首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of three types of gland cells of embryos and free-swimming larvae of Austramphilina elongata is described. Type I gland cells contain large, more or less round electron-dense granules which are formed by numerous Golgi complexes. Type II gland cells contain thread-like, membrane-bound secretory granules with longitudinally arranged microtubules inside the granules; secretory droplets are produced by Golgi complexes and the microtubules apparently condense in the cytoplasm or in the droplets. Type III gland cells contain irregular-ovoid membrane-bound granules with coiled up microtubules which have an electron-dense core; the granules are formed by secretionderived from Golgi complexes and the microtubules aggregate around and migrate into the secretion; microtubules are at first hollow and the early secretory granules have a central electron-dense region.  相似文献   

2.
Proximal spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by deficiency of the ubiquitous Survival of Motor Neuron (SMN) protein. SMN has been shown to be transported in granules along the axon and moved through cytoskeletal elements. However, the role and nature of SMN granules are still not well characterized. Here, using immunocytochemical methods and time-lapse studies we show that SMN granules colocalize with the Golgi apparatus in motor neuron-like NSC34 cells. Electron microscopy clearly revealed that SMN granules are transported into the Golgi stack and aggregate in the trans-Golgi apparatus. SMN granules are characterized as either coated or un-coated and behave like regulated secretory granules. Treatment of cells with monensin to disrupt Golgi-mediated granule secretion decreased SMN expression in neurites and caused growth cone defects similar to those seen in SMN knockdown cells. Knockdown of Cop-α, the protein that coats vesicles transporting proteins between the Golgi compartments, caused SMN granule accumulation in the Golgi apparatus. In addition to the well-studied role of SMN in small nuclear ribonucleoprotein (SnRNP) assembly, this work links SMN granules with the Golgi network and thus sheds light on Golgi-mediated SMN granule transport.  相似文献   

3.
Silina KV 《Tsitologiia》2003,45(7):635-649
The haemolymph of larvae and imago stages of Decticus verrucirus was studied with electron and light microscope. PAS-positive and PAS-negative granules were detected in haemocytes. On the electronograms, granulocytes were recognized as the only type of haemocytes. In the cytoplasm of granulocytes, granules of two types were found: those of mitochondrial origin, and originating from the Golgi apparatus, respectively. The discharge of a secret is realized by the merocrine way. Four stages of granulocyte development have been distinguished: 1) granule formation and organelle development, 2) granule formation and accumulation, 3) active secretion, and 4) cell destruction.  相似文献   

4.
The eye pigment system in Drosophila melanogaster has been studied with the electron microscope. Details in the development of pigment granules in wild type flies and in three eye color mutants are described. Four different types of pigment granules have been found. Type I granules, which carry ommochrome pigment and occur in both primary and secondary pigment cells of ommatidia, are believed to develop as vesicular secretions by way of the Golgi apparatus. The formation of Type II granules, which are restricted to the secondary pigment cells and contain drosopterin pigments, involves accumulation of 60- to 80-A fibers producing an elliptical granule. Type III granules appear to be empty vesicles, except for small marginal areas of dense material; they are thought to be abnormal entities containing ommochrome pigment. Type IV granules are characteristic of colorless mutants regardless of genotype, and during the course of development they often contain glycogen, ribosomes, and show acid phosphatase activity; for these reasons and because of their bizarre and variable morphology, they are considered to be autophagic vacuoles. The 300-A particles commonly found in pigment cells are identified as glycogen on the basis of their morphology and their sensitivity to salivary digestion.  相似文献   

