首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular ATP (ATPo) caused dose-dependent lysis of YAC-1 and P-815 mouse tumor cells. This event, assessed by 51Cr release, was accompanied by sustained depolarization of the plasma membrane potential and Ca2+ influx. Plasma membrane depolarization and Ca2+ influx occurred within a few seconds of ATPo addition to both cell types, whereas 51Cr was released without apparent lag in YAC-1 cells and after 2 h in P-815 cells. Furthermore, a rise in [Ca2+]i was required for ATPo-dependent lysis of YAC-1 but not P-815 cells. In P-815 cells, ATPo caused an early and [Ca2+]i-independent DNA fragmentation that occurred at lower nucleotide concentrations than those required to trigger 51Cr release. Instead in YAC-1 cells very low concentrations of ATPo caused early lysis (ED50 for lysis about 200 microM) accompanied by only barely detectable DNA fragmentation. Previous studies disclosed that lymphokine-activated killer cells are fully resistant to the membrane-perturbing effects of ATPo. We show that lymphokine-activated killer cells also do not undergo DNA fragmentation even in the presence of high ATPo concentrations. This study complements previous observations on the lytic effects of ATPo and shows that this nucleotide can also cause DNA fragmentation, one of the earliest target cell alterations observed during CTL-mediated lysis.  相似文献   

2.
Recent studies have shown that normal human alveolar macrophages and blood monocytes, as well as HL-60 and U937 monocyte cell lines, newly express IL-2R after stimulation with rIFN-gamma or LPS. In addition, macrophages transiently express IL-2R in vivo during immunologically mediated diseases such as pulmonary sarcoidosis and allograft rejection. We therefore investigated in vitro factors that modulate macrophage expression of IL-2R. IL-2R were induced on normal alveolar macrophages, blood monocytes, and HL-60 cells using rIFN-gamma (24 to 48 h at 240 U/ml), and cells were cultured for an additional 12 to 24 h with rIL-2 (100 U/ml), recombinant granulocyte-macrophage CSF (rGM-CSF, 1000 U/ml), rGM-CSF plus indomethacin (2 X 10(-6) M), PGE2 (0.1 to 10 ng/ml), 1 X 10(-6) M levels of caffeine, theophylline, and dibutyryl cyclic AMP, or medium alone. IL-2R expression was quantitated by cell ELISA (HL-60 cells) or determined by immunoperoxidase staining (alveolar macrophages, blood monocytes, and HL-60 cells), using anti-Tac and other CD25 mAb. PGE production was assayed by RIA. We found greater than 95% of alveolar macrophages, monocytes, and HL-60 cells expressed IL-2R after rIFN-gamma treatment and remained IL-2R+ in the presence of IL-2R or medium alone. By comparison, greater than 95% of cells induced to express IL-2R became IL-2R- after addition of rGM-CSF, and the culture supernatants from GM-CSF-treated cells contained increased levels of PGE. This inhibition of macrophage IL-2R expression by rGM-CSF was blocked by indomethacin, and IL-2R+ macrophages became IL-2R- after addition of PGE2 alone. These findings indicate GM-CSF down-regulates IL-2R expression by human macrophages via induction of PGE synthesis. Moreover, a similar down-regulation of IL-2R expression was seen after stimulation with caffeine, theophylline, or dibutyryl cyclic AMP. Hence, GM-CSF, PGE, and other pharmacologic agents that act to increase intracellular levels of cAMP may play a modulatory role, antagonistic to that of IFN-gamma on cellular expression of IL-2R by human inflammatory macrophages in vivo.  相似文献   

3.
We have recently reported that IL 2-activated killer (LAK) cells are capable of lysing cultured human monocytes. In an effort to protect autologous monocytes from lysis, we treated monolayer cultures of adherent PBMC with various doses of human rIFN-gamma and assessed their susceptibility to LAK cells. IFN-gamma was shown to lessen the sensitivity of monocytes to lysis in a dose-dependent manner. Similar treatment of FMEX, an NK-resistant melanoma tumor cell line, with IFN-gamma did not affect its susceptibility to LAK lysis. Kinetic studies demonstrated that as little as 2 h incubation with IFN-gamma was sufficient for the protective effects to take effect. Additionally, monocytes that were pulsed with IFN-gamma for 2 h, washed, and then cultured in medium alone retained their resistance to lysis for at least 3 days. Cold target inhibition studies showed that IFN-treated and untreated monocytes could effectively compete with each other for binding sites on LAK cells. Furthermore, binding studies demonstrated that there was no significant difference between the number of conjugates formed by using either IFN-treated or untreated monocytes. This indicates that resistance to lysis induced by IFN treatment affects a post-binding event and not an initial recognition signal. From these studies, it was apparent that treatment of monocytes with IFN-gamma lessened their sensitivity to LAK-mediated lysis. Thus, it may be possible through a specific sequence of IFN-gamma and IL-2 treatment that LAK activity could be manipulated against some tumor cells, but not normal cells, to abrogate some of the toxicity seen with this type of cancer therapy.  相似文献   

