for the assembly of a variety of glycoconjugates in the endoplasmic reticulum of eukaryotic cells. In yeast, dolichols with chain lengths of 14--17 isoprene units are predominant, whereas in mammalian cells they contain 19--22 isoprene units. In this biosynthetic pathway, t,t-farnesyl pyrophosphate is elongated to the appropriate long chain polyprenyl pyrophosphate by the sequential addition of cis-isoprene units donated by isopentenyl pyrophosphate with t,t,c-geranylgeranyl pyrophosphate being the initial intermediate formed. The condensation steps are catalyzed by cis-isoprenyltransferase (cis-IPTase). Genes encoding cis-IPTase activity have been identified in Micrococcus luteus, Escherichia coli, Arabidopsis thaliana, and Saccharomyces cerevisiae (RER2). Yeast cells deleted for the RER2 locus display a severe growth defect, but are still viable, possibly due to the activity of an homologous locus, SRT1. The dolichol and Dol-P content of exponentially growing revertants of RER2 deleted cells (Delta rer2) and of cells overexpressing SRT1 have been determined by HPLC analysis. Dolichols and Dol-Ps with 19--22 isoprene units, unusually long for yeast, were found, and shown to be utilized for the biosynthesis of lipid intermediates involved in protein N-glycosylation. In addition, cis-IPTase activity in microsomes from Delta rer2 cells overexpressing SRT1 was 7- to 17-fold higher than in microsomes from Delta rer2 cells. These results establish that yeast contains at least two cis-IPTases, and indicate that the chain length of dolichols is determined primarily by the enzyme catalyzing the chain elongation stage of the biosynthetic process.  相似文献   

13.
一种苦荞主要过敏原基因cDNA的克隆及序列分析   总被引:8,自引:0,他引:8  
为了获得苦荞中主要过敏原的cDNA和由此推导的蛋白质序列 ,分析其结构特点 ,以苦荞幼根根尖为材料 ,提取总RNA并反转录mRNA为cDNA第一链 .通过RT PCR、3′RACE、基因克隆及序列测定 ,获得一种苦荞主要过敏蛋白基因的cDNA片段 (GenBank登录号为AY0 4 4918) .该cDNA片段由 76 8bp组成 ,包括 3′端非编码区 180个bp ,开放阅读框 5 88bp .可编码一个由 195个氨基酸残基组成的功能蛋白及一个终止密码 .苦荞主要过敏原基因与甜荞 2 2kD过敏蛋白、豆球类蛋白的核苷酸序列分别有 95 %和 93%的同源性 .其推导的氨基酸序列与甜荞球蛋白、刀豆蛋白、甜橙柠檬素分别有 93%、83%和 5 7%的同源性 .该过敏蛋白 183~ 188位氨基酸残基KEEEKE在多数不同过敏原中均存在 ,推测可能为其中的抗原决定簇序列  相似文献   

14.
Pear is known as an allergenic food involved in the ‘oral allergy syndrome’ which affects a high percentage of patients allergic to birch pollen. The aim of this study was to clone the major allergen of this fruit, to express it as bacterial recombinant protein and to study its allergenic properties in relation to homologous proteins and natural allergen extracts. The coding region of the cDNA was obtained by a PCR strategy, cloned, and the allergen was expressed as His-Tag fusion protein. The fusion peptide was removed by treatment with cyanogen bromide. Purified non-fusion protein was subjected to allergenicity testing by the enzyme allergosorbent test (EAST), Western blotting, competitive inhibition assays, and basophil histamine release. The deduced protein sequence shared a high degree of identity with other major allergens from fruits, nuts, vegetables, and pollen, and with a family of PR-10 pathogenesis related proteins. The recombinant (r) protein was recognised by specific IgE from sera of all pear-allergic patients (n=16) investigated in this study. Hence, the allergen was classified as a major allergen and named Pyr c 1. The IgE binding characteristics of rPyr c 1 appeared to be similar to the natural pear protein, as was demonstrated by EAST-inhibition and Western blot-inhibition experiments. Moreover, the biological activity of rPyr c 1 was equal to that of pear extract, as indicated by basophil histamine release in two patients allergic to pears. The related major allergens Bet v 1 from birch pollen and Mal d 1 from apple inhibited to a high degree the binding of IgE to Pyr c 1, whereas Api g 1 from celery, also belonging to this family, had little inhibitory effects, indicating epitope differences between Bet v 1-related food allergens. Unlimited amounts of pure rPyr c 1 are now available for studies on the structure and epitopes of pollen-related food allergens. Moreover, the allergen may serve as stable and standardised diagnostic material.  相似文献   

