首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Technical features of a novel multi-color pulse amplitude modulation (PAM) chlorophyll fluorometer as well as the applied methodology and some typical examples of its practical application with suspensions of Chlorella vulgaris and Synechocystis PCC 6803 are presented. The multi-color PAM provides six colors of pulse-modulated measuring light (peak-wavelengths at 400, 440, 480, 540, 590, and 625?nm) and six colors of actinic light (AL), peaking at 440, 480, 540, 590, 625 and 420-640?nm (white). The AL can be used for continuous illumination, maximal intensity single-turnover pulses, high intensity multiple-turnover pulses, and saturation pulses. In addition, far-red light (peaking at 725?nm) is provided for preferential excitation of PS I. Analysis of the fast fluorescence rise kinetics in saturating light allows determination of the wavelength- and sample-specific functional absorption cross section of PS II, Sigma(II)(λ), with which the PS II turnover rate at a given incident photosynthetically active radiation (PAR) can be calculated. Sigma(II)(λ) is defined for a quasi-dark reference state, thus differing from σ(PSII) used in limnology and oceanography. Vastly different light response curves for Chlorella are obtained with light of different colors, when the usual PAR-scale is used. Based on Sigma(II)(λ) the PAR, in units of μmol quanta/(m(2)?s), can be converted into PAR(II) (in units of PS II effective quanta/s) and a fluorescence-based electron transport rate ETR(II)?=?PAR(II)?·?Y(II)/Y(II)(max) can be defined. ETR(II) in contrast to rel.ETR qualifies for quantifying the absolute rate of electron transport in optically thin suspensions of unicellular algae and cyanobacteria. Plots of ETR(II) versus PAR(II) for Chlorella are almost identical using either 440 or 625?nm light. Photoinhibition data are presented suggesting that a lower value of ETR(II)(max) with 440?nm possibly reflects photodamage via absorption by the Mn-cluster of the oxygen-evolving complex.  相似文献   

2.
A new type of dual-channel PAM chlorophyll fluorometer has been developed, which is specialised in the detection of extremely small differences in photosynthetic activity in algae or thylakoids suspensions. In conjunction with standardised algae cultures or isolated thylakoids, the new device provides an ultrasensitive biotest system for detection of toxic substances in water samples. In this report, major features of the new device are outlined and examples of its performance are presented using suspensions of Phaeodactylum tricornutum (diatoms) and of freeze-dried thylakoids of Lactuca sativa (salad). Investigated and reference samples are exposed to the same actinic intensity of pulse-modulated measuring light. The quantum yields are assessed by the saturation pulse method. Clock-triggered repetitive measurements of quantum yield typically display a standard deviation of 0.1%, corresponding to the inhibition induced by 0.02 μg diuron l−1. Hence, for diuron or compounds with similar toxicity, the detection limit is well below the 0.1 μg l−1 defined as the limit for the presence of a single toxic substance in water by the European Commission drinking water regulation. The amounts of water and biotest material required for analysis are very small, as a single assay involves two 1 ml samples, each containing ca. 0.5 μg chlorophyll. Both with Phaeodactylum and thylakoids the relationship between inhibition and diuron concentration is strictly linear up to 10% inhibition, with very similar slopes. Apparent inhibition depends on the actinic effect of the measuring light, showing optima at 6 and 4 μmol quanta m−2 s−1 with Phaeodactylum and thylakoids, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
An aquatic phytotoxicity assay, based on the principles of pulse amplitude modulated (PAM) fluorometry has recently been developed and validated under laboratory conditions. Characteristics of the assay include the use of photosynthesising biomaterial, most frequently whole organism microalgae. The instrument employs light probing measurements to monitor chlorophyll fluorescence signals emitted by the biomaterial component. These characteristics could leave assay performance susceptible to interference by minor variations in biomaterial treatment and culture conditions prior to testing. This study investigates assay performance in response to variations in two microalgae culture parameters; short-term light history (24h) prior to testing and the sterility of long-term culture conditions. Light history of the four microalgal species tested significantly impacted their toxicity response, as measured with the assay. Light treatments of 5 micromol photons m(-2)s(-1) produced the highest photosystem II quantum yields (Phi(II)) whilst higher light intensities resulted in an inverse relationship between Phi(II) and the measured toxicity response (inhibition (%) of photochemistry). Of the two microalgal cultures tested, sterility of culture conditions significantly impacted the performance of the green freshwater algae, Chlorella vulgaris as assay biomaterial. On average 1 microg L(-1) diuron inhibited photochemistry 2.6% less in axenically cultured C. vulgaris compared with non-axenically maintained cultures. This investigation series contributes valuable quality assurance data towards microalgal based PAM fluorometry assays and emphasises the importance of such investigations if new biorecognition systems are to be accredited and/or routinely incorporated for biomonitoring purposes.  相似文献   