4.
Human monocytes were isolated from the peripheral blood of normal donors and allowed to differentiate in vitro into macrophages. The susceptibility of these cells to infection with a virulent Mycobacterium avium and its modulation by some soluble factors was monitored. The virulent strain of Mycobacterium avium grew progressively in untreated macrophage monolayers. Interleukin-6 (IL-6) was tested for its ability to modulate the macrophage-mycobacteria interaction. Surprisingly, IL-6 was shown to increase M. avium growth in macrophage monolayers by twofold as compared with untreated cells, when added before or after infection. Moreover, addition of rIL-6 to replicating mycobacteria in vitro enhanced their growth two- to three-fold as compared with cultures treated with rIL-6 and a rabbit antiserum to rIL-6. Treatment with IL-6 and interferon-gamma (IFN-gamma) or IL-4 did not modify the growth promoting effect of IL-6 in human macrophages. Overall, our results suggest that IL-6 may contribute significantly to the pathogenesis of infections with M. avium by promoting mycobacterial growth.  相似文献   

5.
We used highly purified human monocytes to study the regulation of cell surface and secretion of the low affinity FcR for IgE (Fc epsilon RIIb). IL-4 induces Fc epsilon RIIb expression and soluble Fc epsilon RIIb release in a dose-dependent manner. Significant levels of Fc epsilon RIIb expression were obtained after 12 h of incubation with IL-4 and maximal expression was observed between 24 to 48 h after which the expression declined. Surface expression was followed by secretion of soluble Fc epsilon RIIb which reached maximal levels after 3 to 4 days of incubation and which remained constant throughout 7 days of culture. Induction of Fc epsilon RIIb expression by IL-4 was completely blocked by anti-IL-4 antibodies. Furthermore, IL-1 alpha, IL-2, IL-5, granulocyte-macrophage-CSF, IFN-alpha, IFN-gamma, low m.w. BCGF and also LPS all failed to induce Fc epsilon RIIb expression, demonstrating the specificity of the induction. Fc epsilon RIIb membrane expression induced by IL-4 was reduced in the presence of IFN-gamma and IFN-alpha. Strong inhibition of IL-4-induced Fc epsilon RIIb expression was observed at IFN-alpha concentrations of 450 U/ml (80%), and 100 U/ml of IFN-gamma reduced IL-4-induced Fc epsilon RIIb expression by 70%. Interestingly, soluble Fc epsilon RIIb release was strongly inhibited by IFN-alpha. In contrast, IFN-gamma did not affect soluble Fc epsilon RIIb release, suggesting that reduced membrane expression of Fc epsilon RIIb observed in the presence of IFN-gamma does not reflect inhibition of Fc epsilon RIIb expression but may represent enhanced cleavage or reduced anchoring in the membrane of Fc epsilon RIIb. Finally, IL-5 that has been shown to enhance IL-4-induced Fc epsilon RII on B cells does not enhance significantly IL-4-induced Fc epsilon RIIb membrane expression or subsequent soluble Fc epsilon RIIb release by monocytes. Taken together these results show that IFN-alpha and IFN-gamma have different regulatory effects on IL-4-induced Fc epsilon RIIb membrane expression and soluble Fc epsilon RIIb release by human monocytes.  相似文献   

6.
Peritoneal macrophages previously labeled in a suspension with 51Cr and grown in the form of a discontinuous monolayer on glass, pretreated with poly-l-lysin were used as target cells. This permitted to estimate the cytotoxic activity of immune lymphocytes by 51Cr release for the period of 4 and 20 hours of incubation with the target. 51Cr release from such a target incubated with normal lymphocytes for 20 hours did not exceed 10-20% of the maximum release. Application of a 2% solution of sodium dodecylsulfate ensured a 100 per cent solubilization of labeled macrophages growing on the glass surface, and permitted the cytotoxic effect to be determined by measuring the label remaining in the intact cells.  相似文献   

