首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plasmodium falciparum inhabits a niche within the most highly terminally differentiated cell in the human body--the mature red blood cell. Life inside this normally quiescent cell offers the parasite protection from the host's immune system, but provides little in the way of cellular infrastructure. To survive and replicate in the red blood cell, the parasite exports proteins that interact with and dramatically modify the properties of the host red blood cell. As part of this process, the parasite appears to establish a system within the red blood cell cytosol that allows the correct trafficking of parasite proteins to their final cellular destinations. In this review, we examine recent developments in our understanding of the pathways and components involved in the delivery of important parasite-encoded proteins to their final destination in the host red blood cell. These complex processes are not only fundamental to the survival of malaria parasites in vivo, but are also major determinants of the unique pathogenicity of this parasite.  相似文献   

2.
Several intraerythrocytic growth cycles of Plasmodium falciparum could be achieved in vitro using a serum free medium supplemented only with a human high density lipoprotein (HDL) fraction (d = 1.063-1.210). The parasitemia obtained was similar to that in standard culture medium containing human serum. The parasite development was incomplete with the low density lipoprotein (LDL) fraction and did not occur with the VLDL fraction. The lipid traffic from HDL to the infected erythrocytes was demonstrated by pulse labeling experiments using HDL loaded with either fluorescent NBD-phosphatidylcholine (NBD-PC) or radioactive [3H]palmitoyl-PC. At 37 degrees C, the lipid probes rapidly accumulated in the infected cells. After incubation in HDL medium containing labeled PC, a subsequent incubation in medium with either an excess of native HDL or 20% human serum induced the disappearance of the label from the erythrocyte plasma membrane but not from the intraerythrocytic parasite. Internalization of lipids did not occur at 4 degrees C. The mechanism involved a unidirectional flux of lipids but no endocytosis. The absence of labeling of P. falciparum, with HDL previously [125I]iodinated on their apolipoproteins or with antibodies against the apolipoproteins AI and AII by immunofluorescence and immunoblotting, confirmed that no endocytosis of the HDL was involved. A possible pathway of lipid transport could be a membrane flux since fluorescence videomicroscopy showed numerous organelles labeled with NBD-PC moving between the erythrocyte and the parasitophorous membranes. TLC analysis showed that a partial conversion of the PC to phosphatidylethanolamine was observed in P. falciparum-infected red cells after pulse with [3H]palmitoyl-PC-HDL. The intensity of the lipid traffic was stage dependent with a maximum at the trophozoite and young schizont stages (38th h of the erythrocyte life cycle). We conclude that the HDL fraction appears to be a major lipid source for Plasmodium growth.  相似文献   

3.
Cell culture systems, in particular Caco-2, and sucrase-isomaltase deficiency in humans are attractive models to study exocytic protein traffic in absorptive intestinal epithelial cells. Transport from ER to and through the Golgi is asynchronous and may depend on protein folding rather than oligomerization. Apical and basolateral proteins are sorted both intracellularly and from the basolateral membrane. A model is presented for the sorting of apical and basolateral proteins. Brush border proteins in lysosomes mainly originate from the Golgi and may reflect a regulatory or quality control mechanism. Apical transport and transcytosis but not basolateral transport are facilitated by microtubules.  相似文献   

4.
The malaria parasite undergoes a remarkable series of morphological transformations, which underpin its life in both human and mosquito hosts. The advent of molecular transfection technology coupled with the ability to introduce fluorescent reporter proteins that faithfully track and expose the activities of parasite proteins has revolutionized our view of parasite cell biology. The greatest insights have been realized in the erythrocyte stages of Plasmodium falciparum. P. falciparum invades and remodels the human erythrocyte: it feeds on haemoglobin, grows and divides, and subverts the physiology of its hapless host. Fluorescent proteins have been employed to track and dissect each of these processes and have revealed details and exposed new paradigms.  相似文献   

