首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human homolog of the yeast DNA repair protein RAD23, hHR23A, has been found previously to interact with the human immunodeficiency virus, type 1 accessory protein Vpr. hHR23A is a modular protein containing an N-terminal ubiquitin-like (UBL) domain and two ubiquitin-associated domains (UBA1 and UBA2) separated by a xeroderma pigmentosum complementation group C binding (XPCB) domain. All domains are connected by flexible linkers. hHR23A binds ubiquitinated proteins and acts as a shuttling factor to the proteasome. Here, we show that hHR23A utilizes both the UBA2 and XPCB domains to form a stable complex with Vpr, linking Vpr directly to cellular DNA repair pathways and their probable exploitation by the virus. Detailed structural mapping of the Vpr contacts on hHR23A, by NMR, revealed substantial contact surfaces on the UBA2 and XPCB domains. In addition, Vpr binding disrupts an intramolecular UBL-UBA2 interaction. We also show that Lys-48-linked di-ubiquitin, when binding to UBA1, does not release the bound Vpr from the hHR23A-Vpr complex. Instead, a ternary hHR23A·Vpr·di-UbK48 complex is formed, indicating that Vpr does not necessarily abolish hHR23A-mediated shuttling to the proteasome.  相似文献   

2.
Rad23 proteins are involved both in the ubiquitin-proteasome pathway and in nucleotide excision repair (NER), but the relationship between these two pathways is not yet understood. The two human homologs of Rad23, hHR23A and B, are functionally redundant in NER and interact with xeroderma pigmentosum complementation group C (XPC) protein. The XPC-hHR23 complex is responsible for the specific recognition of damaged DNA, which is an early step in NER. The interaction of the XPC binding domain (XPCB) of hHR23A/B with XPC protein has been shown to be important for its optimal function in NER. We have determined the solution structure of XPCB of hHR23A. The domain consists of five amphipathic helices and reveals hydrophobic patches on the otherwise highly hydrophilic domain surface. The patches are predicted to be involved in interaction with XPC. The XPCB domain has limited sequence homology with any proteins outside of the Rad23 family except for sacsin, a protein involved in spastic ataxia of Charlevoix-Saguenay, which contains a domain with 35% sequence identity.  相似文献   

3.
Human centrin 2 is a component of the nucleotide excision repair system, as a subunit of the heterotrimer including xeroderma pigmentosum group C protein (XPC) and hHR23B. The C-terminal domain of centrin (C-HsCen2) binds strongly a peptide from the XPC protein (P1-XPC: N(847)-R(863)). Here, we characterize the solution Ca(2+)-dependent structural and molecular features of the C-HsCen2 in complex with P1-XPC, mainly using NMR spectroscopy and molecular modeling. The N-terminal half of the peptide, organized as an alpha helix is anchored into a deep hydrophobic cavity of the protein, because of three bulky hydrophobic residues in position 1-4-8 and electrostatic contacts with the centrin helix E. Investigation of the whole centrin interactions shows that the N-terminal domain of the protein is not involved in the complex formation and is structurally independent from the peptide-bound C-terminal domain. The complex may exist in three different binding conformations corresponding to zero, one, and two Ca(2+)-bound states, which may exchange with various rates and have distinct structural stability. The various features of the intermolecular interaction presented here constitute a centrin-specific mode for the target binding.  相似文献   