7.
Under endotoxin-free conditions, unstimulated human PBMC do not release TNF-alpha, as measured in a sensitive assay with 51Cr release in 6 h from actinomycin D-treated WEHI 164 cells. IFN-gamma alone at less than or equal to 10,000 U/ml is insufficient to elicit TNF-alpha release. Similarly, the lymphokine-rich supernatant of PBMC stimulated by allogeneic cells is also insufficient to induce TNF-alpha release in a short term assay. However, when PBMC are first primed with IFN-gamma for 48 h and then exposed to lymphokine supernatant for 6 h, effector cells within the PBMC population are triggered to express TNF-alpha-mediated cytotoxicity. All of the measured cytotoxicity is attributable to TNF-alpha because it could be abolished by a specific anti-TNF-alpha neutralizing mAb. Although IFN-gamma serves to prime PBMC in this assay system, it fails to trigger the release of TNF-alpha. Instead, a second lymphokine (provisionally termed "cytotoxicity triggering factor" (CTF) is required to induce TNF-alpha release from IFN-gamma-primed human PBMC. In kinetic studies, IFN-gamma priming was optimal when PBMC were exposed to IFN-gamma (150 U/ml) for 48 h. In contrast to the prolonged interval for priming, CTF need be present for 6 h or less for maximal induction of TNF-alpha-mediated cytotoxicity. In dose-response studies, IFN-gamma priming (48 h) required at least 4 U/ml and was complete with 20 to 100 U/ml. By using fully primed PBMC, the response to CTF followed a sigmoidal dose-response curve, which allowed the quantitation of CTF in half-maximal units. Activated Th lymphocytes constitute one cellular source for CTF. CTF is produced by cloned allorective T3+T4+T8-M1- Th cells after alloantigen stimulation, and also by nylon wool-purified T cells after stimulation with PMA and A23187 calcium ionophore. Unstimulated T cells do not release CTF. In physicochemical studies, CTF activity elutes from Sephadex G-100 as a major discrete peak of Mr 55 kDa and minor peaks of 14 kDa and greater than 150 kDa. On the basis of multiple criteria, CTF is distinguishable from several other cytokines: IFN-gamma, IL-1, IL-2, GM-CSF, MIF, CSF-1, TNF-alpha, and lymphotoxin (TNF-beta). We conclude that, by acting together, IFN-gamma and CTF provide a lymphokine pathway whereby Ag-responsive human Th cells induce the immunologic release of TNF-alpha from effector cells present in PBMC.  相似文献   

8.
Unstimulated human peripheral blood mononuclear cells from healthy donors exhibited spontaneous cytotoxicity against noncultured solid tumor targets in a 12- to 24-hr 51Cr release or 111In release assay. Both purified monocytes (greater than 99% monocytes) and natural killer (NK)-enriched lymphocytes exhibited comparable levels of spontaneous cytotoxicity against fresh melanoma tumor targets. This cytotoxicity was observed under endotoxin-free conditions. NK-depleted lymphocytes did not lyse the melanoma targets. Culture supernatants of monocytes incubated with the melanoma tumor cells did not exhibit cytotoxic activity against these targets. Purified monocytes lacked NK activity against the K562 targets in a 4-hr 51Cr release assay. Treatment of the monocytes with anti-Leu 1 1b and anti-Leu7 monoclonal antibodies plus complement did not reduce monocyte-mediated lysis of the melanoma targets, demonstrating that contaminating NK cells, if any, were not responsible for the lysis of noncultured melanoma targets by monocytes. In contrast, Leu 1 1b+ NK cells were responsible for the lysis of the melanoma targets by NK-enriched lymphocytes. The addition of recombinant interferon-gamma (rIFN-gamma), but not lipopolysaccharide, into the 51Cr release assay or pretreatment of monocytes with rIFN-gamma significantly increased their cytotoxicity against noncultured solid tumor cells. Monocytes cultured for 3 days with medium alone lost their cytotoxic activity. The addition of rIFN-gamma from the beginning of these cultures prevented the loss of the cytotoxic activity of monocytes. In summary, both unstimulated monocytes and NK-enriched lymphocytes exhibit comparable levels of spontaneous cytotoxicity against fresh solid tumor targets.  相似文献   