5.
Splenic filtration of infected red blood cells (RBCs) may contribute to innate immunity and variable outcomes of malaria infections. We show that filterability of individual RBCs is well predicted by the minimum cylindrical diameter (MCD) which is calculated from a RBC's surface area and volume. The MCD describes the smallest diameter tube or smallest pore that a cell may fit through without increasing its surface area. A microfluidic device was developed to measure the MCD from thousands of individual infected RBCs (IRBCs) and uninfected RBCs (URBCs). Average MCD changes during the blood-stage cycle of Plasmodium falciparum were tracked for the cytoadherent strain ITG and the knobless strain Dd2. The MCD values for IRBCs and URBCs raise several new intriguing insights into how the spleen may remove IRBCs: some early-stage ring-IRBCs, and not just late-stage schizont-IRBCs, may be highly susceptible to filtration. In addition, knobby parasites may limit surface area expansions and thus confer high MCDs on IRBCs. Finally, URBCs, in culture with IRBCs, show higher surface area loss which makes them more susceptible to filtration than naive URBCs. These findings raise important basic questions about the variable pathology of malaria infections and metabolic process that affect volume and surface area of IRBCs.  相似文献   

6.
We performed reverse-phase thin-layer chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC) analysis of polyisoprenoids released by sulfonium-salt cleavage with methyl iodide from Plasmodium falciparum proteins labeled with [3H]FPP or [3H]GGPP and showed that a dolichol of 11 isoprene units is bound to 21-28-kDa protein clusters from trophozoite and schizont stages. The dolichol structure was confirmed by electrospray-ionization mass spectrometry analysis. Treatment with protein synthesis inhibitors and RP-HPLC analysis of the proteolytic digestion products from parasite proteins labeled with [35S]cysteine and [3H]FPP showed that the attachment of dolichol to protein is a post-translational event and probably occurs via a covalent bond to cysteine residues.  相似文献   

7.
8.
Plasmodium berghei: lipids of rat red blood cells   总被引:2,自引:0,他引:2  
  相似文献   

9.
The respiratory requirements of Plasmodium falciparum were studied in vitro in continuous cultivation. The cultures were held in petri dishes containing the parasites incubated in different gas mixtures for periods of 72 to 144 hr with daily media changes. Atmospheres were combinations of 0.5 to 21% O2 mixed with 1 to 5% CO2 diluted with N2. Gas concentrations and the pH of media were measured with an O2CO2 analyzer. Best growth was realized in all cases at 3% O2 and 1 to 2% CO2. The culture appeared to be selfperpetuating in O2 concentrations as low as 0.5% providing the CO2 was not over 2%. Oxygen concentrations of 21% proved deleterious to growth. The parasite however, failed to grow in the highly reducing atmosphere of anaerobic “Brewer Jars,” suggesting that P. falciparum is an obligate microaerophile.  相似文献   

10.
We investigated numerically the mechanism of margination of Plasmodium falciparum malaria-infected red blood cells (Pf-IRBCs) in micro-scale blood flow. Our model illustrates that continuous hydrodynamic interaction between a Pf-IRBC in the trophozoite stage (Pf-T-IRBC) and healthy red blood cells (HRBCs) results in the margination of the Pf-T-IRBC and, thus, a longer duration of contact with endothelial cells. The Pf-T-IRBC and HRBCs first form a "train". The volume fraction of RBCs is then locally increased, to approximately 40%, and this value is maintained for a long period of time due to the formation of a long train in high-hematocrit conditions. Even in low-hematocrit conditions, the local volume fraction is instantaneously elevated to 40% and the Pf-T-IRBC can migrate to the wall. However, the short train formed in low-hematocrit conditions does not provide continuous interaction, and the Pf-T-IRBC moves back to the center of the channel.  相似文献   

