首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The third hypervariable (V3) loop of HIV-1 gp120 has been termed the principal neutralizing determinant (PND) of the virus and is involved in many aspects of virus infectivity. The V3 loop is required for viral entry into the cell via membrane fusion and is believed to interact with cell surface chemokine receptors on T cells and macrophages. Sequence changes in V3 can affect chemokine receptor usage, and can, therefore, modulate which types of cells are infected. Antibodies raised against peptides with V3 sequences can neutralize laboratory-adapted strains of the virus and inhibit syncytia formation. Fab fragments of these neutralizing antibodies in complex with V3 loop peptides have been studied by X-ray crystallography to determine the conformation of the V3 loop. RESULTS: We have determined three crystal structures of Fab 58.2, a broadly neutralizing antibody, in complex with one linear and two cyclic peptides the amino acid sequence of which comes from the MN isolate of the gp120 V3 loop. Although the peptide conformations are very similar for the linear and cyclic forms, they differ from that seen for the identical peptide bound to a different broadly neutralizing antibody, Fab 59.1, and for a similar peptide bound to the MN-specific Fab 50.1. The conformational difference in the peptide is localized around residues Gly-Pro-Gly-Arg, which are highly conserved in different HIV-1 isolates and are predicted to adopt a type II beta turn. CONCLUSIONS: The V3 loop can adopt at least two different conformations for the highly conserved Gly-Pro-Gly-Arg sequence at the tip of the loop. Thus, the HIV-1 V3 loop has some inherent conformational flexibility that may relate to its biological function.  相似文献   

2.
Solid-state NMR measurements have been carried out on frozen solutions of the complex of a 24-residue peptide derived from the third variable (V3) loop of the HIV-1 envelope glycoprotein gp120 bound to the Fab fragment of an anti-gp120 antibody. The measurements place strong constraints on the conformation of the conserved central GPGR motif of the V3 loop in the antibody-bound state. In combination with earlier crystal structures of V3 peptide-antibody complexes and existing data on the cross-reactivity of the antibodies, the solid-state NMR measurements suggest that the Gly-Pro-Gly-Arg (GPGR) motif adopts an antibody-dependent conformation in the bound state and may be conformationally heterogeneous in unbound, full-length gp120. These measurements are the first application of solid-state NMR methods in a structural study of a peptide-protein complex.  相似文献   

3.
To identify structural constraints and amino acid sequences important for antibody recognition of the third variable domain (V3) of HIV-1 gp120, we have studied the solution conformation of three 35-mer circular V3 loop peptides derived from HIV-1 strains which differ in syncytium- (SI) and non-syncytium-inducing (NSI) capacity. In addition to 2D NMR and CD analyses, fluid- and solid-phase immunoassays were performed using V3-specific antibodies to V3 peptides and gp120 derived from different strains of HIV-1. NMR and CD spectroscopy indicated that circular and linear V3 loops exist in water as a dynamic ensemble of multiple conformations. Amino acid substitutions and biochemical modifications of the V3 loop were found to affect antibody binding depending on the presentation of the antigens. From NMR observations and immunological experiments, we provide evidence for a V3 loop specific monoclonal antibody interaction which is directed predominantly against linear epitopes rather than against discontinuous epitopes. The absence of a single defined solution conformation of 35-mer circular V3 peptides should be taken into account when using V3-related peptides to investigate structural elements in the V3 domain of the gp120 envelope protein of HIV-1 involved in biological processes of the virus.  相似文献   

