首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cats viremic with feline leukemia virus subgroup C (FeLV-C) develop pure red cell aplasia (PRCA) characterized by the loss of detectable late erythroid progenitors (CFU-E) in marrow culture. Normal numbers of early erythroid progenitors (BFU-E) and granulocyte-macrophage progenitors (CFU-GM) remain, suggesting that the maturation of BFU-E to CFU-E is impaired in vivo. We have examined the cell cycle kinetics of BFU-E and their response to hematopoietic growth factor(s) to better characterize erythropoiesis as anemia develops. Within 3 weeks of FeLV-C infection, yet 6-42 weeks before anemia, the traction of BFU-E in DNA synthesis as determined by tritiated thymidine suicide increased to 43 +/- 4% (normal 23 +/- 2%) while there was no change in the cell cycle kinetics of CFU-GM. In additional studies, we evaluated the response of marrow to the hematopoietic growth factor(s) present in medium conditioned by FeLV-infected feline embryonic fibroblasts (FEA/FeLV CM). With cells from normal cats or cats viremic with FeLV-C but not anemic, a 4-fold increase in erythroid bursts was seen in cultures with 5% FEA/FeLV CM when compared to cultures without CM. However, just prior to the onset of anemia, when the numbers of detectable CFU-E decreased, BFU-E no longer responded to FEA/FeLV CM in vitro. BFU-E from anemic cats also required 10% cat or human serum for optimal in vitro growth. These altered kinetics and in vitro growth characteristics may relate to the in vivo block of BFU-E differentiation and PRCA. Finally, when marrow from cats with PRCA was placed in suspension culture for 2 to 4 days in the presence of cat serum and CM, the numbers of BFU-E increased 2- to 4-fold although no CFU-E were generated. By 4 to 7 days, CFU-E were detected, suggesting that conditions contributing to the block of erythroid maturation did not persist. The suspension culture technique provides an approach to study further the defect in erythroid differentiation characteristic of feline PRCA.  相似文献   

2.
β-1,4-galactosyltransferase I (β-1,4-GalT I) plays an important role in the synthesis of the backbone structure of adhesion molecules involved in leukocyte–endothelial cell interaction. The expression of β-1,4-GalT I mRNA increased in primary human endothelial cells after exposure to tumor necrosis factor-α (TNF-α). In the central nervous system (CNS), astrocytes play a pivotal role in immunity as immunocompetent cells by secreting cytokines and inflammatory mediators, there are two types of astrocytes. Type-1 astrocytes can secrete TNF-α when stimulated with Lipopolysaccharide (LPS), while the responses of type-2 astrocytes during inflammation are unknown. So we examined the expression change of β-1,4-GalT I mRNA in type-2 astrocytes after exposure to TNF-α and LPS. Real-time PCR showed that TNF-α or LPS affected β-1,4-GalT I mRNA expression in a time- and dose-dependent manner. RT-PCR analysis revealed that TNFR1 and TNFR2 were present in normal untreated type-2 astrocytes, and that TNF-α, TNFR1 and TNFR2 increased in type-2 astrocytes after exposure to TNF-α or LPS. Immunocytochemistry showed that TNFR1 was expressed in the cytoplasm, nucleus and processes of normal untreated type-2 astrocytes, and distributed mainly in the cytoplasm and processes after exposure to LPS. TNFR2 was mainly expressed in the nucleus of normal untreated type-2 astrocytes, and distributed mainly in the processes of type-2 astrocytes after exposure to LPS. Both anti-TNFR1 and anti-TNFR2 antibodies suppressed β-1,4-GalT I mRNA expression induced by TNF-α or LPS. From these results, we conclude that TNF-α signaling via both TNFR1 and TNFR2 translocated from nucleus to cytoplasm or processes is sufficient to induce β-1,4-GalT I mRNA. In addition, we observed that not only exogenous TNF-α but also TNF-α produced by type-2 astrocytes affected β-1,4-GalT I mRNA production in type-2 astrocytes. These results suggest that an autocrine loop involving TNF-α contributes to the production of β-1,4-GalT I mRNA in response to inflammation. Chunlin Xia is the co-first author.  相似文献   