4.
hHR23B is the human homologue of the yeast protein RAD23 and is known to participate in DNA repair by stabilizing xeroderma pigmentosum group C protein. However, hHR23B and RAD23 also have many important functions related to general proteolysis. hHR23B consists of N-terminal ubiquitin-like (UbL), ubiquitin association 1 (UBA1), xeroderma pigmentosum group C binding, and UBA2 domains. The UBA domains interact with ubiquitin (Ub) and inhibit the assembly of polyubiquitin. On the other hand, the UbL domain interacts with the poly-Ub binding site 2 (PUbS2) domain of the S5a protein, which can carry polyubiquitinated substrates into the proteasome. We calculated the NMR structure of the UbL domain of hHR23B and determined binding surfaces of UbL and Ub to UBA1, UBA2, of hHR23B and PUbS2 of S5a by using chemical shift perturbation. Interestingly, the surfaces of UbL and Ub that bind to UBA1, UBA2, and PUbS2 are similar, consisting of five beta-strands and their connecting loops. This is the first report that an intramolecular interaction between UbL and UBA domains is possible, and this interaction could be important for the control of proteolysis by hHR23B. The binding specificities of UbL and Ub for PUbS1, PUbS2, and general ubiquitin-interacting motifs, which share the LALA motif, were evaluated. The UBA domains bind to the surface of Ub including Lys-48, which is required for multiubiquitin assembly, possibly explaining the observed inhibition of multiubiquitination by hHR23B. The UBA domains bind to UbL through electrostatic interactions supported by hydrophobic interactions and to Ub mainly through hydrophobic interactions supported by electrostatic interactions.  相似文献   

5.
Identification and characterization of XPC-binding domain of hHR23B.   总被引:11,自引:3,他引:8       下载免费PDF全文
hHR23B was originally isolated as a component of a protein complex that specifically complements nucleotide excision repair (NER) defects of xeroderma pigmentosum group C cell extracts in vitro and was identified as one of two human homologs of the Saccharomyces cerevisiae NER gene product Rad23. Recombinant hHR23B has previously been shown to significantly stimulate the NER activity of recombinant human XPC protein (rhXPC). In this study we identify and functionally characterize the XPC-binding domain of hHR23B protein. We prepared various internal as well as terminal deletion products of hHR23B protein in a His-tagged form and examined their binding with rhXPC by using nickel-chelating Sepharose. We demonstrate that a domain covering 56 amino acids of hHR23B is required for binding to rhXPC as well as for stimulation of in vitro NER reactions. Interestingly, a small polypeptide corresponding to the XPC-binding domain is sufficient to exert stimulation of XPC NER activity. Comparison with known crystal structures and analysis with secondary structure programs provided strong indications that the binding domain has a predominantly amphipathic alpha-helical character, consistent with evidence that the affinity with XPC is based on hydrophobic interactions. Our work shows that binding to XPC alone is required and sufficient for the role of hHR23B in in vitro NER but does not rule out the possibility that the protein has additional functions in vivo.  相似文献   

6.
hHR23B is one of two human homologs of the Saccharomyces cerevisiae nucleotide excision repair (NER) gene product RAD23 and a component of a protein complex that specifically complements the NER defect of xeroderma pigmentosum group C (XP-C) cell extracts in vitro. Although a small proportion of hHR23B is tightly complexed with the XP-C responsible gene product, XPC protein, a vast majority exists as an XPC-free form, indicating that hHR23B has additional functions other than NER in vivo. Here we demonstrate that the human NER factor hHR23B as well as another human homolog of RAD23, hHR23A, interact specifically with S5a, a subunit of the human 26 S proteasome using the yeast two-hybrid system. Furthermore, hHR23 proteins were detected with S5a at the position where 26 S proteasome sediments in glycerol gradient centrifugation of HeLa S100 extracts. Intriguingly, hHR23B showed the inhibitory effect on the degradation of (125)I-lysozyme in the rabbit reticulocyte lysate. hHR23 proteins thus appear to associate with 26 S proteasome in vivo. From co-precipitation experiments using several series of deletion mutants, we defined the domains in hHR23B and S5a that mediate this interaction. From these results, we propose that part of hHR23 proteins are involved in the proteolytic pathway in cells.  相似文献   