11.
Protein export from Plasmodium parasites   总被引:4,自引:0,他引:4  
Many prokaryotic and eukaryotic intracellular pathogens survive by altering the host cell through the export of proteins. In contrast to the well-studied prokaryotic export systems, knowledge of protein export in eukaryotic pathogens is scant. The recent discovery that a short protein sequence targets a protein for export from the malaria parasite Plasmodium falciparum has shed light on the possible mechanism of proteins export and has allowed the preliminary identification of several hundred exported proteins. Among the exported proteins are the members of the paralogous protein families, previously identified exported proteins and many uncharacterized proteins. The interaction of the parasite with the host cell is thus much more complex, and involves more parasite proteins, than previously thought.  相似文献   

12.
13.
Malaria is a pathogenic disease in mammal species and typically causes destruction of red blood cells (RBCs). The malaria-infected RBCs undergoes alterations in morphology and its rheological properties, and the altered rheological properties of RBCs have a significant impact on disease pathophysiology. In this study, we investigated detailed topological and biomechanical properties of RBCs infected with malaria Plasmodium berghei ANKA using atomic force microscopy. Mouse (BALB/c) RBCs were obtained on Days 4, 10, and 14 after infection. We found that malaria-infected RBCs changed significantly in shape. The RBCs maintained a biconcave disk shape until Day 4 after infection and then became lopsided on Day 7 after infection. The central region of RBCs began to swell beginning on Day 10 after infection. More schizont stages were present on Days 10 and 14 compared with on Day 4. The malaria-infected RBCs also showed changes in mechanical properties and the cytoskeleton. The stiffness of infected RBCs increased 4.4–4.6-fold and their cytoskeletal F-actin level increased 18.99–67.85% compared with the control cells. The increase in F-actin depending on infection time was in good agreement with the increased stiffness of infected RBCs. Because more schizont stages were found at a late period of infection at Days 10 and 14, the significant changes in biomechanical properties might contribute to the destruction of RBCs, possibly resulting in the release of merozoites into the blood circulation.  相似文献   

14.
Red cells infected with the human malaria parasite Plasmodium falciparum have an increased permeability to a range of small, structurally unrelated solutes via a malaria-induced pathway. We report here a similar pathway present in parasitised red cells from chickens infected with the avian malaria parasite, Plasmodium gallinaceum. Parasitised cells showed a marked increase in the rate of influx of sorbitol (76-fold) and, to a lesser degree, taurine (3-fold) when compared with red cells from uninfected chickens. Pharmacological data suggest that both sorbitol and taurine are transported via a single malaria-induced pathway, which is sensitive to inhibition by 5-nitro-2-(3-phenylpropylamino)benzoic acid (IC(50) approximately 7 microM). The malaria-induced pathway differed in its inhibition by a range of anion channel inhibitors when compared to the endogenous, volume-activated osmolyte pathway of chicken red cells. There were also differences in the selectivity of sorbitol and taurine by the two permeation routes. The data presented here are consistent with the presence of two distinct organic solute pathways in infected chicken red cells. The first is an endogenous volume-activated pathway, which is not activated by the parasite and the second is a malaria-induced pathway, similar to those that are induced by other types of malaria in other host species.  相似文献   

15.
Recently, while studying erythrocytic apoptosis during Plasmodiumyoelii infection, we observed an increase in the levels ofnon-parasitised red blood cell (nRBC) apoptosis, which could be related tomalarial anaemia. Therefore, in the present study, we attempted to investigatewhether nRBC apoptosis is associated with the peripheral RBC count, parasiteload or immune response. To this end, BALB/c mice were infected with P.yoelii 17XL and nRBC apoptosis, number of peripheral RBCs,parasitaemia and plasmatic levels of cytokines, nitric oxide and anti-RBCantibodies were evaluated at the early and late stages of anaemia. The apoptosisof nRBCs increased at the late stage and was associated with parasitaemia, butnot with the intensity of the immune response. The increased percentage of nRBCapoptosis that was observed when anaemia was accentuated was not related to areduction in peripheral RBCs. We conclude that nRBC apoptosis in P.yoelii malaria appears to be induced in response to a high parasiteload. Further studies on malaria models in which acute anaemia develops duringlow parasitaemia are needed to identify the potential pathogenic role of nRBCapoptosis.  相似文献   