5.
The distribution of three proteins discharged by regulated exocytosis--growth hormone (GH), prolactin (PRL), and secretogranin II (SgII)--was investigated by double immunolabeling of ultrathin frozen sections in the acidophilic cells of the bovine pituitary. In mammotrophs, heavy PRL labeling was observed over secretory granule matrices (including the immature matrices at the trans Golgi surface) and also over Golgi cisternae. In contrast, in somatotrophs heavy GH labeling was restricted to the granule matrices; vesicles and tubules at the trans Golgi region showed some and the Golgi cisternae only sparse labeling. All somatotrophs and mammotrophs were heavily positive for GH and PRL, respectively, and were found to contain small amounts of the other hormone as well, which, however, was almost completely absent from granules, and was more concentrated in the Golgi complex, admixed with the predominant hormone. Mixed somatomammotrophs (approximately 26% of the acidophilic cells) were heavily positive for both GH and PRL. Although admixed within Golgi cisternae, the two hormones were stored separately within distinct granule types. A third type of granule was found to contain SgII. Spillage of small amounts of each of the three secretory proteins into granules containing predominantly another protein was common, but true intermixing (i.e., coexistence within single granules of comparable amounts of two proteins) was very rare. It is concluded that in the regulated pathway of acidophilic pituitary, cell mechanisms exist that cause sorting of the three secretory proteins investigated. Such mechanisms operate beyond the Golgi cisternae, possibly at the sites where condensation of secretion products into granule matrices takes place.  相似文献   

6.
Summary Previous investigators have reported that albuminous material in the albumin-secreting (tubular gland) cells of the magnum of hen oviduct accumulates in the ergastoplasmic cisternae and is released directly into the glandular lumen without being first concentrated into secretory granules in the Golgi region (Zeigel and Dalton, 1962). Present fine structural studies on the tubular gland cells in oviducts from actively laying wild-type Japanese quail and in an oviduct from an actively laying hen indicate that the Golgi apparatus is directly involved in the formation of secretory granules. At least three types of granules can be observed in the tubular gland cells at various times, and all types seem to be associated initially with the Golgi apparatus.In actively laying quail, the distribution of electron opaque, intermediate, and light granules within the superficial and deep regions of the glandular epithelium varies, depending on the presence of an egg in a particular region of the oviduct. Secretion of the product is merocrine, involving fusion of granule membranes with the plasmalemma of the cell surface.Granules first appear in the tubular gland cells of quail oviducts at about 4 1/2 weeks of age. The granules are of the electron opaque type and probably represent secretion in concentrated storage form. At this age, a few of the tubular gland cells exhibit distended ergastoplasmic cisternae containing material of low electron density. The appearance of these light cells, which occur with greater frequency in oviducts from older quail, probably reflects an increased level of secretory activity initiated by changes in hormonal levels. From 5 weeks of age on, intermediate and light (less concentrated) granules, as well as dark granules, are present.Supported by the National and Medical Research Councils of Canada.  相似文献   

7.
Summary The dorsal and subventral esophageal glands and their secretory granules in the root-knot nematodeMeloidogyne incognita changed during parasitism of plants. The subventral esophageal glands shrank and the dorsal gland enlarged with the onset of parasitism. While secretory granules formed by both types of glands were spherical, membrane-bound, and Golgi derived, the granules differed in morphology and size between the two types of glands. Subventral gland extensions in preparasitic second-stage juveniles were packed with secretory granules which varied in diameter from 700–1,100 nm and had a finely granular matrix. Within the matrix of each subventral gland granule was an electron-transparent core that contained minute spherical vesicles. The size and position of the core varied within different granules. Few granules were present in the dorsal gland extension in preparasitic juveniles. The matrix of dorsal gland secretory granules formed during parasitism was homogeneous and more electron-dense than the matrix of subventral gland granules. Subventral gland secretory granules of parasitic juveniles and adult females appeared degenerate.  相似文献   

8.
Morphological differences between secretory cells of the wet and dry types of human ceruminous glands were examined. The heights of secretory cells varied from tall and medium to low in both wet- and dry-type glands. The two gland types differed in morphologic features of the tall cells and the cells of medium height. The Golgi apparatus was well developed in the tall cells and fairly well developed in the cells of medium height in the wet-type gland, whereas it was generally small in the corresponding cells of the dry type. Light granules were abundant in the tall cells and in the cells of medium height in the wet-type gland, whereas light granules were rare in these cells in the dry-type gland. Furthermore, the light granules in the wet-type gland cells were observed in close relation to a well-developed Golgi apparatus, and sometimes showed a morphologic appearance suggesting exocytosis. Apical protrusions, probably related to apocrine secretion, were generally large and round and bore "microvilli and light granules" or "very few microvilli and no light granules" in the tall cells of the wet-type gland. However, the protrusions of the tall cells of the dry-type gland were generally large and slender and possessed no microvilli and no granules. The protrusions were not observed in the cells of medium height or in low cells in either type of gland. The results show that eccrine secretion characterizes the wet-type gland, but it is not clearly evident in the dry-type gland. This differences may be related to differences in composition between the wet and dry cerumens.  相似文献   