4.
A newly developed fluorescence measuring system is employed for the recording of chlorophyll fluorescence induction kinetics (Kautsky-effect) and for the continuous determination of the photochemical and non-photochemical components of fluorescence quenching. The measuring system, which is based on a pulse modulation principle, selectively monitors the fluorescence yield of a weak measuring beam and is not affected even by extremely high intensities of actinic light. By repetitive application of short light pulses of saturating intensity, the fluorescence yield at complete suppression of photochemical quenching is repetitively recorded, allowing the determination of continuous plots of photochemical quenching and non-photochemical quenching. Such plots are compared with the time courses of variable fluorescence at different intensities of actinic illumination. The differences between the observed kinetics are discussed. It is shown that the modulation fluorometer, in combination with the application of saturating light pulses, provides essential information beyond that obtained with conventional chlorophyll fluorometers.  相似文献   

5.
Positive phototaxis in cell populations of a phytoflagellate Cryptomonas sp. was recorded photoelectrically when the duration and intensity of repeated pulses of monochromatic yellow light (570 nm) interspersed with darkness were varied. Irrespective of the duration of the light pulses, phototactic responses to repeated pulses were as great as those to continuous irradiation and were linearly dependent on the logarithm of total incident light energy when the dark interval was shorter than 60 milliseconds. Under these conditions, reciprocity between duration and intensity held well. In contrast, when the dark interval exceeded 250 milliseconds, the responses were remarkably reduced regardless of light duration and were not affected by increasing the intensity of actinic light pulses.

The present results clearly indicate that continuous stimulation with actinic light is not essential for the maximum effect, but that the length of dark interval is crucial in phototactic response.

  相似文献   

6.
A multichannel kinetic spectrophotometer–fluorimeter with pulsed measuring beam and differential optics has been constructed for measurements of light-induced absorbance and fluorescence yield changes in isolated chlorophyll-proteins, thylakoids and intact cells including algae and photosynthetic bacteria. The measuring beam, provided by a short (2 μs) pulse from a xenon flash lamp, is divided into a sample and reference channel by a broad band beam splitter. The spectrum in each channel is analyzed separately by a photodiode array. The use of flash measuring beam and differential detection yields high signal-to-noise ratio (noise level of 2 × 10−4 in absorbance units per single flash) with negligible actinic effect. The instrument covers a spectral range between 300 and 1050 nm with a spectral resolution of 2.1, 6.4 or 12.8 nm dependent on the type of grating used. The optical design of the instrument enables measuring of the difference spectra during an actinic irradiation of samples with continuous light and/or saturation flashes. The time resolution of the spectrophotometer is limited by the length of Xe flash lamp pulses to 2 μs.  相似文献   

7.
Exposure of algae or plants to irradiance from above the light saturation point of photosynthesis is known as high light stress. This high light stress induces various responses including photoinhibition of the photosynthetic apparatus. The degree of photoinhibition could be clearly determined by measuring the parameters such as absorption and fluorescence of chromoproteins. In cyanobacteria and red algae, most of the photosystem (PS) II associated light harvesting is performed by a membrane attached complex called the phycobilisome (PBS). The effects of high intensity light (1000-4000 micromol photons m(-2) s(-1)) on excitation energy transfer from PBSs to PS II in a cyanobacterium Spirulina platensis were studied by measuring room temperature PC fluorescence emission spectra. High light (3000 micromol photons m(-2) s(-1)) stress had a significant effect on PC fluorescence emission spectra. On the other hand, light stress induced an increase in the ratio of PC fluorescence intensity of PBS indicating that light stress inhibits excitation energy transfer from PBS to PS II. The high light treatment to 3000 micromol photons m(-2) s(-1) caused disappearance of 31.5 kDa linker polypeptide which is known to link PC discs together. In addition we observed the similar decrease in the other polypeptide contents. Our data concludes that the Spirulina cells upon light treatment causes alterations in the phycobiliproteins (PBPs) and affects the energy transfer process within the PBSs.  相似文献   