3.
Some leukocyte effector cell-surface molecules movement toward the adjoining target cells takes place during the reaction of NK cytotoxicity (NK R). The majority of the moving molecules are usually anchoredvia a divalent-ion-dependent interaction (PMM-M2+). The released PMM-M2+ can interact also with the secreted tumor necrosis factor alfa (TNF-α). In agreement with PMM-M2+ movement, the number of TNF-α binding sites on the target cell surface increases during NK R. In addition, antibodies against PMM-M2+, as well asd-mannose- or N-acetyl-d-glucosamine-terminated oligosaccharides of PMM-M2+ inhibit NK R. A more detailed analysis of PMM-M2+ with monoclonal antibodies used flow cytometry and cell-surface biotinylation. Only 3 of 31 tested CD antigens (CD2, LAK-1 and CD45) were passed through this first strongly restricted experimental screening. The EDTA-released LAK-1 antigen, but not CD2 and CD45, interact with TNF-α and cell surfacevia a mannose-inhibitable interaction dependent on the presence of Ca2+ ions. The mechanism of possible participation of PMM-M2+ in cytotoxic events is discussed in relation to Ca2+ influx and subsequent cytolysin secretion.  相似文献   

4.
We describe the molecular cloning of an anemogenic feline leukemia virus (FeLV), FeLV-C-Sarma, from the productively infected human rhabdomyosarcoma cell line RD(FeLV-C-S). Molecularly cloned FeLV-C-S proviral DNA yielded infectious virus (mcFeLV-C-S) after transfection of mammalian cells, and virus interference studies using transfection-derived virus demonstrated that our clone encodes FeLV belonging to the C subgroup. mcFeLV-C-S did not induce viremia in eight 8-week-old outbred specific-pathogen-free (SPF) cats. It did, however, induce viremia and a rapid, fatal aplastic anemia due to profound suppression of erythroid stem cell growth in 9 of 10 inoculated newborn, SPF cats within 3 to 8 weeks (21 to 58 days) postinoculation. Thus, the genome of mcFeLV-C-S encodes the determinants responsible for the genetically dominant induction of irreversible erythroid aplasia in outbred cats. A potential clue to the pathogenic determinants of this virus comes from previous work indicating that all FeLV isolates belonging to the C subgroup, an envelop-gene-determined property, and only those belonging to the C subgroup, are potent, consistent inducers of aplastic anemia in cats. To approach the molecular mechanism underlying the induction of this disease, we first determined the nucleotide sequence of the envelope genes and 3' long terminal repeat of FeLV-C-S and compared it with that of FeLV-B-Gardner-Arnstein (mcFeLV-B-GA), a subgroup-B feline leukemia virus that consistently induces a different disease, myelodysplastic anemia, in neonatal SPF cats. Our analysis revealed that the p15E genes and long terminal repeats of the two FeLV strains are highly homologous, whereas there are major differences in the gp70 proteins, including five regions of significant amino acid differences and apparent sequence substitution. Some of these changes are also reflected in predicted glycosylation sites; the gp70 protein of FeLV-B-GA has 11 potential glycosylation sites, only 8 of which are present in FeLV-C-S.  相似文献   