7.
Yeast Rad23, originally identified as a DNA repair protein, has been proposed to participate in other cellular functions, i.e., the proteasome-degradation pathway, the process of spindle pole body duplication and as a component of the anaphase checkpoint. Two human homologs of yeast Rad23, hHR23A and hHR23B, exhibit high sequence homology with yRad23 and also have been shown to be involved in DNA repair and proteasome-dependent degradation. Previous studies on the intracellular localization of hHR23A and hHR23B revealed their predominant localization in the nucleus during interphase and in the cytoplasm during mitosis. We have analyzed the localization of hHR23B during all the phases of the cell cycle using immunofluorescence. Unlike previous studies, our results suggest localization of hHR23B in the nucleus as well as in the cytoplasm during G1 phase. The nuclear levels of hHR23B decrease during S-phase of the cell cycle. When the cell enters mitosis, hHR23B relocalizes in the cytoplasm without association with chromatin. These results indicate that the intracellular distribution hHR23B is cell cycle dependent.  相似文献   

8.
A protein that exemplifies the intimate link between the ubiquitin/proteasome system (UPS) and DNA repair is the yeast nucleotide excision repair (NER) protein Rad23 and its human orthologs hHR23A and hHR23B. Rad23, which was originally identified as an important factor involved in the recognition of DNA lesions, also plays a central role in targeting ubiquitylated proteins for proteasomal degradation, an activity that it shares with other ubiquitin receptors like Dsk2 and Ddi1. Although the finding that Rad23 serves as a ubiquitin receptor explains to a large extent its importance in proteasomal degradation, the precise mode of action of Rad23 in NER and the possible link with the UPS is less clear. In this review, we discuss our present knowledge on the functions of Rad23 in protein degradation and DNA repair and speculate on the importance of the dual roles of Rad23 for the cell's ability to cope with stress conditions.  相似文献   

9.
The proteasome-interacting protein Rad23 is a long-lived protein. Interaction between Rad23 and the proteasome is required for Rad23's functions in nucleotide excision repair and ubiquitin-dependent degradation. Here, we show that the ubiquitin-associated (UBA)-2 domain of yeast Rad23 is a cis-acting, transferable stabilization signal that protects Rad23 from proteasomal degradation. Disruption of the UBA2 domain converts Rad23 into a short-lived protein that is targeted for degradation through its N-terminal ubiquitin-like domain. UBA2-dependent stabilization is required for Rad23 function because a yeast strain expressing a mutant Rad23 that lacks a functional UBA2 domain shows increased sensitivity to UV light and, in the absence of Rpn10, severe growth defects. The C-terminal UBA domains of Dsk2, Ddi1, Ede1, and the human Rad23 homolog hHR23A have similar protective activities. Thus, the UBA2 domain of Rad23 is an evolutionarily conserved stabilization signal that allows Rad23 to interact with the proteasome without facing destruction.  相似文献   

10.
Chen L  Madura K 《FEBS letters》2006,580(14):3401-3408
Rad23 proteins bind ubiquitinated substrates and the proteasome, consistent with an important role in protein degradation. Although human Rad23 proteins (hHR23A and hHR23B) have redundant roles in DNA repair, we determined they formed distinct interactions with proteasomes and multiubiquitinated proteins, but similar binding to Ataxin-3. Threonine-79 contributed to the weak proteasome-binding property of hHR23A, and its conversion to proline (T79P), which is the residue present in hHR23B, increased proteasome interaction. We also determined that hHR23A and hHR23B could be co-purified with unique proteolytic and stress-responsive factors from human breast cancer tissues, indicating that they have unique functions in vivo.  相似文献   

11.
12.
The stability of the tumor suppressor protein p53 is regulated via the ubiquitin-proteasome-dependent proteolytic pathway. Like most substrates of this pathway, p53 is modified by the attachment of polyubiquitin chains prior to proteasome-mediated degradation. However, the mechanism(s) involved in the delivery of polyubiquitylated p53 molecules to the proteasome are currently unclear. Here, we show that the human DNA repair protein hHR23 binds to polyubiquitylated p53 via its carboxyl-terminal ubiquitin-associated (Uba) domain shielding p53 from deubiquitylation in vitro and in vivo. In addition, downregulation of hHR23 expression within cells by RNA interference results in accumulation of p53. Since the Ubl domain of hHR23 has been shown to interact with the 26S proteasome, we propose that hHR23 is intrinsically involved in the delivery of polyubiquitylated p53 molecules to the proteasome. In this model, the Uba domain of hHR23 binds to polyubiquitin chains formed on p53 and protects them from deubiquitylation, while the Ubl domain delivers the polyubiquitylated p53 molecules to the proteasome.  相似文献   