9.
Many stimuli cause intracellular concentration oscillations of second messengers or metabolites, which, in turn, may encode information in their amplitudes and frequencies. We now test the hypothesis that synergistic cellular responses to dual cytokine exposure correlate with cross-talk between metabolic signaling pathways of leukocytes. Polarized RAW264.7 macrophages and human neutrophils and monocytes exhibited NAD(P)H autofluorescence oscillation periods of congruent with20 s. IFN-gamma tripled the NAD(P)H oscillatory amplitude for these cells. Although IL-6 had no effect, incubation of cells with IFN-gamma and IL-6 increased both oscillatory amplitude and frequency. Parallel changes were noted after treatment with IFN-gamma and IL-2. However, IL-1beta and TNF-alpha did not display frequency doubling with or without IFN-gamma exposure. To determine whether frequency doubling required complete IFN-gamma signaling or simply metabolic amplitude modulation, an electric field was applied to cells at NAD(P)H troughs, which has been shown to enhance NAD(P)H amplitudes. Electric field application led to frequency doubling in the presence of IL-6 or IL-2 alone, suggesting that amplitude modulation is crucial to synergism. Because NADPH participates in electron trafficking to NO, we tested NO production during cytokine exposure. Although IL-6 and IL-2 alone had no effect, IFN-gamma plus IL-6 and IFN-gamma plus IL-2 enhanced NO release in comparison to IFN-gamma treatment alone. When NO production was examined for single cells, it incrementally increased with the same phase and period as NAD(P)H. We suggest that amplitude and frequency modulation of cellular metabolic oscillations contribute to intracellular signaling synergy and entrain NO production.  相似文献   

10.
Inhibition of natural killer activity by human bronchoalveolar macrophages   总被引:4,自引:0,他引:4  
Mononuclear phagocytes were isolated by adherence from peripheral blood, peritoneal exudates, early lactation milk, ovarian carcinomatous ascites and bronchoalveolar lavages. Their capacity to modulate natural killer (NK) activity was assessed by mixing them with blood lymphocytes and by measuring lysis of 51Cr-labeled K562 cells. Unlike other mononuclear phagocyte populations, alveolar macrophages caused a marked dose-dependent inhibition of NK activity. Significant inhibition (40%) of the expression of cytotoxicity was evident at a ratio of alveolar macrophages to lymphoid cells of 0.12:1, and more than 80% suppression was usually observed at a ratio of 0.5:1. Blood monocytes, peritoneal and milk macrophages were consistently inactive up to the highest ratio tested, 2:1. Inhibition of the expression of NK activity by alveolar macrophages was observed at lymphocyte to K562 ratios ranging from 6:1 to 100:1 and over a 4 h or 20 h 51Cr release assay. Alveolar macrophages also inhibited interferon-stimulated cytotoxicity. Alveolar macrophages are unique among the mononuclear phagocyte populations studied in their capacity to inhibit the expression of NK activity effectively, and they could play a role in determining the low levels of NK activity associated with human pulmonary tissue.  相似文献   

11.
Oxidized low density lipoprotein (OxLDL) is immunogenic and induces autoimmune responses in humans. OxLDL antibodies are predominantly of the proinflammatory IgG1 and IgG3 isotypes. We tested the capacity of immune complexes prepared with copper-oxidized human LDL and affinity chromatography-purified human OxLDL antibodies [OxLDL-immune complexes (ICs)] to activate complement and to induce cytokine release by MonoMac 6 (MM6) cells and by primary human macrophages. The levels of C4d and C3a were significantly higher in human serum incubated with OxLDL-ICs than after incubation with OxLDL or OxLDL antibody, indicating complement activation by the classical pathway. MM6 cells and primary human macrophages were incubated with OxLDL-ICs, with or without prior conditioning with interferon-gamma. After 18 h of incubation, both MM6 cells and primary human macrophages released significantly higher levels of proinflammatory cytokines after incubation with OxLDL-ICs than after incubation with OxLDL or with OxLDL antibody, both in primed and unprimed cells. OxLDL-ICs were more potent activators of MM6 cells than keyhole limpet hemocyanin-ICs. Blocking Fc gamma receptor I (FcgammaRI) with monomeric IgG1 significantly depressed the response of MM6 cells to OxLDL-ICs. In conclusion, human OxLDL-ICs have proinflammatory properties, as reflected by their capacity to activate the classical pathway of complement and to induce proinflammatory cytokine release from MM6 cells and primary human macrophages.  相似文献   