4.
The 0.5beta monoclonal antibody is a very potent strain-specific HIV-neutralizing antibody raised against gp120, the envelope glycoprotein of HIV-1. This antibody recognizes the V3 loop of gp120, which is a major neutralizing determinant of the virus. The antibody-peptide interactions, involving aromatic and negatively charged residues of the antibody 0.5beta, were studied by NMR and double-mutant cycles. A deuterated V3 peptide and a Fab containing deuterated aromatic amino acids were used to assign these interactions to specific V3 residues and to the amino acid type and specific chain of the antibody by NOE difference spectroscopy. Electrostatic interactions between negatively charged residues of the antibody Fv and peptide residues were studied by mutagenesis of both antibody and peptide residues and double-mutant cycles. Several interactions could be assigned unambiguously: F96(L) of the antibody interacts with Pro13 of the peptide, H52(H) interacts with Ile7, Ile9 and Gln10 and D56(H) interacts with Arg11. The interactions of the light-chain tyrosines with Pro13 and Gly14 could be assigned to either Y30a(L) and Y32(L), respectively, or Y32(L) and Y49(L), respectively. Three heavy-chain tyrosines interact with Ile7, Ile20 and Phe17. Several combinations of assignments involving Y32(H), Y53(H), Y96(H) and Y100a(H) may satisfy the NMR and mutagenesis constraints, and therefore at this stage the interactions of the heavy-chain tyrosines were not taken into account. The unambiguous assignments [F96(L), H52(H) and D56(H)] and the two possible assignments of the light-chain tyrosines were used to dock the peptide into the antibody-combining site. The peptide converges to a unique position within the binding site, with the RGPG loop pointing into the center of the groove formed by the antibody complementary determining regions while retaining the beta-hairpin conformation and the type-VI RGPG turn [Tugarinov, V., Zvi, A., Levy, R. & Anglister, J. (1999) Nat. Struct. Biol. 6, 331-335].  相似文献   

5.
Svenja Polzer 《FEBS letters》2009,583(7):1201-4222
The N-glycan g15 within the HIV-1 gp120 V3 loop efficiently blocks antibodies to facilitate viral escape from humoral immune responses. However, we have isolated primary viruses all lacking the N-glycosylation site g15 due to mutations (NNNT > YRNA, HNTV, SIQK), which showed resistance to neutralizing antibodies present in autologous or heterologous HIV-1 positive sera. When introduced into the NL4-3 background, the sequences YRNA, HNTV and SIQK caused an increase of viral infectivity and resistance to neutralization. Thus, despite the lack of g15, primary isolates can escape from neutralization because of specific mutations of the NNNT sequence altering coreceptor usage.  相似文献   

6.
7.
H Yoshiyama  H Mo  J P Moore    D D Ho 《Journal of virology》1994,68(2):974-978
The biologically cloned human immunodeficiency virus type 1 (HIV-1) RF isolate is sensitive to neutralization by the murine monoclonal antibody (MAb) G3-4 to a conformationally sensitive epitope in the V2 loop of HIV-1 gp120. To assess how variation in the V2 amino acid sequence affects neutralization by this MAb, we cultured RF in the presence of G3-4 to select neutralization escape mutants. Three such mutants resistant to G3-4 neutralization were generated from three independent experiments. Solubilized gp120 from each of these escape mutants had a reduced affinity for G3-4 and also for two other V2 MAbs that were able to bind the wild-type RF gp120. PCR sequencing of the entire gp120 of the wild-type RF virus and the escape mutants showed that amino acid substitutions had occurred only at two positions, Y177H and L179P, both in V2. Experimental introduction of the Y177H substitution into the RF V2 loop in the context of the NL4-3 molecular clone re-created the G3-4-resistant phenotype. The L179P mutant was not viable. Thus, our findings confirm that the HIV-1 V2 loop contains the conformationally sensitive neutralization epitope recognized by G3-4 and that a single amino acid substitution within this region can result in escape variants that arise from immune selection pressure.  相似文献   

