首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The generation of oxygen radicals in biological systems and their sites of intracellular release were subject of numerous studies in the last decades. Based on these studies mitochondria were considered as the major source of intracellular oxygen radicals. Although this finding is more or less accepted the mechanism of univalent oxygen reduction in mitochondria is still obscure. One of the most critical electron transfer steps of the respiratory chain is the electron bifurcation at the bc1 complex. From recent studies with genetically mutated mitochondria it became clear that electron bifurcation from ubiquinol to the bc1 complex requires an underanged mobility of the head domain of the Rieske iron sulfur protein. On the other hand it is long known that inhibition of electron bifurcation by antimycin A causes the leakage of single electrons to dioxygen, which results in the release of O2*- radicals. These findings made us to prove whether the impediment of the interaction of ubiquinol with the bc1 complex is the regulator of single electron diversion to oxygen. Impediment of electron bifurcation was observed following alterations of the physical state of membrane phospholipids in which the bc1 complex is inserted. Irrespectively, whether the fluidity of membrane lipids was elevated or decreased electron flow rates to the Rieske iron sulfur protein and to low potential cytochrome b were drastically reduced. Concomitantly O2*- radicals were released from these mitochondria, suggesting an effect on the mobility of the head domain of the Rieske iron sulfur protein. These results including the well known effect of antimycin A revealed the involvement of the ubiquinol bc1 redox couple in mitochondrial O2*- formation. The regulator which controls leakage of electrons to oxygen appears to be the electron branching activity of the bc1 complex.  相似文献   

3.
Platelets play a key role in hemostasis and changes in redox balance are known to alter platelet activation and aggregation. Interestingly, activation of platelets leads to production of reactive oxygen species (ROS), but the role(s) of these ROS remain unclear. Using flow cytometry and chemiluminescence, agonist-induced ROS generation was found to be spatially distinct with stimulation through the major collagen receptor GPVI inducing only intraplatelet ROS while thrombin induced production of extracellular ROS. Platelet activation by either the GPVI-selective agonist convulxin or thrombin was differentially regulated by ROS generation. Thus, surface expression of CD62P, CD40L, or activated integrin alphaIIbbeta3 was abrogated by pharmacologic antioxidants but externalization of phosphatidylserine was not inhibited. Furthermore, extracellular antioxidants SOD/catalase markedly inhibited thrombin-, but not convulxin-, induced CD62P expression and alphaIIbbeta3 activation. The data suggest that ROS selectively regulate biochemical steps in platelet activation and that distinct source(s) of ROS and discrete redox-sensitive pathway(s) may control platelet activation in response to GPVI or thrombin stimulation. Thus, targeting ROS with site-specific antioxidants may differentially regulate platelet activation via thrombin or collagen.  相似文献   

4.
5.
Mitochondrial dysfunction and oxidative stress have been suggested to be possible mechanisms underlying hybrid breakdown, as a result of mito‐nuclear incompatibilities in respiratory complexes of the electron transport system. However, it remains unclear whether hybridization increases the production of reactive oxygen species (ROS) by mitochondria. We used high‐resolution respirometry and fluorometry on isolated liver mitochondria to examine mitochondrial physiology and ROS emission in naturally occurring hybrids of pumpkinseed (Lepomis gibbosus) and bluegill (L. macrochirus). ROS emission was greater in hybrids than in both parent species when respiration was supported by complex I (but not complex II) substrates, and was associated with increases in lipid peroxidation. However, respiratory capacities for oxidative phosphorylation, phosphorylation efficiency, and O2 kinetics in hybrids were intermediate between those in parental species. Flux control ratios of capacities for electron transport (measured in uncoupled mitochondria) relative to oxidative phosphorylation suggested that the limiting influence of the phosphorylation system is reduced in hybrids. This likely helped offset impairments in electron transport capacity and complex III activity, but contributed to augmenting ROS production. Therefore, hybridization can increase mitochondrial ROS production, in support of previous suggestions that mitochondrial dysfunction can induce oxidative stress and thus contribute to hybrid breakdown.  相似文献   