13.
Human 3-methyladenine-DNA glycosylase (MPG protein) initiates base excision repair by severing the glycosylic bond of numerous damaged bases. In comparison, homologues of the Rad23 proteins (hHR23) and the hXPC protein are involved in the recognition of damaged bases in global genome repair, a subset of nucleotide excision repair. In this report, we show that the hHR23A and -B also interact with the MPG protein and can serve as accessory proteins for DNA damage recognition in base excision repair. Furthermore, the MPG.hHR23 protein complex elevates the rate of MPG protein-catalyzed excision from hypoxanthine-containing substrates. This increased excision rate is correlated with a greater binding affinity of the MPG protein-hHR23 protein complex for damaged DNA. These data suggest that the hHR23 proteins function as universal DNA damage recognition accessory proteins in both of these major excision repair pathways.  相似文献   

14.
The 549-amino acid yeast RNA triphosphatase Cet1p catalyzes the first step in mRNA cap formation. Cet1p consists of three domains as follows: (i) a 230-amino acid N-terminal segment that is dispensable for catalysis in vitro and for Cet1p function in vivo; (ii) a protease-sensitive segment from residues 230 to 275 that is dispensable for catalysis but essential for Cet1p function in vivo; and (iii) a catalytic domain from residues 275 to 539. Sedimentation analysis indicates that purified Cet1(231-549)p is a homodimer. Cet1(231-549)p binds in vitro to the yeast RNA guanylyltransferase Ceg1p to form a 7.1 S complex that we surmise to be a trimer consisting of two molecules of Cet1(231-549)p and one molecule of Ceg1p. The more extensively truncated protein Cet1(276-549)p, which cannot support cell growth, sediments as a monomer and does not interact with Ceg1p. An intermediate deletion protein Cet1(246-549)p, which supports cell growth only when overexpressed, sediments principally as a discrete salt-stable 11.5 S homo-oligomeric complex. These data implicate the segment of Ceg1p from residues 230 to 275 in regulating self-association and in binding to Ceg1p. Genetic data support the existence of a Ceg1p-binding domain flanking the catalytic domain of Cet1p, to wit: (i) the ts growth phenotype of 2mu CET1(246-549) is suppressed by overexpression of Ceg1p; (ii) a ts alanine cluster mutation CET1(201-549)/K250A-W251A is suppressed by overexpression of Ceg1p; and (iii) 15 other cet-ts alleles with missense changes mapping elsewhere in the protein are not suppressed by Ceg1p overexpression. Finally, we show that the in vivo function of Cet1(275-549)p is completely restored by fusion to the guanylyltransferase domain of the mouse capping enzyme. We hypothesize that the need for Ceg1p binding by yeast RNA triphosphatase can by bypassed when the triphosphatase catalytic domain is delivered to the RNA polymerase II elongation complex by linkage in cis to the mammalian guanylyltransferase.  相似文献   

15.
Nucleotide excision repair (NER) of DNA damage requires an efficient means of discrimination between damaged and non-damaged DNA. Cells from humans with xeroderma pigmentosum group C do not perform NER in the bulk of the genome and are corrected by XPC protein, which forms a complex with hHR23B protein. This complex preferentially binds to some types of damaged DNA, but the extent of discrimination in comparison to other NER proteins has not been clear. Recombinant XPC, hHR23B, and XPC-hHR23B complex were purified. In a reconstituted repair system, hHR23B stimulated XPC activity tenfold. Electrophoretic mobility-shift competition measurements revealed a 400-fold preference for binding of XPC-hHR23B to UV damaged over non-damaged DNA. This damage preference is much greater than displayed by the XPA protein. The discrimination power is similar to that determined here in parallel for the XP-E factor UV-DDB, despite the considerably greater molar affinity of UV-DDB for DNA. Binding of XPC-hHR23B to UV damaged DNA was very fast. Damaged DNA-XPC-hHR23B complexes were stable, with half of the complexes remaining four hours after challenge with excess UV-damaged DNA at 30 degrees C. XPC-hHR23B had a higher level of affinity for (6-4) photoproducts than cyclobutane pyrimidine dimers, and some affinity for DNA treated with cisplatin and alkylating agents. XPC-hHR23B could bind to single-stranded M13 DNA, but only poorly to single-stranded homopolymers. The strong preference of XPC complex for structures in damaged duplex DNA indicates its importance as a primary damage recognition factor in non-transcribed DNA during human NER.  相似文献   