12.
We have previously reported that IL-2-induced lymphokine-activated killer (LAK) cells have the capacity to lyse autologous and allogeneic monocytes. To understand the biologic significance of this interaction, we investigated the function of human monocytes against the opportunistic pathogen, Candida albicans, subsequent to a short exposure to autologous LAK cells. A highly sensitive radiolabel assay, which makes use of the incorporation of [3H]glucose into residual Candida after their incubation with monocytes, was developed to measure antifungal activity. Cultured monocytes, after 2 to 6 h exposure to LAK cells, were found to be substantially suppressed in their ability to control fungal growth. Moreover, monocytes cultured in the presence of granulocyte/macrophage (GM)-CSF or IL-3, were even more suppressed in function after a short incubation with LAK cells. The effect of GM-CSF was both time and dose dependent, with peak susceptibility induced after 4 days of culture with as little as 10 U/ml of the cytokine. These GM-CSF-cultured monocytes, however, were relatively resistant to inhibition by freshly isolated large granular lymphocytic NK cells. Therefore, IL-2 induces in large granular lymphocytic cells the capacity to inhibit monocyte function. In contrast to GM-CSF and IL-3, IFN-gamma was found to have a protective effect on monocytes, because monocytes cultured 4 days in IFN-gamma were not significantly inhibited by LAK cells. These results indicate that LAK cells may be involved in regulation of monocyte function and suggest that the state of differentiation induced by different cytokines may dictate the level of control of the monocytes by LAK cells.  相似文献   

13.
Human peripheral blood monocytes can be separated into two subpopulations which differ in the efficiency of their adherence to glass after 16 hours of incubation. The adherent subpopulation was found to be about twice as effective in binding mannose-resistant E. coli 0-124, mannose-sensitive E. coli 0-128 and opsonised E. coli than the nonadherent one. In addition, reduction of cytochrome C in response to E. coli binding or 12-myristate 13-acetate (PMA) stimulation was two fold higher in adherent cells. The binding of E. coli O-124 and the superoxide generation stimulated by E. coli were inhibited by the addition of mannose only in the adherent monocytes, indicating the presence of mannose receptors on the cell surface in the adherent subpopulation. The treatment of the nonadherent cells with 0.1-1000 U/ml of Interferon (IFN-gamma) for 24 hours resulted in a dose dependent increase in superoxide generation. After 72 hours of incubation with IFN-gamma (1000 U/ml) the amount of superoxide generated by the nonadherent cells was elevated to 20.5 +/- 1.4 nmoles/10(6) cells/15 min, similar to that of the adherent cells (24.5 +/- 1.2 nmoles/10(6) cells/15 min untreated adherent monocytes). The generation of superoxide in the IFN-gamma treated nonadherent monocytes stimulated by E. coli 0-128 was significantly reduced by addition of mannose.  相似文献   

14.
The effect of IL-4 on the IFN-gamma-induced state of activation of cultured human monocytes was investigated with regard to their ability to produce hydrogen peroxide and their antileishmanial capacity towards the intracellular parasite Leishmania donovani. IL-4 was found to inhibit the IFN-gamma-dependent hydrogen peroxide production of monocytes. Treatment of monocytes with IFN-gamma (200 to 600 U/ml) for 48 h increased the hydrogen peroxide production fourfold above background. Coincubation of the monocytes with IL-4 (1 to 1000 U/ml) and IFN-gamma (200 to 600 U/ml) inhibited this increase by 50 to 100%. IL-4 alone did not modulate the hydrogen peroxide production of monocytes. Pretreatment of monocytes with IL-4 for 20 min to 3 h was already effective in preventing the IFN-gamma response. Addition of IL-4 not later than 6 h after the start of incubation with IFN-gamma was necessary for an optimal inhibitory effect. IL-4 also inhibited the IFN-gamma-induced antileishmanial capacity of monocytes: IFN-gamma (1000 U/ml) induced a 54 +/- 10% reduction in the number of parasites. Monocytes treated with combinations of IL-4 (100 to 1000 U/ml) and IFN-gamma (1000 U/ml) were unable to reduce the parasite numbers. IL-4 alone did not alter the uptake of Leishmania donovani nor induce antileishmanial activity. These results demonstrate that IL-4 disables human cultured monocytes to respond to IFN-gamma activation.  相似文献   