8.
The model describing the structure and conformational preferences of the HIV-Haiti V3 loop in the geometric spaces of Cartesian coordinates and dihedral angles was generated in terms of NMR spectroscopy data published in literature. To this end, the following successive steps were put into effect: (i) the NMR-based 3D structure for the HIV-Haiti V3 loop in water was built by computer modeling methods; (ii) the conformations of its irregular segments were analyzed and the secondary structure elements identified; and (iii) to reveal a common structural motifs in the HIV-Haiti V3 loop regardless of its environment variability, the simulated structure was collated with the one deciphered previously for the HIV-Haiti V3 loop in a water/trifluoroethanol (TFE) mixed solvent. As a result, the HIV-Haiti V3 loop was found to offer the highly variable fragment of gp120 sensitive to its environment whose changes trigger the large-scale structural rearrangements, bringing in substantial altering the secondary and tertiary structures of this functionally important site of the virus envelope. In spite of this fact, over half of amino acid residues that reside, for the most part, in the functionally important regions of the gp120 protein and may present promising targets for AIDS drug researches, were shown to preserve their conformational states in the structures under review. In particular, the register of these amino acids holds Asn-25 that is critical for the virus binding with primary cell receptor CD4 as well as Arg-3 that is critical for utilization of CCR5 co-receptor and heparan sulfate proteoglycans. The conservative structural motif embracing one of the potential sites of the gp120 N-linked glycosylation was detected, which seems to be a promising target for the HIV-1 drug design. The implications are discussed in conjunction with the literature data on the biological activity of the individual amino acids for the HIV-1 gp120 V3 loop.  相似文献   

9.
A computer-aided search for novel anti-HIV-1 agents able to mimic the pharmacophore properties of broadly neutralizing antibody (bNAb) 3074 was carried out based on the analysis of X-ray complexes of this antibody Fab with the MN, UR29, and VI191 peptides from the V3 loop of the HIV envelope protein gp120. Using these empirical data, peptidomimetic candidates of bNAb 3074 were identified by a public, web-oriented virtual screening platform (pepMMsMIMIC) and models of these candidates bound to the above V3 peptides were generated by molecular docking. The docking calculations identified four molecules exhibiting a high affinity to all of the V3 peptides. These molecules were selected as the most probable peptidomimetics of bNAb 3074. Finally, the stability of the complexes of these molecules with the MN, UR29, and VI191 V3 peptides was estimated by molecular dynamics and free energy simulations. Specific binding to the V3 loop was accomplished primarily by π–π interactions between the aromatic rings of the peptidomimetics and the conserved Phe-20 and/or Tyr-21 of the V3 immunogenic crown. In a mechanism similar to that of bNAb 3074, these compounds were found to block the tip of the V3 loop forming its invariant structural motif that contains residues critical for cell tropism. Based on these findings, the compounds selected are considered as promising basic structures for the rational design of novel, potent, and broad-spectrum anti-HIV-1 therapeutics.  相似文献   

10.

Background  

HIV-1 targets human cells expressing both the CD4 receptor, which binds the viral envelope glycoprotein gp120, as well as either the CCR5 (R5) or CXCR4 (X4) co-receptors, which interact primarily with the third hypervariable loop (V3 loop) of gp120. Determination of HIV-1 affinity for either the R5 or X4 co-receptor on host cells facilitates the inclusion of co-receptor antagonists as a part of patient treatment strategies. A dataset of 1193 distinct gp120 V3 loop peptide sequences (989 R5-utilizing, 204 X4-capable) is utilized to train predictive classifiers based on implementations of random forest, support vector machine, boosted decision tree, and neural network machine learning algorithms. An in silico mutagenesis procedure employing multibody statistical potentials, computational geometry, and threading of variant V3 sequences onto an experimental structure, is used to generate a feature vector representation for each variant whose components measure environmental perturbations at corresponding structural positions.  相似文献   