8.
Yung-Sing Li 《BBA》1975,376(1):180-188
Chloroplast fluorescence was excited by a weak measuring beam. A time-separated actinic light was used to modify the redox states of Q which in turn induced a change in the fluorescence yield. In salt-depleted chloroplasts, fluorescence saturated at a low actinic light intensity. CaCl2 increased the “variable” fluorescence as well as the rate of ferricyanide-Hill reaction. With Tris-washed chloroplasts, Photosystem II donor couple, phenylenediamine and ascorbate, did not increase the fluorescence to a large extent without the presence of CaCl2. It is suggested that salt-depletion inactivates the Photosystem II reaction center of chloroplasts.  相似文献   

9.
Light saturation curves of the delayed fluorescence of wheat leaves treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) were measured at different temperatures. Calculated activation energies for a half-saturation actinic light intensity and saturated delayed fluorescence emission were 0.89 and 0.32 eV, respectively. On the basis of the kinetic model energy levels of Photosystem II reaction center components were estimated.  相似文献   

10.
The "saturating pulse" method of in vivo Chl fluorescence measurement has been widely used by physiologists and especially ecophysiologists, as it allows a simple, rapid and non-invasive assessment of PSII function and the allocation of absorbed energy into photochemical and non-photochemical processes. It is based on the accurate determination of the so-called Fm('), i.e. the fluorescence signal emitted when a "saturating" light pulse closes all PSII centers. In this methodological investigation, we examined whether the saturating pulse intensities required to obtain maximal fluorescence yields differ between leaves of various species receiving varying actinic light irradiances. It was shown that, in leaves adapted to comparatively high (yet realistic) levels of natural irradiances, the saturating pulses usually applied are not able to close all PSII reaction centers. As a result, there is a high risk of considerable Fm(') underestimation. Accordingly, the derived values of effective PSII yields and linear electron transport rates (ETR) are also underestimated, even at the highest saturation pulse levels afforded by commercial instruments. Since the extent of underestimation increases with actinic irradiance, the ETR versus light curves are considerably distorted. The possible reasons for the apparent inability of "saturating" pulses to close all PSII centers at high actinic light and the practical implications, especially in field work, are discussed.  相似文献   

11.
The results of a numerical study on the simulation of pulse amplitude modulated (PAM) fluorometry within dense suspensions of photosynthetic microorganisms are presented. The Monte Carlo method was used to solve the radiative transfer equation in an algae‐filled cuvette, taking into account absorption, anisotropic scattering, and fluorescence, as well as Fresnel reflections at interfaces. This method was used to simulate the transport of excitation and fluorescence light in a common laboratory fluorometer. In this fluorometer, detected fluorescence originates from a multitude of locations within the algal suspension, which can be exposed to very different fluence rates. The fluorescence‐weighted fluence rate is reported, which is the local fluence rate of actinic light, averaged over all locations from which detected fluorescence originated. A methodology is reported for recovering the fluorescence‐weighted fluence rate as a function of the transmittance of measuring light and actinic light through the sample, which are easily measured with common laboratory fluorometers. The fluorescence‐weighted fluence rate can in turn be used as a correction factor for recovering intrinsic physiological parameters, such as the functional cross section of Photosystem II, from apparent (experimental) values. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1601–1615, 2016  相似文献   