6.
Deoxynivalenol (DON) is a mycotoxin produced in cereal crops infected with Fusarium graminearum. DON poses a serious threat to human and animal health, and is a critical virulence factor. Various environmental factors, including reactive oxygen species (ROS), have been shown to interfere with DON biosynthesis in this pathogen. The regulatory mechanisms of how ROS trigger DON production have been investigated extensively in F. graminearum. However, the role of the endogenous ROS‐generating system in DON biosynthesis is largely unknown. In this study, we genetically analysed the function of leucine zipper‐EF‐hand‐containing transmembrane 1 (LETM1) superfamily proteins and evaluated the role of the mitochondrial‐produced ROS in DON biosynthesis. Our results show that there are two Letm1 orthologues, FgLetm1 and FgLetm2, in F. graminearum. FgLetm1 is localized to the mitochondria and is essential for mitochondrial integrity, whereas FgLetm2 plays a minor role in the maintenance of mitochondrial integrity. The ΔFgLetm1 mutant demonstrated a vegetative growth defect, abnormal conidia and increased sensitivity to various stress agents. More importantly, the ΔFgLetm1 mutant showed significantly reduced levels of endogenous ROS, decreased DON biosynthesis and attenuated virulence in planta. To our knowledge, this is the first report showing that mitochondrial integrity and endogenous ROS production by mitochondria are important for DON production and virulence in Fusarium species.  相似文献   

7.
Diethyl maleate (DEM) (5 mM) and ethyl methanesulfonate (EMS) (35 mM) treatments rapidly depleted cellular reduced glutathione (GSH) below detectable levels (1 nmol/10(6) cells), and induced lipid peroxidation and necrotic cell death in freshly isolated rat hepatocytes. In hepatocytes incubated with 2.5 mM DEM and 10 mM EMS, however, the complete depletion of cellular GSH observed was not sufficient to induce lipid peroxidation or cell death. Instead, DEM- and EMS-induced lipid peroxidation and cell death were dependent on increased reactive oxygen species (ROS) production as measured by increases in dichlorofluorescein fluorescence. The addition of antioxidants (vitamin E succinate and deferoxamine) prevented lipid peroxidation and cell death, suggesting that lipid peroxidation is involved in the sequence of events leading to necrotic cell death induced by DEM and EMS. To investigate the subcellular site of ROS generation, the cytochrome P450 inhibitor, SKF525A, was found to reduce EMS-induced lipid peroxidation but did not protect against the loss of cell viability, suggesting a mitochondrial origin for the toxic lipid peroxidation event. In agreement with this conclusion, mitochondrial electron transport inhibitors (rotenone, thenoyltrifluoroacetone and antimycin A) increased EMS-induced lipid peroxidation and cell death, while the mitochondrial uncoupler, carbonyl cyanide m-chlorophenylhydrazone, blocked EMS- and DEM-mediated ROS production and lipid peroxidation. Furthermore, EMS treatment resulted in the significant loss of mitochondrial alpha-tocopherol shortly after its addition, and this loss preceded losses in cellular alpha-tocopherol levels. Treatment of hepatocytes with cyclosporin A, a mitochondrial permeability transition inhibitor, oxypurinol, a xanthine oxidase inhibitor, or BAPTA-AM, a calcium chelator, provided no protection against EMS-induced cell death or lipid peroxidation. Our results indicate that DEM and EMS induce cell death by a similar mechanism, which is dependent on the induction of ROS production and lipid peroxidation, and mitochondria are the major source for this toxic ROS generation. Cellular GSH depletion in itself does not appear to be responsible for the large increases in ROS production and lipid peroxidation observed.  相似文献   

8.
Reactive oxygen species (ROS) produced by the mitochondrial respiratory chain can be a redox signal, but whether they affect mitochondrial function is unclear. Here we show that low levels of ROS from the respiratory chain under physiological conditions reversibly modify the thiol redox state of mitochondrial proteins involved in fatty acid and carbohydrate metabolism. As these thiol modifications were specific and occurred without bulk thiol changes, we first had to develop a sensitive technique to identify the small number of proteins modified by endogenous ROS. In this technique, redox difference gel electrophoresis, control, and redox-challenged samples are labeled with different thiol-reactive fluorescent tags and then separated on the same two-dimensional gel, enabling the sensitive detection of thiol redox modifications by changes in the relative fluorescence of the two tags within a single protein spot, followed by protein identification by mass spectrometry. Thiol redox modification affected enzyme activity, suggesting that the reversible modification of enzyme activity by ROS from the respiratory chain may be an important and unexplored mode of mitochondrial redox signaling.  相似文献   

9.
Kojer K  Bien M  Gangel H  Morgan B  Dick TP  Riemer J 《The EMBO journal》2012,31(14):3169-3182
Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (E(GSH)) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with E(GSH)-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of E(GSH) in the IMS, thus explaining a steady-state E(GSH) in the IMS which is similar to the cytosol. Moreover, we show that the local E(GSH) contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells.  相似文献   