9.
The origin, nature, and distribution of polymorphonuclear leukocyte (PMN) granules were investigated by examining developing granulocytes from normal rabbit bone marrow which had been fixed in glutaraldehyde and postfixed in OsO4. Two distinct types of granules, azurophil and specific, were distinguished on the basis of their differences in size, density, and time and mode of origin. Both types are produced by the Golgi complex, but they are formed at different stages of maturation and originate from different faces of the Golgi complex. Azurophil granules are larger (~800 mµ) and more dense. They are formed only during the progranulocyte stage and arise from the proximal or concave face of the Golgi complex by budding and subsequent aggregation of vacuoles with a dense core. Smaller (~500 mµ), less dense specific granules are formed during the myelocyte stage; they arise from the distal or convex face of the Golgi complex by pinching-off and confluence of vesicles which have a finely granular content. Only azurophil granules are found in progranulocytes, but in mature PMN relatively few (10 to 20%) azurophils are seen and most (80 to 90%) of the granules present are of the specific type. The results indicate that inversion of the azurophil/specific granule ratio occurs during the myelocyte stage and is due to: (a) reduction of azurophil granules by multiple mitoses; (b) lack of new azurophil granule formation after the progranulocyte stage; and (c) continuing specific granule production. The findings demonstrate the existence of two distinct granule types in normal rabbit PMN and their separate origins from the Golgi complex. The implications of the observations are discussed in relationship to previous morphological and cytochemical studies on PMN granules and to such questions as the source of primary lysosomes and the concept of polarity within the Golgi complex.  相似文献   

10.
Summary Freeze-fracture images of the parenchymal cells in the parathyroid gland of rats were observed after vitamin D2 plus calcium chloride-suppression and EGTA-activation of secretion. In cells of the suppressed glands, large bulges protruded from the Golgi cisternae, and large granules with a stalk, which are identified as storage granules, suggest that, during maturation, some storage granules may be connected by long tubules with the Golgi cisternae and supplied with secretory products from the Golgi cisternae via these tubules.In the activated glands, presumptive exocytotic and endocytotic specializations of intramembranous particles of the parenchymal cell plasma membrane were frequently observed. In addition, elevations and complementary shallow depressions of various shape and extent were occasionally encountered in the intercellular space. From their morphological characteristics it was concluded that these originated from secretory granule cores, which are discharged from the parenchymal cells into the intercellular space by exocytosis, and it was suggested that discharged granule cores may retain their spherical shape until they fuse to form a flat conglomerate.  相似文献   

11.
12.
Summary Actively secreting silk gland cells of caddis fly larvae show the following fine structure: a well developed rough-surfaced endoplasmic reticulum, continuity between roughsurfaced and smooth-surfaced endoplasmic reticulum adjacent to the Golgi saccules, dense material (secretion) in the margins of the Golgi saccules, some of which appear in the form of blebs and discrete membane bounded secretion granules; the latter seem to coalesce and migrate to the surface of the cell where they are discharged. Intracisternal granules appear in glands where the secretion cycle has apparently been interrupted. These observations suggest a secretion cycle for the silk glands comparable to that demonstrated by both morphological and experimental methods in certain other protein secreting cells: namely, synthesis by the ribosomes, transport to the Golgi complex through the cisternae of the endoplasmic reticulum, concentration by the Golgi complex and movement of the secretion granules through the cytoplasm to the surface of the cell where they are discharged.This research was supported by grants from the National Institutes of Health (RG-4706, 5479) and the National Science Foundation (G-9879).  相似文献   