5.
Copper is known to induce oxidative stress in a number of models. It was shown that many pathophysiological events were associated with oxidative stress. Further, oxidative stress can increase gene expression of cytokines and of metalloproteinases. We previously found that copper toxic effects in isolated perfused rat livers were associated with significant oxidative stress (as assessed by lipid peroxidation, protein oxidation and oxidative DNA damage, particularly at concentration of 0.03 mM of Cu2+ in the perfusate). Here we investigated gene expression of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10); matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in frozen liver tissue samples by the real-time PCR assay. Compared to controls, copper at concentration of 0.01 mM did not affect gene expression of TNF-α, IL-10, MMP-2 and MMP-9, whereas copper at concentration of 0.03 mM significantly decreased gene expression of all the four TNF-α, IL-10, MMP-2 and MMP-9 by 69%, 81%, 43%, and 62%, respectively. These results suggest that copper-induced oxidative stress in the isolated rat liver can lead to the suppression of gene expression. Because TNF-α and metalloproteinases are involved also in liver regeneration, the suppression of these genes by copper may be one of the mechanisms by which acute intoxication of animals and humans with copper may impair regenerative capability of the liver.  相似文献   

6.
Feline leukemia viruses (FeLVs) belonging to interference subgroup C induce fatal anemia resembling human pure red cell aplasia (PRCA). Subgroup A FeLVs, although closely related genetically to FeLVs of subgroup C, do not induce PRCA. The determinants for PRCA induction by a molecularly cloned prototype subgroup C virus (FeLV-Sarma-C [FSC]) have been localized to the N-terminal 241 amino acids of the surface glycoprotein (SU) gp70. To investigate whether the anemogenic activity of FSC reflects a unique capacity to infect erythroid progenitor cells, we used correlative immunogold, immunofluorescence, and cytological staining to study prospectively the hemopoietic cell populations infected by either FSC or FeLV-FAIDS-61E-A (F6A), a prototype of subgroup A virus. The results demonstrated that although only FSC-infected animals developed erythrocyte aplasia, the env SU and the major core protein (p27) were expressed in a surprisingly large fraction of the lymphoid, erythroid, and myeloid lineage marrow cells in both FSC- and F6A-infected cats. Between days 8 and 17 postinoculation, gp70 and p27 were detected in 43 to 73% of erythroid, 25 to 75% of lymphoid, and 35 to 50% of myeloid lineage cells, regardless of whether the cats were infected with FSC or F6A. Thus, anemogenic subgroup C and nonanemogenic subgroup A FeLVs have similar hemopoietic cell tropism and infection kinetics, despite their divergent effects on erythroid progenitor cell function. Acute anemia induction by subgroup C FeLV, therefore, does not reflect a unique tropism for marrow erythroid cells but rather indicates a unique cytopathic effect of the SU on erythroid progenitor cells.  相似文献   

7.
Protein kinase C (PKC) is overexpressed in cancer, including pancreatic cancer, compared with normal tissue. Moreover, PKCα is considered one of the biomarkers for the diagnosis of cancers. In several human cancers, the claudin tight junction molecules are abnormally regulated and are thus promising molecular targets for diagnosis and therapy with Clostridium perfringens enterotoxin (CPE). In order to investigate the changes of tight junction functions of claudins via PKCα activation in pancreatic cancer cells, the well-differentiated human pancreatic cancer cell line HPAC, with its highly expressed tight junction molecules and well-developed barrier function, was treated with the PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA). Treatment with TPA modified the activity of phosphoPKCα and caused an increase of the Snail family members Snail, Slug and Smad-interacting protein 1 and a decrease of E-cadherin. In HPAC cells treated with TPA, downregulation of claudin-1 and mislocalization of claudin-4 and occludin around the nuclei were observed, together with a decrease in the numbers of tight junction strands and an increase in phosphorylation of claudin-4. The barrier function and the cytotoxicity of CPE were significantly decreased on TPA treatment. All such changes after TPA treatment were prevented by inhibitors of panPKC and PKCα. These findings suggest that, in human pancreatic cancer cells, PKCα activation downregulates tight junction functions as a barrier and as a receptor of CPE via the modification of claudin-1 and −4 during epithelial to mesenchymal transition-like changes. PKCα inhibitors might represent potential therapeutic agents against human pancreatic cancer cells by use of CPE cytotoxicity via claudin-4.  相似文献   