16.
The three-dimensional structure of the N-terminal 51-residue domain of recombinant hirudin in aqueous solution was determined by 1H nuclear magnetic resonance (NMR) spectroscopy, and the resulting high-quality solution structure was compared with corresponding structures obtained from studies with the intact, 65-residue polypeptide chain of hirudin. On the basis of 580 distance constraints derived from nuclear Overhauser effects and 109 dihedral angle constraints, a group of 20 conformers representing the solution structure of hirudin(1-51) was computed with the program DIANA and energy-minimized with a modified version of the program AMBER. Residues 3 to 30 and 37 to 48 form a well-defined molecular core with two antiparallel beta-sheets composed of residues 14 to 16 and 20 to 22, and 27 to 31 and 36 to 40, and three reverse turns at residues 8 to 11 (type II), 17 to 20 (type II') and 23 to 26 (type II). The average root-mean-square deviation of the individual NMR conformers relative to their mean co-ordinates is 0.38 A for the backbone atoms and 0.77 A for all heavy atoms of these residues. Increased structural disorder was found for the N-terminal dipeptide segment, the loop at residues 31 to 36, and the C-terminal tripeptide segment. The solution structure of hirudin(1-51) has the same molecular architecture as the corresponding polypeptide segment in natural hirudin and recombinant desulfatohirudin. It is also closely similar to the crystal structure of the N-terminal 51-residue segment of hirudin in a hirudin-thrombin complex, with root-mean-square deviations of the crystal structure relative to the mean solution structure of 0.61 A for the backbone atoms and 0.91 A for all heavy atoms of residues 3 to 30 and 37 to 48. Further coincidence is found for the loop formed by residues 31 to 36, which shows increased structural disorder in all available solution structures of hirudin, and of which residues 32 to 35 are not observable in the electron density map of the thrombin complex. Significant local structural differences between hirudin(1-51) in solution and hirudin in the crystalline thrombin complex were identified mainly for the N-terminal tripeptide segment and residues 17 to 21. These are further analyzed in an accompanying paper.  相似文献   

17.
During tumorigenesis, selective proliferative advantage in certain cell subsets is associated with accumulation of multiple genetic alterations. For instance, multiple myeloma is characterized by frequent karyotypic instability at the earliest stage, progressing to extreme genetic abnormalities as the disease progresses. These successive genetic alterations can be attributed, in part, to defects in DNA repair pathways, perhaps based on epigenetic gene silencing of proteins involved in DNA damage repair. Here we report epigenetic hypermethylation of the hHR23B gene, a key component of the nucleotide excision repair in response to DNA damage, in interleukin-6 (IL-6)-responsive myeloma KAS-6/1 cells. This hypermethylation was significantly abated by Zebularine, a potent demethylating agent, with a consequent increase in the hHR23B mRNA level. Subsequent removal of this drug and supplementation with IL-6 in the culture medium re-established DNA hypermethylation of the hHR23B gene and silencing of mRNA expression levels. The inclination of DNA to be remethylated, at least within the hHR23B gene promoter region, reflects an epigenetic driving force by the cytogenetic/tumorigenic status of KAS-6/1 myeloma. The IL-6 response of KAS-6/1 myeloma also raises a question of whether the proneoplastic growth factor, such as IL-6, supports the epigenetic silencing of important DNA repair genes via promoter hypermethylation during the development of multiple myeloma.  相似文献   