13.
Granulocytes from cranial granulopoietic tissue were studied under the electron microscope, and cytochemistry carried out oncranial and peripheral blood granulocytes of two sturgeons, Acipenser brevirostrum . Ultrastructurally, eosinophils and basophils had homogeneous electron-dense granules similar to those of teleosts and some higher vertebrates. Neutrophils contained two granule types: small elongated fibrillar granules and large (<3.8μm long) usually homogeneous granules.
Neutrophil fibrillar granules were positive for alkaline phosphatase (ALP), acid phosphatase (ACP), α-naphthyl acetate esterase (ANAE), acetyl-l-tyrosine-α-naphthyl esterase (ATNE) and periodic acid Schiff (PAS) reaction. The large homogeneous granules were negative for all enzymes, and were only PAS positive. Eosinophils had granular, cyanide-, azide- and aminotriazole-resistant peroxidase (PO) and were ACP, ATNE, tosyl-l-lysine-α-naphthyl esterase (TLNE) and Luxol fast blue positive.
Ultrastructure and cytochemistry are discussed in relation to other vertebrates, and eosinophils identified as the main phagocytic leucocyte.  相似文献   

14.
Synopsis A series of studies was performed to assess the optimum fixation conditions for staining of carbohydrate-containing constituents of rat salivary gland secretory granules. In the parotid and submandibular salivary glands of the rat, the reactivity of secretory granules, at both the light and electron microscopic level, with routine stains and with cytochemical reagents was highly dependent upon the nature of the fixative employed. At the light microscopic level, secretory granules in rat parotid gland were periodic acid-Schiff (PAS) positive if fixed with buffered formalin fixatives. However, if the gland was fixed with lipid-solvent-containing fixatives, or with formalin at a very acid pH (as in Bouin's fixative), the PAS reactivity of the granules was lost. In the submandibular gland of rats, the acinar cells and granular tubules behaved similarly after such fixation in terms of their PAS reactivity, particularly in males; acinar cells of the female submandibular gland stained only lightly with PAS. At the fine structural level, the morphology of secretory granule constituents depended on the buffer used (cacodylate, phosphate or collidine) and on whether or not tissue was post-osmicated. Post-osmication considerably reduced the reaction of secretory granule components with stains for carbohydrates.The experimental evidence indicated that the carbohydrate-containing components of both parotid and submandibular gland secretory granules were not typical long-chain neutral or acidic mucins, but were rather glycolipids or lipophilic glycoproteins that were solubilized by lipid solvents or at acidic pH and were lost or destroyed in the presence of strong oxidants.  相似文献   

15.
16.
Summary The secretory granules of rat bronchiolar Clara cells were classified into different types by their ultrastructural appearances followed by immunocytochemistry using anti-rat 10 kDa Clara cell-specific protein (10 kDa CCSP) antibody. One predominant type was the oval to round granule (type A granule), of which the matrix was composed of a map-like mixture of electron-dense and less electron-dense material. Another predominant type was the rod-shaped granule (type B granule). The content of type B granules varied from a finely fibrillar (type B1 granule) to an electron-dense, rod-like (type B3 granule) structure. Various intermediate types (type B2 granule) between type B1 and B3 granules were also found. Small cytoplasmic vesicles were found occasionally in close proximity to type B2 or B3 granule. Another type of granule (type C granule) was large, up to 8 m in diameter, and contained a moderately electron-dense amorphous matrix. Both type A and C granules stained at a similar density with the antibody. The nascent form of type A granules, which was found in the vicinity to the trans face of the Golgi apparatus, was also labeled. On the other hand, the labeling density of type B granules varied: type B1 granules were almost devoid of immunolabeling, whereas type B3 granules were intensely labeled. Type B2 granules stained with the antibody; however, the labeling density was less than that of type B3 granules. The small cytoplasmic vesicles of type B2 granules were labeled. From these findings, it is suggested that the granules of rat Clara cells consist of two types of granules of distinct origin; one appears to derive from condensing vacuoles of Golgi origin, whereas the other may be formed by membranefusions with small cytoplasmic vesicles of unknown source.  相似文献   