10.
11.
Reactive oxygen species (ROS), natural by-products of aerobic respiration, are important cell signaling molecules, which left unchecked can severely impair cellular functions and induce cell death. Hence, cells have developed a series of systems to keep ROS in the nontoxic range. Uncoupling proteins (UCPs) 1-3 are mitochondrial anion carrier proteins that are purported to play important roles in minimizing ROS emission from the electron transport chain. The function of UCP1 in this regard is highly contentious. However, UCPs 2 and 3 are generally thought to be activated by ROS or ROS by-products to induce proton leak, thus providing a negative feedback loop for mitochondrial ROS production. In our laboratory, we have not only confirmed that ROS activate UCP2 and UCP3, but also demonstrated that UCP2 and UCP3 are controlled by covalent modification by glutathione. Furthermore, the reversible glutathionylation is required to activate/inhibit UCP2 and UCP3, but not UCP1. Hence, our findings are consistent with the notion that UCPs 2 and 3 are acutely activated by ROS, which then directly modulate the glutathionylation status of the UCP to decrease ROS emission and participate in cell signaling mechanisms.  相似文献   

12.
Measuring mitochondrial reactive oxygen species   总被引:4,自引:0,他引:4  
This article examines recent methods for measuring reactive oxygen species produced in isolated mitochondria and within live cells, with particular emphasis on the detection of hydrogen peroxide. Protocols for reliable measurements of mitochondrial hydrogen peroxide are presented, while the advantages and pitfalls of these and other methods are discussed. New developments in the detection of lipid peroxidation are outlined. Advice is also provided to aid the interpretation of cellular data with respect to the contribution of oxygen radical production by different components of the mitochondrial respiratory chain.  相似文献   

13.

Background

The mitochondrial carnitine/acylcarnitine carrier (CAC) is essential for cell metabolism since it catalyzes the transport of acylcarnitines into mitochondria allowing the β-oxidation of fatty acids. CAC functional and structural properties have been characterized. Cys residues which could form disulfides suggest the involvement of CAC in redox switches.

Methods

The effect of GSH and GSSG on the [3H]-carnitine/carnitine antiport catalyzed by the CAC in proteoliposomes has been studied. The Cys residues involved in the redox switch have been identified by site-directed mutagenesis. Glutathionylated CAC has been assessed by glutathionyl-protein specific antibody.

Results

GSH led to increase of transport activity of the CAC extracted from liver mitochondria. A similar effect was observed on the recombinant CAC. The presence of glutaredoxin-1 (Grx1) accelerated the GSH activation of the recombinant CAC. The effect was more evident at 37 °C. GSSG led to transport inhibition which was reversed by dithioerythritol (DTE). The effects of GSH and GSSG were studied on CAC Cys-mutants. CAC lacking C136 and C155 was insensitive to both reagents. Mutants containing these two Cys responded as the wild-type. Anti-glutathionyl antibody revealed the formation of glutathionylated CAC.

Conclusions

CAC is redox-sensitive and it is regulated by the GSH/GSSG couple. C136 and C155 are responsible for the regulation which occurs through glutathionylation.

General significance

CAC is sensitive to the redox state of the cell switching between oxidized and reduced forms in response to variation of GSSG and GSH concentrations.  相似文献   

14.
Myocardial ischemia-reperfusion is associated with bursts of reactive oxygen species (ROS) such as superoxide radicals (O(2)(-).). Membrane-associated NADH oxidase (NADHox) activity is a hypothetical source of O(2)(-)., implying the NADH concentration-to-NAD(+) concentration ratio ([NADH]/[NAD(+)]) as a determinant of ROS. To test this hypothesis, cardiac NADHox and ROS formation were measured as influenced by pyruvate or L-lactate. Pre- and postischemic Langendorff guinea pig hearts were perfused at different pyruvate/L-lactate concentrations to alter cytosolic [NADH]/[NAD(+)]. NADHox and ROS were measured with the use of lucigenin chemiluminescence and electron spin resonance, respectively. In myocardial homogenates, pyruvate (0.05, 0.5 mM) and the NADHox blocker hydralazine markedly inhibited NADHox (16 +/- 2%, 58 +/- 9%). In postischemic hearts, pyruvate (0.1-5.0 mM) dose dependently inhibited ROS up to 80%. However, L-lactate (1.0-15.0 mM) stimulated both basal and postischemic ROS severalfold. Furthermore, L-lactate-induced basal ROS was dose dependently inhibited by pyruvate (0.1-5.0 mM) and not the xanthine oxidase inhibitor oxypurinol. Pyruvate did not inhibit ROS from xanthine oxidase. The data suggest a substantial influence of cytosolic NADH on cardiac O(2)(-). formation that can be inhibited by submillimolar pyruvate. Thus cytotoxicities due to cardiac ischemia-reperfusion ROS may be alleviated by redox reactants such as pyruvate.  相似文献   