15.
The single-stranded DNA-binding protein (SSB) of phage GA-1 displays higher efficiency than the SSBs of the related phages phi 29 and Nf. In this work, the self-interaction ability of GA-1 SSB has been analyzed by visualization of the purified protein by electron microscopy, glycerol gradient sedimentation, and in vivo cross-linking of bacterial cultures infected with phage GA-1. GA-1 SSB contains an insert at its N-terminal region that is not present in the SSBs of phi 29 and Nf. Three deletion mutant proteins have been characterized, Delta N19, Delta N26, and Delta N33, which lack the 19, 26 or 33 amino acids, respectively, that follow the initial methionine of GA-1 SSB. Mutant protein Delta N19 retains the structural and functional behavior of GA-1 SSB, whereas mutant proteins Delta N26 and Delta N33 no longer stimulate viral DNA replication or display helix-destabilizing activity. Analysis of the mutant proteins by ultracentrifugation in glycerol gradients and electron microscopy indicates that deletion of 26 or 33 but not of 19 amino acids of the N-terminal region of GA-1 SSB results in the loss of the oligomerization ability of this protein. Our data support the importance of the N-terminal region of GA-1 SSB for the differential self-interaction ability and functional behavior of this protein.  相似文献   

16.
The cloning of the negative growth regulatory gene, p21Sdi1, has led to the convergence of the fields of cellular senescence, cell cycle regulation and tumor suppression. This gene was first cloned as an inhibitor of DNA synthesis that was overexpressed in terminally non-dividing senescent human fibroblasts (SD11) and later as a p53 transactivated gene (WAF1) and a Cdk-interacting protein (CIP1, p21) that inhibited cyclin-dependent kinase activity. To identify the active region(s) of p21Sdi1, cDNA constructs encoding various deleted forms of the protein were analyzed. Amino acids 22-71 were found to be the minimal region required for DNA synthesis inhibition. Amino acids 49-71 were involved in binding to Cdk2, and constructs deleted in this region expressed proteins that were unable to inhibit Cdk2 kinase activity in vitro. The latter stretch of amino acids shared sequence similarity with amino acids 60-76 of the p27Kip1 protein, another Cdk inhibitor. Point mutations made in p21Sdi1 in this region confirmed that amino acids common to both proteins were involved in DNA synthesis inhibition. Additionally, a chimeric protein, in which amino acids 49-65 of p21Sdi1 were substituted with amino acids 60-76 of p27Kip1, had almost the same DNA synthesis inhibitory activity as the wild-type protein. The results indicate that the region of sequence similarity between p21Sdi1 and p27Kip1 encodes an inhibitory motif characteristic of this family of Cdk inhibitors.  相似文献   

17.
Alfalfa mosaic virus (AMV) RNAs 1 and 2 encode the replicase proteins P1 and P2, respectively, whereas RNA 3 encodes the movement protein and the coat protein (CP). When RNAs 1 and 2 were transiently expressed from a T-DNA vector (R12 construct) by agroinfiltration of Nicotiana benthamiana, the infiltrated leaves accumulated minus-strand RNAs 1 and 2 and relatively small amounts of plus-strand RNAs. In addition, RNA-dependent RNA polymerase (RdRp) activity could be detected in extracts of the infiltrated leaves. After transient expression of RNAs 1 and 2 with the 3'-untranslated regions (UTRs) of both RNAs deleted (R1Delta/2Delta construct), no replication of RNAs 1 and 2 was observed, while the infiltrated leaves supported replication of RNA 3 after inoculation of the leaves with RNA 3 or expression of RNA 3 from a T-DNA vector (R3 construct). No RdRp activity could be isolated from leaves infiltrated with the R1Delta/2Delta construct, although P1 and P2 sedimented in a region of a glycerol gradient where active RdRp was found in plants infiltrated with R12. RdRp activity could be isolated from leaves infiltrated with constructs R1Delta/2 (3'-UTR of RNA 1 deleted), R1/2Delta (3'-UTR of RNA 2 deleted), or R1Delta/2Delta plus R3. This demonstrates that the 3'-UTR of AMV RNAs is required for the formation of a complex with in vitro enzyme activity. RNAs 1 and 2 with the 3'-UTRs deleted were encapsidated into virions by CP expressed from RNA 3. This shows that the high-affinity binding site for CP at the 3'-termini of AMV RNAs is not required for assembly of virus particles.  相似文献   