11.
Synergistic neutralization of human immunodeficiency virus type 1 (HIV-1) was observed in studies using a chimpanzee anti-V2 monoclonal antibody (MAb), C108G, in combination with anti-V3 loop and anti-CD4 binding-site (bs) MAbs of different epitope specificities. C108G paired with either of two anti-V3 loop MAbs or either of two anti-CD4 bs MAbs synergistically neutralized both the uncloned IIIB and clonal HXB2 strains of virus in H9 target cells. Synergism was quantitated by calculation of combination indices. Significant synergy with a given MAb pair was seen over a range of MAb ratios, with the optimal effect centering around the ratio at which the MAbs were equipotent for a given HIV-1 strain (on the basis of the 50% neutralization titer). In preliminary experiments with monocytotropic strains of HIV-1 in peripheral blood mononuclear cell targets, significant synergism was also observed between anti-V2-anti-V3 and anti-V2-anti-CD4 bs MAb pairs. Synergism by all MAb pairs tested was greater against heterogeneous isolates of HIV-1 (IIIB and Ba-L) than against clonal isolates (HXB2 and NLHXADA), suggesting that strain broadening may be a component of the synergism observed against the heterogeneous isolates. In addition, conformational changes in gp120 upon binding of one or both MAbs may result in increased affinity or exposure of the epitope of one or both MAbs. Finally, a three-MAb combination of C108G, an anti-V3 MAb, and an anti-CD4 bs MAb was more effective in neutralizing the HXB2 strain of HIV-1 than any of the three two-MAb combinations within this trio, as determined by the dose reduction indices of each MAb required to achieve a given level of neutralization. This is the first report of synergistic neutralization of HIV-1 by a three-MAb combination composed of MAbs directed against the three major neutralization epitope clusters in gp120. Implications for vaccine design and for immunoprophylaxis and immunotherapy with a combination of MAbs are discussed.  相似文献   

12.
We examined how asparagine-linked glycans within and adjacent to the V3 loop (C2 and C3 regions) and within the immunologically silent face (V4, C4, and V5 regions) of the human immunodeficiency virus (HIV) SF612 envelope affect the viral phenotype. Five of seven potential glycosylation sites are utilized when the virus is grown in human peripheral blood mononuclear cells, with the nonutilized sites lying within the V4 loop. Elimination of glycans within and adjacent to the V3 loop renders SF162 more susceptible to neutralization by polyclonal HIV(+)-positive and simian/human immunodeficiency virus-positive sera and by monoclonal antibodies (MAbs) recognizing the V3 loop, the CD4- and CCR5-binding sites, and the extracellular region of gp41. Importantly, our studies also indicate that glycans located within the immunologically silent face of gp120, specifically the C4 and V5 regions, also conferred on SF162 resistance to neutralization by anti-V3 loop, anti-CD4 binding site, and anti-gp41 MAbs but not by antibodies targeting the coreceptor binding site. We also observed that the amino acid composition of the V4 region contributes to the neutralization phenotype of SF162 by anti-V3 loop and anti-CD4 binding site MAbs. Collectively, our data support the proposal that the glycosylation and structure of the immunologically silent face of the HIV envelope plays an important role in defining the neutralization phenotype of HIV type 1.  相似文献   

13.
Intramolecular interactions in bound cholera toxin peptide (CTP3) in three antibody complexes were studied by two-dimensional transferred NOE spectroscopy. These measurements together with previously recorded spectra that show intermolecular interactions in these complexes were used to obtain restraints on interproton distances in two of these complexes (TE32 and TE33). The NMR-derived distance restraints were used to dock the peptide into calculated models for the three-dimensional structure of the antibody combining site. It was found that TE32 and TE33 recognize a loop comprising the sequence VPGSQHID and a beta-turn formed by the sequence VPGS. The third antibody, TE34, recognizes a different epitope within the same peptide and a beta-turn formed by the sequence IDSQ. Neither of these two turns was observed in the free peptide. The formation of a beta-turn in the bound peptide gives a compact conformation that maximizes the contact with the antibody and that has greater conformational freedom than alpha-helix or beta-sheet secondary structure. A total of 15 antibody residues are involved in peptide contacts in the TE33 complex, and 73% of the contact area in the antibody combining site consists of the side chains of aromatic amino acids. A comparison of the NMR-derived models for CTP3 interacting with TE32 and TE33 with the previously derived model for TE34 reveals a relationship between amino acid sequence and combining site structure and function. (a) The three aromatic residues that interact with the peptide in TE32 and TE33 complexes, Tyr 32L, Tyr 32H, and Trp 50H, are invariant in all light chains sharing at least 65% identity with TE33 and TE32 and in all heavy chains sharing at least 75% identity with TE33. Although TE34 differs from TE32 and TE33 in its fine specificity, these aromatic residues are conserved in TE34 and interact with its antigen. Therefore, we conclude that the role of these three aromatic residues is to participate in nonspecific hydrophobic interactions with the antigen. (b) Residues 31, 31c, and 31e of CDR1 of the light chain interact with the antigen in all three antibodies that we have studied. The amino acids in these positions in TE34 differ from those in TE32 and TE33, and they are involved in specific polar interactions with the antigen. (c) CDR3 of the heavy chain varies considerably both in length and in sequence between TE34 and the two other anti-CTP3 antibodies. These changes modify the shape of the combining site and the hydrophobic and polar interactions of CDR3 with the peptide antigen.  相似文献   