8.
Domestic cats infected with the horizontally transmitted feline leukemia virus subgroup A (FeLV-A) often produce mutants (termed FeLV-C) that bind to a distinct cell surface receptor and cause severe aplastic anemia in vivo and erythroblast destruction in bone marrow cultures. The major determinant for FeLV-C-induced anemia has been mapped to a small region of the surface envelope glycoprotein that is responsible for its receptor binding specificity. Thus, erythroblast destruction may directly or indirectly result from FeLV-C binding to its receptor. To address these issues, we functionally cloned a putative cell surface receptor for FeLV-C (FLVCR) by using a human T-lymphocyte cDNA library in a retroviral vector. Expression of the 2.0-kbp FLVCR cDNA in naturally resistant Swiss mouse fibroblasts and Chinese hamster ovary cells caused substantial susceptibility to FeLV-C but no change in susceptibilities to FeLV-B and other retroviruses. The predicted FLVCR protein contains 555 amino acids and 12 hydrophobic potential membrane-spanning sequences. Database searches indicated that FLVCR is a member of the major-facilitator superfamily of transporters and implied that it may transport an organic anion. RNA blot analyses showed that FLVCR mRNA is expressed in multiple hematopoietic lineages rather than specifically in erythroblasts. These results suggest that the targeted destruction of erythroblasts by FeLV-C may derive from their greater sensitivity to this virus rather than from a preferential susceptibility to infection.  相似文献   

9.
The pathogenic subgroup C feline leukemia virus (FeLV-C) arises in infected cats as a result of mutations in the envelope (Env) of the subgroup A FeLV (FeLV-A). To better understand emergence of FeLV-C and potential FeLV intermediates that may arise, we characterized FeLV Env sequences from the primary FY981 FeLV isolate previously derived from an anemic cat. Here, we report the characterization of the novel FY981 FeLV Env that is highly related to FeLV-A Env but whose variable region A (VRA) receptor recognition sequence partially resembles the VRA sequence from the prototypical FeLV-C/Sarma Env. Pseudotype viruses bearing FY981 Env were capable of infecting feline, human, and guinea pig cells, suggestive of a subgroup C phenotype, but also infected porcine ST-IOWA cells that are normally resistant to FeLV-C and to FeLV-A. Analysis of the host receptor used by FY981 suggests that FY981 can use both the FeLV-C receptor FLVCR1 and the feline FeLV-A receptor THTR1 for infection. However, our results suggest that FY981 infection of ST-IOWA cells is not mediated by the porcine homologue of FLVCR1 and THTR1 but by an alternative receptor, which we have now identified as the FLVCR1-related protein FLVCR2. Together, our results suggest that FY981 FeLV uses FLVCR1, FLVCR2, and THTR1 as receptors. Our findings suggest the possibility that pathogenic FeLV-C arises in FeLV-infected cats through intermediates that are multitropic in their receptor use.Feline leukemia viruses (FeLVs) are pathogenic retroviruses of domestic cats that induce proliferative, degenerative, and immunosuppressive disorders (17, 18, 27). Infected cats often contain a mixture of FeLVs that have been categorized into subgroups A, B, and C based on their interference and in vitro host range properties (39). These subgroups have been shown to be tightly associated with distinct feline diseases (17, 27). A fourth subgroup (T) that is highly related to FeLV-A has also been reported (26) and has been shown to be associated with immune deficiency (30). FeLV-A is the primary strain that is transmitted between cats and is the progenitor virus from which other subgroups arise. FeLV-B arises by recombination between endogenous retroviral sequences present in the cat genome and the gene encoding the FeLV-A envelope (Env) protein (32, 40, 42) that is responsible for host cell surface receptor recognition. FeLV-C and FeLV-T are formed by mutations in the FeLV-A Env gene (10, 27, 38). Env recombination and mutations are a major determinant of the host receptors used by the different FeLV subgroups (3, 23, 34, 46, 47).The emergence of pathogenic FeLV-C in cats infected with FeLV-A provides a classic example of Env mutations that switch the host receptor used for infection, leading to a fatal pathogenic disease in the host. The emergence of FeLV-C is tightly associated with red blood cell aplasia, a fatal feline anemia characterized by a specific disruption in erythroid progenitor cell development (2, 12, 19, 28). Moreover, FeLV-C emergence coincides with a switch in the host receptor used for infection from the thiamine transporter THTR1 (FeLV-A receptor) (23) to the heme exporter FLVCR1 (FeLV-C receptor) (34, 35, 46). Previous studies have suggested that the feline anemia is caused by the FeLV-C Env protein binding to, and disrupting, the cellular function of FLVCR1 (1, 34, 46). Indeed, expression of FeLV-C Env in hematopoietic stem cells (36) or disruption of FLVCR1 (21, 35) specifically disrupts early erythropoiesis, which mimics the anemia observed in cats with FeLV-C. Interestingly, the emergence of FeLV-C from FeLV-A is analogous to the emergence of cytopathic X4 strains of human immunodeficiency virus type 1 (HIV-1) in individuals infected with the R5 strain of HIV-1. Analogous to the emergence of FeLV-C, X4 HIV-1 arises by Env mutations in the R5 HIV-1 strain, which leads to a switch in the coreceptor used for infection allowing an expansion in HIV-1 cell tropism and subsequently to accelerated AIDS (4, 8). However, whereas HIV-1 pathogenesis also involves emergence of variants or X4/R5 intermediates that can use multiple related coreceptors for infection (5, 8, 11), the mechanism of how FeLV-C emerges, in terms of the presence of FeLV-A/FeLV-C intermediates, has yet to be elucidated.To better understand the emergence of pathogenic FeLV-C in infected cats and potential FeLV variants/intermediates that may arise, we isolated and characterized FeLV Env sequences from a primary FeLV isolate derived from a cat with pure red cell aplasia. In this study, we report the isolation and characterization of the novel FY981 Env, a hybrid FeLV-A/FeLV-C Env that, when pseudotyped, can use FLVCR1, THTR1, and the FLVCR1-related FLVCR2 for infection. Our findings suggest that the FY981 Env could represent a potential FeLV intermediate that arises during the emergence of pathogenic FeLV-C.  相似文献   