12.
Our recently presented PS II model (Belyaeva et al., 2008) was improved in order to permit a consistent simulation of Single Flash Induced Transient Fluorescence Yield (SFITFY) traces that were earlier measured by Steffen et al. (2005) on whole leaves of Arabidopsis (A.) thaliana at four different energies of the actinic flash. As the essential modification, the shape of the actinic flash was explicitly taken into account assuming that an exponentially decaying rate simulates the time dependent excitation of PS II by the 10 ns actinic flash. The maximum amplitude of this excitation exceeds that of the measuring light by 9 orders of magnitude. A very good fit of the SFITFY data was achieved in the time domain from 100 ns to 10 s for all actinic flash energies (the maximum energy of 7.5 × 1016 photons/(cm2 flash) is set to 100%, the relative energies of weaker actinic flashes were of ∼8%, 4%, ∼1%). Our model allows the calculation and visualization of the transient PS II redox state populations ranging from the dark adapted state, via excitation energy and electron transfer steps induced by pulse excitation, followed by final relaxation into the stationary state eventually attained under the measuring light. It turned out that the rate constants of electron transfer steps are invariant to intensity of the actinic laser flash. In marked contrast, an increase of the actinic flash energy by more than two orders of magnitude from 5.4 × 1014 photons/(cm2 flash) to 7.5 × 1016 photons/(cm2 flash), leads to an increase of the extent of fluorescence quenching due to carotenoid triplet (3Car) formation by a factor of 14 and of the recombination reaction between reduced primary pheophytin (Phe) and P680+ by a factor of 3 while the heat dissipation in the antenna complex remains virtually constant.The modified PS II model offers new opportunities to compare electron transfer and dissipative parameters for different species (e.g. for the green algae and the higher plant) under varying illumination conditions.  相似文献   

13.
Fluorescence clamp (FC) is a method of directly measuring the fluxes out of Photosystem II antenna. This is achieved by a feed-back loop which controls the light intensity of light emitting diodes in order to keep the amplitude of modulated chlorophyll fluorescence constant, and by taking the intensity or the current fed into the light emitting diodes as a measure of the fluxes. Saturating flashes serve to distinguish between fluxes into thermal deactivation and into the photosynthetic electron transfer chain (ETC). As FC is only active in the light period of the measuring light, the background signal (induced by actinic light) is compensated by a second feed-back loop in the dark period of the measuring light. Equations are provided for the interpretation of the FC signals. This includes the quenching parameters of chlorophyll fluorescence, the flux into the electron transfer chain and the redox state of QA. Experiments are presented which show that traditional fluorescence (LC) and FC measurements yield the same results. However, the FC method provides a better presentation of fluxes as the scaling factor (flux/signal) is constant for all states of Photosystem II. This leads to a simpler analysis of quenching mechanisms. Examples are given which show that the co-existing quenching mechanisms with different effects on photochemical and non-photochemical fluxes can be better identified by FC rather than by LC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
We have developed a simple and rapid technique for measuring the action spectra for phototaxis of populations of microorganisms and applied it to halobacteria. A microscope with a dark-field condenser was used to illuminate the cell suspension in a sealed chamber with light of wavelength greater than 750 nm; in this region of the spectrum, the halobacteria show no phototactic response. A 150-micron spot of light from a xenon arc lamp, whose wavelength and intensity can be varied, was projected through the objective lens into the center of the dark field. The objective lens imaged this measuring spot through a 780-nm cut-off filter on an aperture in front of a photomultiplier. The intensity of the scattered 750-nm light, and therefore the photomultiplier current, is proportional to the number of cells in the measuring spot. A third lamp provided background light of variable wavelength and intensity through the dark-field condenser. To minimize secondary effects due to large changes in cell density, we recorded the initial changes in the photomultiplier current over 1 min after the actinic light had been switched on. By plotting the rate of change against wavelength, we obtained action spectra after the proper corrections for changes in light intensity with wavelength were applied and saturation effects were avoided.  相似文献   

15.
A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65–72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 μs to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
A mathematical analysis is described which measures the effects of actinic light intensity and concentration of an artificial electron donor on the steady-state light-induced redox level of a reaction-center pigment (e.g. P-700) and on the overall light-induced electron flux (e.g. reduction of NADP+). The analysis led to a formulation (somewhat similar to the Michaelis-Menten equation for enzyme kinetics) in which a parameter, I1/2, is defined as the actinic light intensity that, at a given concentration of electron donro, renders the reaction-center pigment half oxidized and half reduced. To determine the role of a presumed reaction-center pigment, I1/2 is compared with another parameter, equivalent to I1/2, that is obtained independently of the reaciton-center pigment by measuring the effect of actinic light intensity and concentration of electron donor on the overall electron flow. The theory was tested and validated in a model system with spinach Photosystem I chloroplast fragments by measurements of photooxidation of P-700 and light-induced reduction of NADP+ by reduced 2,6-dichlorophenolindophenol. A possible extension of this mathematical analysis to more general electron-transport systems is discussed.  相似文献   