18.
The major capsid protein of polyomavirus, VP1, has been expression cloned in Escherichia coli, and the recombinant VP1 protein has been purified to near homogeneity (A. D. Leavitt, T. M. Roberts, and R. L. Garcea, J. Biol. Chem. 260:12803-12809, 1985). With this recombinant protein, a nitrocellulose filter transfer assay was developed for detecting DNA binding to VP1 (Southwestern assay). In optimizing conditions for this assay, dithiothreitol was found to inhibit DNA binding significantly. With recombinant VP1 proteins deleted at the carboxy and amino termini, a region of the protein affecting DNA binding was identified within the first 7 amino acids (MAPKRKS) of the VP1 amino terminus. Southwestern analysis of virion proteins separated by two-dimensional gel electrophoresis demonstrated equivalent DNA binding among the different VP1 isoelectric focusing subspecies, suggesting that VP1 phosphorylation does not modulate this function. By means of partial proteolysis of purified recombinant VP1 capsomeres for assessing structural features of the protein domain affecting DNA binding, a trypsin-sensitive site at lysine 28 was found to eliminate VP1 binding to DNA. The binding constant of recombinant VP1 to polyomavirus DNA was determined by an immunoprecipitation assay (R. D. G. McKay, J. Mol. Biol. 145:471-488, 1981) to be 1 x 10(-11) to 2 x 10(-11) M, which was not significantly different from its affinity for plasmid DNA. McKay analysis of deleted VP1 proteins and VP1-beta-galactosidase fusion proteins indicated that the amino terminus was both necessary and sufficient for DNA binding. As shown by electron microscopy, DNA inhibited in vitro capsomere self-assembly into capsidlike structures (D. M. Salunke, D. L. D. Caspar, and R. L. Garcea, Cell 46:895-904, 1986). Thus, VP1 is a high-affinity, non-sequence-specific DNA-binding protein with the binding function localized near its trypsin-accessible amino terminus. The inhibitory effects of disulfide reagents on DNA binding and of DNA on capsid assembly suggest possible intermediate steps in virion assembly.  相似文献   

19.
UFD1L is the human homologue of the yeast ubiquitin fusion degradation 1 (Ufd1) gene and maps on chromosome 22q11.2 in the typically deleted region (TDR) for DiGeorge/velocardiofacial syndromes (DGS/VCFS). In yeast, Ufd1 protein is involved in a degradation pathway for ubiquitin fused products (UFD pathway). Several studies have demonstrated that Ufd1 is a component of the Cdc48-Ufd1-Npl4 multiprotein complex which is active in the recognition of several polyubiquitin-tagged proteins and facilitates their presentation to the 26S proteasome for protein degradation or even more specific processing. The multiprotein complex Cdc48-Ufd-Npl4 is also active in mammalian cells. The biochemical role of UFD1L protein in human cells is unknown, even though the interaction between UFD1L and NPL4 proteins has been maintained. In order to clarify this issue, we examined the intracellular distribution of the protein in different mammalian cells and studied its involvement in the Fas and ceramide factors-mediated apoptotic pathways. We established that in mammalian cells, Ufd1l is localized around the nucleus and that it does not interfere with Fas-and ceramide-mediated apoptosis.  相似文献   

20.
The BGL2 gene from Saccharomyces cerevisiae encodes a beta-glucanase which is localized to the yeast cell wall. The ability of a 23-amino acid (aa) signal peptide derived from the BGL2 gene to direct a heterologous protein to the secretory pathway of yeast has been compared to that of the MF alpha 1-encoded signal peptide in a series of gene fusions. As a model protein, the leech anticoagulant, recombinant hirudin variant 2-Lys47 (HIR) has been studied. From a multicopy plasmid chimaeric proteins were produced which carry the BGL2 signal peptide (or the artificial BGL2 pre-Val7 variant) (i) in front of the MF alpha 1 pro sequence (or modified versions of MF alpha 1 pro), i.e., a prepro signal, or (ii) joined directly to the heterologous protein. Accumulation of active HIR in yeast culture supernatants was observed when the BGL2 (or the BGL2 pre-Val7) signal peptide were used in combination with either of three versions of the MF alpha 1 pro peptide: the authentic MF alpha 1 pro, a partially deleted MF alpha 1 pro-delta 22-61, or a pro bearing an aa change (MF alpha 1 pro-Gly22). In each case the BGL2 signal peptide (or its variant) has proven equally productive to the corresponding MF alpha 1 peptide. Four times more active HIR was detected in the culture supernatant when either signal peptide was fused directly to the recombinant protein, as compared to a prepro protein version. Correct signal peptide cleavage was obtained when HIR was produced as a BGL2 pre-Val7::fusion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号