10.
IFN-γ, TNF-α, IL-4, IL10 and IL-12 concentrations in the supernatant of peripheral blood mononuclear cell (PBMC) cultures and the in vitro proliferation of PBMC were studied in 25 patients with actinomycetoma caused by Nocardia brasiliensisand in 10 healthy controls from endemic zones. Cell cultures were stimulated by a N. brasiliensiscrude cytoplasmic antigen (NB) and five semi-purified protein fractions (NB2, NB4, NB6, NB8, and NB10) separated by isoelectric. Phytohemagglutinin (PHA) and purified protein derivative (PPD) of Mycobacterium tuberculosiswere used as control antigens. Skin tests were performed by injecting 0.1 ml of candidin and PPD intradermally (ID). Patients showed a poor response to tuberculin, while their response to candidin was more than two fold greater than that observed in the controls. Cell proliferation showed no statistically significant differences in either group. IFN-γ production was higher in the healthy controls than in the patients, whereas TNF-α secretion was slightly higher in the patients’ cultures. IL-4 was detected in the patients’ cultures but not in the controls. IL-10 and IL-12 were present at low concentrations in both groups. These results suggest that patients with actinomycetoma show normal antigen recognition, but with low IFN-γ production, and higher concentrations of IL-4, IL-10 and TNF-α in the patients’ PBMC cultures, indicating that they probably have a Th2 type of immune response.  相似文献   