16.
Comparison of the malaria parasite and mammalian protein prenyltransferases and their cellular substrates is important for establishing this enzyme as a target for developing antimalarial agents. Nineteen heptapeptides differing only in their carboxyl-terminal amino acid were tested as alternative substrates of partially purified Plasmodium falciparum protein farnesyltransferase. Only NRSCAIM and NRSCAIQ serve as substrates, with NRSCAIM being the best. Peptidomimetics, FTI-276 and GGTI-287, inhibit the transferase with IC(50) values of 1 and 32 nm, respectively. Incubation of P. falciparum-infected erythrocytes with [(3)H]farnesol labels 50- and 22-28-kDa proteins, whereas [(3)H]geranylgeraniol labels only 22-28-kDa proteins. The 50-kDa protein is shown to be farnesylated, whereas the 22-28-kDa proteins are geranylgeranylated, irrespective of the labeling prenol. Protein labeling is inhibited more than 50% by either 5 microm FTI-277 or GGTI-298. The same concentration of inhibitors also inhibits parasite growth from the ring stage by 50%, decreases expression of prenylated proteins as measured with prenyl-specific antibody, and inhibits parasite differentiation beyond the trophozoite stage. Furthermore, differentiation specific prenylation of P. falciparum proteins is demonstrated. Protein labeling is detected predominantly during the trophozoite to schizont and schizont to ring transitions. These results demonstrate unique properties of protein prenylation in P. falciparum: a limited specificity of the farnesyltransferase for peptide substrates compared with mammalian enzymes, the ability to use farnesol to label both farnesyl and geranylgeranyl moieties on proteins, differentiation specific protein prenylation, and the ability of peptidomimetic prenyltransferase inhibitors to block parasite differentiation.  相似文献   

17.
51Cr-labelled uninfected cells, separated from Plasmodium berghei-infected mouse blood using the fluorescence-activated cell sorter, were cleared more rapidly than normal mouse erythrocytes after intravenous injection into normal mice.  相似文献   

18.
Plasmodium falciparum causes the most lethal form of malaria in humans and is responsible for over two million deaths per year. The development of a vaccine against this parasite is an urgent priority and potential protein targets include those on the surface of the asexual merozoite stage, the form that invades the host erythrocyte. The development of methods to transfect P. falciparum has enabled the construction of gain-of-function and loss-of-function mutants and provided new strategies to analyse the role of parasite proteins. In this review, we describe the use of this technology to examine the role of merozoite antigens in erythrocyte invasion and to address their potential as vaccine candidates.  相似文献   

19.
Almost all aspects of protein traffic in bacteria were covered at the ASM-FEMS meeting on the topic in Iraklio, Crete in May 2006. The studies presented ranged from mechanistic analysis of specific events leading proteins to their final destinations to the physiological roles of the targeted proteins. Among the highlights from the meeting that are reviewed here are the molecular dynamics of SecA protein, membrane protein insertion, type III secretion needles and chaperones, type IV secretion, the two partner and autosecretion systems, the 'secretion competent state', and the recently discovered type VI secretion system.  相似文献   

20.
Plasmodium vivax was maintained in experimentally infected Aotus nancymai. Positive monkeys were used as donors for culture material. After leucocyte removal with two different methods, including the classic CF11 method and a commercially available filter, parasites were grown under continuous shaking conditions in standard RPMI 1640, containing 20% human AB + serum. When mature schizonts were present, artificially induced reticulocytes from monkeys pretreated with the hemolytic drug phenylhydrazine HCl were added. Addition of reticulocytes and shaking were both necessary to realize a significant reinvasion under in vitro conditions. A strong positive correlation between the percentage of reticulocytes and in vitro invasion was demonstrated, and a preferential invasion into reticulocytes was demonstrated in vivo and in vitro using blood films stained with brilliant cresyl blue and counterstained with Giemsa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号