17.
Ultrastructural evidence is presented to indicate the synthesis, storage, and packaging of neurosecretory material in the frontal ganglion of Mandaca sera. Two morphologically distinct stages in the development of NSG were observed in the NSC. The immature granule contains granular electron dense material and arises from dilations of the rough endoplasmic reticulum. In diapause pupae the immature granules accumulate, whereas in developing larvae and pupae, they fuse with the proximal face of the Golgi apparatus. The mature granule contains opaque electron dense material and is seen in close association with the distal cisternae of the Golgi apparatus in developing pupae and larvae. The mature granules presumably contain the material from the immature granules which has been chemically altered and condensed by the Golgi apparatus and probably represent the mature NSG.The second process in neurosecretory cells of developing larvae is cyclic and the various stages are described. A comparison of neurosecretion in photoperiodically induced diapause and developing (non-diapause) larvae and pupae is presented.  相似文献   

18.
The formation of mature secretory granules is essential for proper storage and regulated release of hormones and neuropeptides. In pancreatic β cells, cholesterol accumulation causes defects in insulin secretion and may participate in the pathogenesis of type 2 diabetes. Using a novel cholesterol analog, we show for the first time that insulin granules are the major sites of intracellular cholesterol accumulation in live β cells. This is distinct from other, non‐secretory cell types, in which cholesterol is concentrated in the recycling endosomes and the trans‐Golgi network. Excess cholesterol was delivered specifically to insulin granules, which caused granule enlargement and retention of syntaxin 6 and VAMP4 in granule membranes, with concurrent depletion of these proteins from the trans‐Golgi network. Clathrin also accumulated in the granules of cholesterol‐overloaded cells, consistent with a possible defect in the last stage of granule maturation, during which clathrin‐coated vesicles bud from the immature granules. Excess cholesterol also reduced the docking and fusion of insulin granules at the plasma membrane. Together, the data support a model in which cholesterol accumulation in insulin secretory granules impairs the ability of these vesicles to respond to stimuli, and thus reduces insulin secretion.  相似文献   

19.
The morphological evolution of the cutaneous venom during ontogenesis in the tree-frog Hyla arborea arboreais described using light and electron microscopy. Venom biosynthesis involves the rough endoplasmic reticulum and Golgi stacks. The secretory product first appears at the hind-limb larval stage in the form of aggregates of small granules or larger, more elaborate structures, both contained in Golgi stacks. Maturative evolution proceeds through the merging of these secretion storage bodies and leads to the remarkable morphological heterogeneity characteristic of the venom of premetamorphic larvae and juveniles. However, large structures, resulting from the aggregation of small granules arranged in a repeating pattern become the only secretory accumulation bodies found in fully developed glands. In juveniles, discrete amounts of venom were seen to be discharged through exocytosis into the exiguous gland lumen, which lies just beneath the intercalated tract. These findings strongly contrast the traditional pattern of holocrine release characteristic of anuran serous glands. The merocrine release of tiny venom particles is consistent with the regulative roles—relevant to the skin physiology—performed by component molecules of anuran cutaneous venoms.  相似文献   

20.
The pathway and kinetics of the secretory protein transport in rat lacrimal exorbital gland have been established by an in vitro time- course radioautographic study of pulse-labeled protein secretion. The colchicine-sensitive steps have been localized by using the drug at various times with respect to the pulse labeling of proteins. Colchicine (10 microM) does not block any step of the secretory protein transport, but when introduced before the pulse it decreases the transfer of labeled proteins from the rough endoplasmic reticulum to the Golgi area, suppressing their temporary accumulation in the Golgi area before any alteration of this organelle is detectable. Moreover, colchicine inhibits protein release only from the secretory granules formed in its presence because the peroxidase discharge is diminished 1 h after colchicine addition, and the secretion of newly synthesized proteins is strongly inhibited only when colchicine is introduced before secretory granule formation. Morphometric studies show that there is a great increase of secondary lysosomes, related to crinophagy, as early as 40-50 min after colchicine is added. However, changes in lysosomal enzymatic activities remained biochemically undetectable. We conclude that: (a) the labile microtubular system does not seem indispensable for protein transport in the rough endoplasmic reticulum-Golgi area but may facilitate this step, perhaps by maintaining the spatial organization of this area; and (b) in the lacrimal gland, colchicine inhibits protein release not by acting on the steps of secretion following the secretory granule formation, but by acting chiefly on the steps preceding secretory granule formation, perhaps by making the secretory granules formed in its presence incapable of discharging their content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号