14.
The G-protein coupled receptor CCR5 functions pathologically as the primary co-receptor for macrophage tropic (R5) strains of HIV-1. The interactions responsible for co-receptor activity are unknown. Molecular-dynamics simulations of the extracellular and adjacent transmembrane domains of CCR5 were performed with explicit solvation utilizing a rhodopsin-based homology model. The functional unit of co-receptor binding was constructed via docking and molecular-dynamics simulation of CCR5 and the variable 3 loop of gp120, which is a dominant determinant of co-receptor utilization. The variable 3 loop was demonstrated to interact primarily with the amino terminus and the second extracellular loop of CCR5, providing novel structural information regarding the co-receptor-binding site. Alanine mutants that alter chemokine binding and co-receptor activity were examined. Molecular-dynamics simulations with and without the variable 3 loop of gp120 were able to rationalize the activities of these mutants successfully, providing support for the proposed model. Based on these results, the global complex of CCR5, gp120 including the V3 loop and CD4, was investigated. The utilization of computational analysis, in combination with molecular biological data, provides a powerful approach for understanding the use of CCR5 as a co-receptor by HIV-1.  相似文献   

15.
We describe a method for predicting the conformations of loops in proteins and its application to four of the complementarity determining regions [CDRs] in the crystallographically determined structure of MCPC603. The method is based on the generation of a large number of randomly generated conformations for the backbone of the loop being studied, followed by either minimization or molecular dynamics followed by minimization starting from these random structures. The details of the algorithm for the generation of the loops are presented in the first paper in this series (Shenkin et al. [submitted]). The results of minimization and molecular dynamics applied to these loops is presented here. For the two shortest CDRs studied (H1 and L2, which are five and seven amino acids long), minimizations and dynamics simulations which ignore interactions of the loop amino acids beyond the carbon beta replicate the conformation of the crystal structure closely. This suggests that these loops fold independently of sequence variation. For the third CDR (L3, which is nine amino acids), those portions of the CDR near its base which are hydrogen bonded to framework are well replicated by our procedures, but the top of the loop shows significant conformational variability. This variability persists when side chain interactions for the MCPC603 sequence are included. For a fourth CDR (H3, which is 11 amino acids long), new low-energy backbone conformations are found; however, only those which are close to the crystal are compatible with the sequence when side chain interactions are taken into account. Results from minimization and dynamics on single CDRs with all other CDRs removed are presented. These allow us to explore the extent to which individual CDR conformations are determined by interactions with framework only.  相似文献   

16.
HIV-1 represents an elusive target for therapeutic compounds due to its high rate of mutation. Targeting structural patterns instead of a constantly changing specific three-dimensional structure may represent an approach that is less sensitive to viral mutations. The V3 loop of gp120 of HIV-1, which is responsible for binding of viral gp120 to CCR5 or CXCR4 coreceptors, has already been identified as an effective target for the inhibition of viral entry. The peptide derived from the V3 loop of gp120 specifically interacts with the lipid A moiety of LPS, as does the full gp120 protein. NMR analysis of V3 in complex with LPS shows formation of an amphipathic turn. The interaction between LPS and V3 relies on the structural pattern, comprising a combination of hydrophobic and charge interactions, similar to the interaction between antimicrobial peptides and LPS. LPS inhibited binding of gp120 to the surface of target T cells. Nonendotoxic LPS antagonists inhibited viral infection, demonstrating the possibility for the development of an inhibitor of HIV-1 attachment to T cells based on the recognition of a conserved structural pattern.  相似文献   