15.
NADH dehydrogenase subunit 2, encoded by the mtDNA, has been associated with resistance to autoimmune type I diabetes (T1D) in a case control study. Recently, we confirmed a role for the mouse ortholog of the protective allele (mt-Nd2(a)) in resistance to T1D using genetic analysis of outcrosses between T1D-resistant ALR and T1D-susceptible NOD mice. We sought to determine the mechanism of disease protection by elucidating whether mt-Nd2(a) affects basal mitochondrial function or mitochondrial function in the presence of oxidative stress. Two lines of reciprocal conplastic mouse strains were generated: one with ALR nuclear DNA and NOD mtDNA (ALR.mt(NOD)) and the reciprocal with NOD nuclear DNA and ALR mtDNA (NOD.mt(ALR)). Basal mitochondrial respiration, transmembrane potential, and electron transport system enzymatic activities showed no difference among the strains. However, ALR.mt(NOD) mitochondria supported by either complex I or complex II substrates produced significantly more reactive oxygen species when compared with both parental strains, NOD.mt(ALR) or C57BL/6 controls. Nitric oxide inhibited respiration to a similar extent for mitochondria from the five strains due to competitive antagonism with molecular oxygen at complex IV. Superoxide and hydrogen peroxide generated by xanthine oxidase did not significantly decrease complex I function. The protein nitrating agents peroxynitrite or nitrogen dioxide radicals significantly decreased complex I function but with no significant difference among the five strains. In summary, mt-Nd2(a) does not confer elevated resistance to oxidative stress; however, it plays a critical role in the control of the mitochondrial reactive oxygen species production.  相似文献   

16.
17.
18.
We have investigated the production of reactive oxygen species (ROS) by Complex I in isolated open bovine heart submitochondrial membrane fragments during forward electron transfer in presence of NADH, by means of the probe 2′,7′-Dichlorodihydrofluorescein diacetate. ROS production by Complex I is strictly related to its inhibited state. Our results indicate that different Complex I inhibitors can be grouped into two classes: Class A inhibitors (Rotenone, Piericidin A and Rolliniastatin 1 and 2) increase ROS production; Class B inhibitors (Stigmatellin, Mucidin, Capsaicin and Coenzyme Q2) prevent ROS production also in the presence of Class A inhibitors. Addition of the hydrophilic Coenzyme Q1 as an electron acceptor potentiates the effect of Rotenone-like inhibitors in increasing ROS production, but has no effect in the presence of Stigmatellin-like inhibitors; the effect is not shared by more hydrophobic quinones such as decyl-ubiquinone. This behaviour relates the prooxidant CoQ1 activity to a hydrophilic electron escape site. Moreover the two classes of Complex I inhibitors have an opposite effect on the increase of NADH-DCIP reduction induced by short chain quinones: only Class B inhibitors allow this increase, indicating the presence of a Rotenone-sensitive but Stigmatellin-insensitive semiquinone species in the active site of the enzyme. The presence of this semiquinone was also suggested by preliminary EPR data. The results suggest that electron transfer from the iron-sulphur clusters (N2) to Coenzyme Q occurs in two steps gated by two different conformations, the former being sensitive to Rotenone and the latter to Stigmatellin.  相似文献   

19.
To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for “signaling” and “damaging” ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress.  相似文献   

20.
The effects of inorganic phosphate (Pi), the main intracellular membrane permeable anion capable of altering mitochondrial pH gradients (ΔpH), were measured on mitochondrial H2O2 release. As expected, Pi decreased ΔpH and increased the electric membrane potential (ΔΨ). Mitochondrial H2O2 release was stimulated by Pi and also by its structural analogue arsenate. However, acetate, another membrane-permeable anion, did not stimulate mitochondrial H2O2 release. The stimulatory effect promoted by Pi was prevented by CCCP, which decreases transport of Pi across the inner mitochondrial membrane, indicating that Pi must be in the mitochondrial matrix to stimulate H2O2 release. In conclusion, we found that Pi and arsenate stimulate mitochondrial reactive oxygen release, an effect that may contribute towards oxidative stress under conditions such as ischemia/reperfusion, in which high-energy phosphate bonds are hydrolyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号