17.
The Thames Estuary, UK, and the Brisbane River, Australia, are comparable in size and catchment area. Both are representative of the large and growing number of the world's estuaries associated with major cities. Principle differences between the two systems relate to climate and human population pressures. In order to assess the potential phytotoxic impact of herbicide residues in the estuaries, surface waters were analysed with a PAM fluorometry-based bioassay that employs the photosynthetic efficiency (photosystem II quantum yield) of laboratory cultured microalgae, as an endpoint measure of phytotoxicity. In addition, surface waters were chemically analysed for a limited number of herbicides. Diuron, atrazine and simazine were detected in both systems at comparable concentrations. In contrast, bioassay results revealed that whilst detected herbicides accounted for the observed phytotoxicity of Brisbane River extracts with great accuracy, they consistently explained only around 50% of the phytotoxicity induced by Thames Estuary extracts. Unaccounted for phytotoxicity in Thames surface waters is indicative of unidentified phytotoxins. The greatest phytotoxic response was measured at Charing Cross, Thames Estuary, and corresponded to a diuron equivalent concentration of 180 ng L(-1). The study employs relative potencies (REP) of PSII impacting herbicides and demonstrates that chemical analysis alone is prone to omission of valuable information. Results of the study provide support for the incorporation of bioassays into routine monitoring programs where bioassay data may be used to predict and verify chemical contamination data, alert to unidentified compounds and provide the user with information regarding cumulative toxicity of complex mixtures.  相似文献   

18.
A new chamber was developed for a simultaneous measurement of fluorescence kinetics and oxygen exchange in filamentous and thallous algae as well as in small leaves of water plants. Algal filaments or thalli are kept by a stainless grid close to the bottom window of the chamber in the sample compartment. The grid separates the object from the electrode compartment with the oxygen electrode at the top. This compartment accommodates, in addition, a magnetic stirrer that provides efficient circulation of the medium between the sample and the electrode. This magnetic bar spins on a fixed axis and is driven by an electronically commutated magnetic field produced by four coils which are arranged around the chamber. This design yields a very favourable signal to noise ratio in the oxygen electrode records. Consequently, measurements can be performed even of algae with very low photosynthetic rates such as marine low-light red algae or algae under severe stress. For irradiation of the samples and for fluorescence measurements a fibre optic light guide is used facing the window of the chamber. The four branches of a commercially available light guide serve the following purposes: collection of sample fluorescence and supply of measuring, actinic, and saturating light, respectively.  相似文献   

19.
The potassium salt-induced transient increase of delayed fluorescence yield was studied in pea chloroplasts treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea.A simple kinetic model is proposed to account for the actinic light intensity dependence of the delayed fluorescence enhancement by the transmembrane diffusion potential induced by sudden salt addition. The electric field dependence of the rate constants for the recombination of primary separated charges with and without subsequent electronic excitation of reaction center chlorophyll was obtained.From the value of enhancement of delayed fluorescence by salt concentration gradients at saturating actinic light intensity, it is concluded that the distance, normal to thylakoid membrane surface, between the primary acceptor and the donor of Photosystem II is smaller than the membrane thickness.  相似文献   

20.
A newly developed modulation fluorometer is described which operates with 1 sec light pulses from a light-emitting diode (LED) at 100 KHz. Special amplification circuits assure a highly selective recording of pulse fluorescence signals against a vast background of non-modulated light. The system tolerates ratios of up to 1:107 between measuring light and actinic light. Thus it is possible to measure the dark fluorescence yield and record the kinetics of light-induced changes. A high time resolution allows the recording of the rapid relaxation kinetic following a saturating single turnover flash. Examples of system performance are given. It is shown that following a flash the reoxidation kinetics of photosystem II acceptors are slowed down not only by the inhibitor DCMU, but by a number of other treatments as well. From a light intensity dependency of the induction kinetics the existence of two saturated intermediate levels (I1 and I2) is apparent, which indicates the removal of three distinct types of fluorescence quenching in the overall fluorescence rise from F0 to Fmax.Abbreviations QA and QB consecutive electron acceptors of photosystem II - PS II photosystem II - P 680 reaction center chlorophyll of photosystem II - F0 minimum fluorescence yield following dark adaptation - Fmax maximum fluorescence yield - DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea - DCCD N,N-dicyclohexylcarbodiimide - PQ plastoquinone - DAD diaminodurene Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号