17.
The V3 loop on gp120 from human immunodeficiency virus type 1 (HIV-1) is a focus of many research groups involved in anti-AIDS drug development because this region of the protein is a principal target for neutralizing antibodies and a major determinant for cell tropism and syncytium formation. In this study, the nucleotide sequences of the env gene region coding the V3 loop were determined by DNA sequencing methods for four novel HIV-1 strains that circulate in the countries of Eastern Europe, such as Russia, Belarus, Ukraine, etc. Based on the empirical data obtained, the 3D structures of the V3 loops associated with these viral modifications were generated by computer modeling and then compared to discover similarities in the spatial arrangement of this functionally important site of gp120. Despite the HIV-1 genetic variety, several regions of the V3 loop that contain residues critical for cell tropism were shown to be structurally invariant, which may explain its exceptional role in a co-receptor usage. These data together with those on the biological activity of the V3 individual residues clearly show that these conserved structural motifs of gp120 represent potential HIV-1 weak points most suitable for therapeutic intervention.  相似文献   

18.
Andrianov AM 《Tsitologiia》2006,48(11):948-957
The structural model describing the conformational preferences of the HIV-Haiti gp120 V3 loop in geometric space of dihedral angles was generated in terms of NMR spectroscopy data using the methods of computer modeling. The elements of secondary structure anti conformations of irregular stretches were deciphered for the fragment making the virus principal neutralizing determinant as well as the determinants of cell tropism and syncytium formation. The structurally conserved amino acids of the HIV-1 V3 loop, that may present the forward-looking targets for AIDS drug design, were identified based on the combined analysis of the results obtained with those derived previously. In particular, it was demonstrated that the register of these amino acids comprises Asn-25 critical for virus binding with primary cell receptor CD4 as well as Arg-3 critical for utilization of CCR5 coreceptor and heparan sulfate proteoglycan syndecans. The results obtained are discussed in conjunction with the literature data on the biological activity of individual amino acid residues of the HIV-1 gpl20 V3 loop.  相似文献   

19.
Epitopes that drive the initial autologous neutralizing antibody response in HIV-1-infected individuals could provide insights for vaccine design. Although highly strain specific, these epitopes are immunogenic, vulnerable to antibody attack on infectious virus, and could be involved in the ontogeny of broadly neutralizing antibody responses. To delineate such epitopes, we used site-directed mutagenesis, autologous plasma samples, and autologous monoclonal antibodies to map the amino acid changes that led to escape from the initial autologous neutralizing antibody response in two HIV-1 subtype B-infected individuals. Additional mapping of the epitopes was accomplished by using alanine scanning mutagenesis. Escape in the two individuals occurred by different pathways, but the responses in both cases appeared to be directed against the same region of gp120. In total, three amino acid positions were identified that were independently associated with autologous neutralization. Positions 295 and 332 are located immediately before and after the N- and C-terminal cysteines of the V3 loop, respectively, the latter of which affected an N-linked glycan that was critical to the neutralization epitope. Position 415 affected an N-linked glycan at position 413 in the C terminus of V4 that might mask epitopes near the base of V3. All three sites lie in close proximity on a four-stranded antiparallel sheet on the outer domain of gp120. We conclude that a region just below the base of the V3 loop, near the coreceptor binding domain of gp120, can be a target for autologous neutralization.  相似文献   

20.
We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with 15N labels at the nitrogen positions of arginine side chains and 13C labels at glycine carbonyl positions and 13C-detected 13C-15N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82–85], but is shown by the REDOR measurements to be absent in the RP135/0.5 complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of and backbone dihedral angles in the RP135/0.5 complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect 13C-15N dipole–dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141–145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331–335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号