11.
In studies designed to determine the role of feline leukemia virus (FeLV) in the pathogenesis of marrow failure in the cat, we tested medium conditioned by uninfected and FeLV-infected feline embryonic fibroblasts (FEA) for its effect on hematopoietic colony growth in culture. As opposed to an inhibitory effect, we found that the conditioned medium (CM) from FEA or FEA/FeLV increased the in vitro growth of multiple hematopoietic progenitor cell types including erythroid burst-forming cells (BFU-E), granulocyte/macrophage colony-forming cells, megakaryocytic colony-forming cells, and mixed-cell colony-forming cells. Furthermore, CM enhanced the growth of progenitors in cultures of mouse or human marrow cells, as well as cat marrow cells. Stimulation of feline BFU-E was most marked with an increment in growth of 400% over control. The human burst promoting activity (BPA) of the CM was equivalent or better than other CM available in our laboratory. The evidence suggest that the growth-promoting activity is a constitutive product(s) released by FEA which was enhanced eightfold with virus infection. Studies with non-adherent and T-lymphocyte-depleted human marrow cells and human peripheral blood cells suggest that the growth factor(s) acts directly on progenitor cells and not through readily identified accessory cells. These findings are consistent with the concept that mesenchymal cells such as fibroblasts have the capacity to release hematopoietic growth factor(s) capable of acting on primitive hematopoietic progenitors. The results provide an example of how injury of such cells, through virus infection, may enhance growth factor(s) release and influence the hematopoietic microenvironment.  相似文献   

12.
Summary.  The effect of taurine (Tau) and taurine chloramine (Tau-Cl) on the production of TNF-α, IL-1β, and IL-6 by peripheral blood mononuclear cells of healthy volunteers was examined. Cells were stimulated with bacterial lipopolysaccharide (LPS) in the presence of either Tau or Tau-Cl. After 24 h culture the cytokine concentrations were measured in both culture supernatants (secreted) and cell lysates (cell-associated) using ELISA. In LPS-stimulated cells Tau-Cl inhibited both the secreted and cell-associated IL-1β and IL-6, while exerted dual effect on TNF-α production: raising it slightly at low and reducing at higher concentration. By contrast, Tau had no significant effect on the cytokine production. These results indicate that Tau-Cl modulates synthesis of pro-inflammatory cytokines, and therefore it may play a role in the initiation and propagation of immune response. Received November 29, 2001 Accepted January 18, 2002 Published online August 30, 2002 Acknowledgments This research was supported by grants from the State Committee for Scientific Research of Poland (No 4 P05B 01018) and the Institute of Rheumatology (No I/14). The Institute of Rheumatology is supported by a core grant from the State Committee for Scientific Research of Poland. Authors' address: Ewa Kontny, Ph.D., Department of Pathophysiology and Immunology, Institute of Rheumatology, Spartanska 1, 02-637 Warsaw, Poland, E-mail: zpatiir@warman.com.pl Abbreviations: Tau, taurine; Tau-Cl, taurine chloramine; LPS, lipopolysaccharide; TNF-α, tumor necrosis factor-α; IL-1β, interleukin 1β; IL-6, interleukin 6; PBMC, peripheral blood mononuclear cells  相似文献   

13.
The effect of curcumin on lipopolysaccharide/d-galactosamine (LPS/GalN)-induced acute shock model of liver injury was examined in mice. The simultaneous administration of LPS (5–20 μg kg−1, i.p.) and GalN (700 mg kg−1, i.p.) markedly increased the serum tumor necrosis factor-α (TNF-α), glutamic oxaloacetic transaminase/glutamic pyruvic transaminase (GOT/GPT), and massive hepatic necrosis and inflammation, leading to 100% lethality. Pre-administration of curcumin (100 mg kg−1, i.p.) 3 h before induction with LPS/GalN imparted a large extent of protection against acute elevation in serum TNF-α and serum GOT/GPT. Hepatic necrosis and lethality caused by LPS/GalN was also greatly reduced by curcumin treatment. The results demonstrated that curcumin could protect mice from LPS/GalN-induced hepatic injury and inflammation through blockading TNF-α production, eventually raising the survival rate of septic-shock-induced mice.  相似文献   