18.
The HIV-1 Vpr protein induces apoptosis of cells, the mechanism of which is unknown. To clarify how this function may be related to other Vpr functions, we simultaneously assessed the effects of multiple point mutations upon various Vpr properties. Our data suggest that induction of arrest by Vpr may be unnecessary for induction of apoptosis. This is exemplified by a C-terminal mutant, R80A, that does not arrest cells, yet induces low but significant levels of apoptosis. We also show that mutation of Vpr at both of its nuclear localization sequences (within its alpha-helices and the overlapping leucine zipper-like domain) does not affect induction of either apoptosis or cell cycle arrest. This indicates that neither sequence is essential for these two functions of Vpr. It further suggests that multimerization of Vpr, which maps to residues 60 and 67 within the leucine-rich region, is unnecessary for initiation of apoptosis and arrest. We previously found that the Vpr-binding protein, hHR23A, can partially alleviate induction of arrest. We now show that overexpression of hHR23A itself causes apoptosis of cells. Mutation of its C-terminal UBA( 2 ) domain that is responsible for binding Vpr disrupts the apoptotic effect. This suggests that Vpr may induce apoptosis through a pathway involving hHR23A.  相似文献   

19.
The 26S proteasome is essential for the proteolysis of proteins that have been covalently modified by the attachment of polyubiquitinated chains. Although the 20S core particle performs the degradation, the 19S regulatory cap complex is responsible for recognition of polyubiquitinated substrates. We have focused on how the S5a component of the 19S complex interacts with different ubiquitin-like (ubl) modules, to advance our understanding of how polyubiquitinated proteins are targeted to the proteasome. To achieve this, we have determined the solution structure of the ubl domain of hPLIC-2 and obtained a structural model of hHR23a by using NMR spectroscopy and homology modeling. We have also compared the S5a binding properties of ubiquitin, SUMO-1, and the ubl domains of hPLIC-2 and hHR23a and have identified the residues on their respective S5a contact surfaces. We provide evidence that the S5a-binding surface on the ubl domain of hPLIC-2 is required for its interaction with the proteasome. This study provides structural insights into protein recognition by the proteasome, and illustrates how the protein surface of a commonly utilized fold has highly evolved for various biological roles.  相似文献   

20.
The cissyn cyclobutane pyrimidine dimer (CPD) is a cytotoxic, mutagenic and carcinogenic DNA photoproduct and is repaired by the nucleotide excision repair (NER) pathway in mammalian cells. The XPC–hHR23B complex as the initiator of global genomic NER binds to sites of certain kinds of DNA damage. Although CPDs are rarely recognized by the XPC–hHR23B complex, the presence of mismatched bases opposite a CPD significantly increased the binding affinity of the XPC–hHR23B complex to the CPD. In order to decipher the properties of the DNA structures that determine the binding affinity for XPC–hHR23B to DNA, we carried out structural analyses of the various types of CPDs by NMR spectroscopy. The DNA duplex which contains a single 3′ T·G wobble pair in a CPD (CPD/GA duplex) induces little conformational distortion. However, severe distortion of the helical conformation occurs when a CPD contains double T·G wobble pairs (CPD/GG duplex) even though the T residues of the CPD form stable hydrogen bonds with the opposite G residues. The helical bending angle of the CPD/GG duplex was larger than those of the CPD/GA duplex and properly matched CPD/AA duplex. The fluctuation of the backbone conformation and significant changes in the widths of the major and minor grooves at the double T·G wobble paired site were also observed in the CPD/GG duplex. These structural features were also found in a duplex that contains the (6–4) adduct, which is efficiently recognized by the XPC–hHR23B complex. Thus, we suggest that the unique structural features of the DNA double helix (that is, helical bending, flexible backbone conformation, and significant changes of the major and/or minor grooves) might be important factors in determining the binding affinity of the XPC–hHR23B complex to DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号