15.
16.
Monocytes accumulate in the epidermis and along the dermo-epidermal junction in several different inflammatory skin diseases. To determine whether human epidermal keratinocytes elaborate a specific chemotaxin responsible for the accumulation of monocytes at these anatomic sites, monocyte chemotactic activity in conditioned 16-h cultured keratinocyte supernatants were assayed using human peripheral blood monocytes as the target cell. Dilutional analysis revealed directed monocyte migration in IFN-gamma-treated (100 U/ml) keratinocyte supernatants (80% maximal FMLP response) which was 10-fold more than IFN-gamma itself or untreated keratinocyte activity alone. Gel filtration chromatography revealed that this activity eluted just ahead of a 12.5-kDa molecular mass marker. Blocking studies demonstrated that a rabbit polyclonal antibody to monocyte chemotaxis and activating factor (MCAF) inhibited all monocyte chemotaxis by greater than 80%. Keratinocytes were metabolically labeled with 35S-cysteine/methionine, and after 16 h incubation the supernatants immunoprecipitated with the same anti-MCAF antibody. MCAF was detected as a protein doublet of 12 and 9 kDa only in IFN-gamma-treated (100 U/ml) keratinocyte supernatants. Incubation with IFN-gamma and TNF-alpha (250 U/ml) in combination resulted in increased production of MCAF protein. By Northern blot analysis, MCAF mRNA was constitutively expressed in keratinocytes and upregulated only in the presence of IFN-gamma. TNF-alpha, IL-1 beta, transforming growth factor-beta and phorbol esters had no positive or negative influence on MCAF mRNA. These studies demonstrate that biologically active MCAF is elaborated by human epidermal keratinocytes upon activation by IFN-gamma, a cytokine also required for the induction of adherence between monocytes and keratinocytes. Keratinocyte-derived MCAF is likely to be important in the regulation of cutaneous monocyte trafficking and may also be responsible for the recruitment of Langerhans cells and dermal dendrocytes, which share many phenotypic features with monocytes/macrophages, to their anatomic locations in skin.  相似文献   

17.
The capacity of 12 cytokines to induce NO2- or H2O2 release from murine peritoneal macrophages was tested by using resident macrophages, or macrophages elicited with periodate, casein, or thioglycollate broth. Elevated H2O2 release in response to PMA was observed in resident macrophages after a 48-h incubation with IFN-gamma, TNF-alpha, TNF-beta, or CSF-GM. Of these, only IFN-gamma induced substantial NO2- secretion during the culture period. The cytokines inactive in both assays under the conditions tested were IL-1 beta, IL-2, IL-3, IL-4, IFN-alpha, IFN-beta, CSF-M, and transforming growth factor-beta 1. Incubation of macrophages with IFN-gamma for 48 h in the presence of LPS inhibited H2O2 production but augmented NO2- release, whereas incubation in the presence of the arginine analog NG-monomethylarginine inhibited NO2- release but not H2O2 production. Although neither TNF-alpha nor TNF-beta induced NO2- synthesis on its own, addition of either cytokine together with IFN-gamma increased macrophage NO2- production up to six-fold over that in macrophages treated with IFN-gamma alone. Moreover, IFN-alpha or IFN-beta in combination with LPS could also induce NO2- production in macrophages, as was previously reported for IFN-gamma plus LPS. These data suggest that: 1) tested as a sole agent, IFN-gamma was the only one of the 12 cytokines capable of inducing both NO2- and H2O2 release; 2) the pathways leading to secretion of H2O2 and NO2- are independent; 3) either IFN-gamma and TNF-alpha/beta or IFN-alpha/beta/gamma and LPS can interact synergistically to induce NO2- release.  相似文献   