14.
In this study, we investigated the immunostimulating activity of polysaccharides isolated from fruiting body of Inonotus obliquus (PFIO). Additionally, the signaling pathway of PFIO-mediated macrophage activation was investigated in RAW264.7 macrophage cells. We found that PFIO was capable of promoting NO/ROS production, TNF-α secretion and phagocytic uptake in macrophages, as well as cell proliferation, comitogenic effect and IFN-γ/IL-4 secretion in mouse splenocytes. PFIO was able to induce the phosphorylation of three MAPKs as well as the nuclear translocation of NF-κB, resulting in activation of RAW264.7 macrophages. PFIO also induced the inhibition of TNF-α secretion by anti-TLR2 mAb, consequently, PFIO might be involved in TNF-α secretion via the TLR2 receptor. In addition, our results showed that oral administration of PFIO suppressed in vivo growth of melanoma tumor in tumorbearing mice. In conclusion, our experiments presented that PFIO effectively promotes macrophage activation through the MAPK and NF-κB signaling pathways, suggesting that PFIO may potentially regulate the immune response.  相似文献   

15.
We investigated the in vitro efficacy of all-trans retinoic acid (ATRA) and alpha-tocopherol succinate (α-TS) alone and in combination on the induction of cell death in freshly isolated leukemic cells obtained from chronic myeloid leukemia (CML) patients. In vitro cytotoxicity and induction of lipid peroxidation by ATRA (10 μM) and α-TS (25 or 50 μM) were evaluated in primary leukemic cells by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and malondialdehyde formation respectively. Treatment of leukemic cells with α-TS alone or in combination with ATRA significantly (P < 0.05) decreased the cell viability in a concentration and time dependent manner as compared to peripheral blood mononuclear cells obtained from normal healthy controls. Lipid peroxidation was enhanced by 98% (P < 0.05) on combined treatment of cells with ATRA (10 μM) and α-TS (50 μM). ATRA alone did not enhance the externalization of phosphatidyl serine as studied by annexin-V binding using fluorescence activated cell sorter analysis, whereas in combination with α-TS it increased to 400% at 12 h. The treatment of leukemic cells to combination of ATRA with α-TS significantly decreased (P < 0.05) mitochondrial membrane potential and enhanced lysosomal destabilization. The combination of these drugs also increased mitochondrial and cytosolic reactive oxygen species (ROS) production, nitric oxide levels, and caspase-3 activity significantly and caused DNA fragmentation at 24 h in a concentration dependent manner in the leukemic cells. Our data suggest that ATRA in combination with α-TS efficiently induces apoptosis in leukemic cells, which may be a useful therapeutic modality in CML patients.  相似文献   

16.
17.
Infection of cells by the highly anemogenic feline leukemia virus subgroup C (FeLV-C) is mediated by the heme exporter FLVCR1, a cell surface protein containing 12 potential transmembrane segments with six presumptive extracellular loops (ECLs). To identify FLVCR1 residues critical for mediating FeLV-C infection, we first independently isolated a human cDNA encoding the FLVCR2 protein that shares 52% identity to human FLVCR1, and we show that FLVCR2 does not function as a receptor for FeLV-C. Then, by generating specific hybrids between FLVCR1 and FLVCR2 and testing susceptibility of mouse cells expressing these hybrids to beta-galactosidase encoding FeLV-C, we identify FLVCR1 ECLs 1 and 6 as critical for mediating FeLV-C infection. Mouse cells expressing a hybrid protein containing FLVCR2 backbone with the ECL6 sequence from FLVCR1 were highly susceptible to FeLV-C infection. Using site-directed mutagenesis, we show that a single mutation of Asn463 in FLVCR2 ECL6 to an acidic Asp residue (a residue present in the corresponding position 487 in FLVCR1 ECL6) is sufficient to render FLVCR2 functional as an FeLV-C receptor. However, an Asp487Asn mutation in FLVCR1 ECL6 or substitution of the entire FLVCR1 ECL6 sequence for FLVCR2 ECL6 sequence does not disrupt receptor function. Subsequent substitutions show that residues within FLVCR1 ECL1 also contribute to mediating FeLV-C infection. Furthermore, our results suggest that FLVCR1 regions that mediate FeLV-C surface unit binding are distinct from ECL1 and ECL6. Our results are consistent with previous conclusions that infection of cells by gammaretroviruses involves interaction of virus with multiple receptor regions.  相似文献   