18.
Macrophages are pivotal cells in interactions of man and leishmania. Leishmanial disease results from intracellular infection of macrophages: parasitized cells are seen in smears or biopsy specimens of lesions; macrophages cultured in vitro support replication of parasites. Paradoxically, parasite destruction is also mediated by macrophages, which become highly cytotoxic after exposure to immune lymphocytes or their lymphokine (LK) products. The precise molecular mechanisms by which lymphocytes or LK induce macrophage activation for leishmanicidal activity, however, are not yet known. We analyzed interactions of leishmania amastigotes with human monocytes cultured in vitro as a nonadherent cell pellet. Leishmania donovani and L. major replicated in freshly isolated monocytes. Monocytes treated with greater than 200 IU/ml of the LK, human Interferon-gamma (IFN-gamma), destroyed tumor cells and L. donovani, but not L. major. Phorbol myristate acetate, endotoxic bacterial lipopolysaccharide, and recombinant human IFN-alpha and IFN-beta did not induce cytotoxicity. The time course for induction of cytotoxicity contrasted sharply with that of previously described monocyte antileishmanial activity: IFN-gamma induced cytotoxicity even when added after infection with L. donovani; induction of cytotoxicity did not require that IFN-gamma be present throughout the period of culture after infection: a 30-min preinfection pulse of IFN-gamma was sufficient to induce 70% of maximal activity; and freshly isolated monocytes and cells cultured for up to 4 days in vitro prior to infection and IFN-gamma treatment were equally responsive to IFN-gamma. These studies provide convincing evidence for intracellular cytotoxicity for L. donovani by freshly isolated human monocytes. This system provides an important base for further analysis of induction and expression of cytotoxic mechanisms against leishmania and other intracellular organisms that cause human disease.  相似文献   

19.
We have demonstrated previously that Chlamydia psittaci grows well in human monocyte-derived macrophages, but to a limited extent in lymphokine-or interferon-gamma (IFN-gamma)-activated macrophages. In this investigation, freshly explanted human monocytes inhibited chlamydial inclusion formation by 85% as compared to macrophages, and the level of inhibition was similar to that exhibited by lymphokine-activated macrophages (79%). To determine whether the oxygen-dependent antimicrobial mechanisms of the mononuclear phagocyte were involved in the inhibition, cells were infected with C. psittaci in the presence of agents that either inhibit the respiratory burst (glucose deprivation) or diminish the effect of H2O2 (catalase). These treatments had no effect on the capacity of monocytes and lymphokine-activated macrophages to restrict chlamydial growth. In addition, monocytes and activated macrophages from an individual with chronic granulomatous disease suppressed chlamydial growth as effectively as normal cells. Oxidatively deficient HeLa and endothelial cells, once stimulated by lymphokine, also displayed normal levels of antichlamydial activity. The induction of this apparently oxygen-independent antichlamydial effect by lymphokine was completely neutralized by a monoclonal anti-IFN-gamma antibody, and could be achieved by treatment with recombinant (r)IFN-gamma alone. These results indicate that the primary antimicrobial mechanism of the human monocyte against C. psittaci is oxygen-independent, and that this response can be effectively stimulated in the macrophage by lymphokine (IFN-gamma).  相似文献   

20.
Expression of cellular cytotoxicity by monocytes or macrophages has been conceived as an induced function secondary to collaboration in the immune response or to other agonists. However, a form of spontaneous cellular cytotoxicity by monocytes analyzed with unseparated human peripheral blood mononuclear cells (PBM) has been described by using the 6-hr 51Cr release from actinomycin D (ActD)-treated murine WEHI 164 cells, a target cell refractory to the cytotoxic effects of natural killer and cytolytic T cells. We observe that when cells are isolated under rigorously endotoxin-free conditions, there is no cytotoxicity. Inclusion of serum does not induce cellular cytotoxicity; however, cytotoxic activity is induced by the presence of as little as 1 pg/ml of bacterial lipopolysaccharide (LPS). PBM required 2 hr of preexposure to endotoxin in order to express full cytotoxic activity. We investigated the basis of the cytotoxicity of WEHI 164 cells and the effect of ActD. ActD-treated target cells are highly susceptible to the effects of TNF-alpha and TNF-beta (alpha-lymphotoxin), whereas untreated target cells were resistant. In contrast, ActD does not affect susceptibility to the cytotoxic effects of H2O2, and interleukin 1 is not cytotoxic to the target cells. With the use of a neutralizing monoclonal antibody specific for TNF-alpha, the cytotoxic activity induced by LPS greatly diminished and the amount of TNF-alpha neutralized is similar to that required for equivalent cytotoxicity. We conclude that monocytes present in human PBM are not "spontaneously" cytotoxic for ActD-treated WEHI 164 target cells, but that the reported cytotoxicity results from exposure to a level of endotoxin or endotoxin-like agonists to which the cells are exposed. The cytotoxicity is mediated mostly if not entirely by TNF-alpha, an established product of monocytes/macrophages. With the use of endotoxin-free conditions, PBM can be isolated in a cytotoxically latent state, suitable for analysis of the immunologic regulation of TNF-alpha-mediated monocyte cellular cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号