18.
Pharmacologic modulators of cyclic 3',5'-adenosine monophosphate (cAMP) and calcium were added to cultures of bone marrow cells from normal cats and cats with retrovirus-induced erythroid aplasia (EA). Treatment with the following reagents increased the number of erythroid progenitors (CFU-e and BFU-e) in cells from normal cats: isoproterenol, dibutyryl cAMP, forskolin, RO-20-1724 and A23187. However, treatment of cells collected from viremic cats not only failed to enhance CFU-e and BFU-e but inhibited their growth. These studies suggest that EA is related to a non-reversible block of primitive erythroid progenitors or to direct inhibition of BFU-e and CFU-e growth.  相似文献   

19.
Ixodes ricinus Linnaeus (Acari: Ixodidae) ticks are vectors of numerous infectious diseases in humans and animals. The allozyme variability of MDH and α-Gpdh was detected by native polyacrylamide gel electrophoresis in I. ricinus natural populations in three localities in Serbia. Four alleles of Mdh locus (MDH 1, MDH 2, MDH 3 and MDH X) and four alleles of α-Gpdh locus (VS, S, F and VF) were detected. Interpopulation differences in Mdh and α-Gpdh allele frequencies were statistically insignificant. Significant difference in α-Gpdh allele frequencies between males and females was recorded in the largest sample only. Differences in allele frequencies, detected between borreliae-infected and uninfected I. ricinus ticks, were close to the level of statistical significance, especially for α-Gpdh locus. Clear significant difference appeared in females when sexes were tested separatelly (P = 0.037). It is interesting that genotypes containing rarer alleles (MDH 1 and S) were infected in higher proportion in comparison to other genotypes. Our results point towards a possible role of Mdh and α-Gpdh loci in I. ricinus ticks in the determination of energy requirements for host seeking. Sex differences in α-Gpdh allele frequencies suggest that selective pressure, concerning efficiency of reserve materials utilisation, points to α-Gpdh rather than to Mdh locus.  相似文献   

20.
Plasma essential trace elements, selenium, copper, zinc, and iron concentrations and the levels of immunoregulatory cytokines, interleukin-1β (IL-1β), interleukin-2 receptor (IL-2r), IL-6, IL-8, and tumor necrosis factor-α (TNF-α) were evaluated in patients with cutaneous leishmaniasis (CL) to investigate a possible role of these cytokines on selenium, zinc, copper, and iron homeostasis in CL patients. Plasma albumin levels were measured as an index of nutritional status. Plasma selenium, zinc, and iron concentrations, and IL-2r levels were significantly lower, and copper concentrations and IL-1β, IL-8, IL-6 and TNF-α levels were significantly higher in patients with CL than those of healthy controls. There was no significant difference in plasma albumin levels between two groups. There were positive important correlations between plasma selenium and IL-2r, copper and IL-6, and copper and IL-1β, and negative correlations between selenium and IL-8, iron and TNF-α, and zinc and IL-1β contents in patients with CL. Our results showed that plasma trace element contents change in patients with CL. These changes may not be a result of a specific deficiency from dietary inadequacies or imbalances, but, probably, a result of a part of the defense strategies of an organism that is regulated by immunoregulatory cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号