首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitors of repair DNA synthesis.   总被引:7,自引:3,他引:4       下载免费PDF全文
We have measured repair DNA synthesis in UV-irradiated normal human fibroblasts, grown to a defined state of quiescence in order to avoid the problem of discriminating repair from replicative DNA synthesis. We have assessed the effects of various DNA synthesis inhibitors on repair. Inhibition of repair synthesis by hydroxyurea, 1-beta-D-arabinofuranosylcytosine and aphidicolin is associated with the ability to accumulate DNA breaks due to enzymic incision at DNA damage sites; the inhibition by novobiocin is in accord with its known ability to block incision.  相似文献   

2.
Replicative bypass repair of UV damage to DNA was studied in wide variety of human, mouse and hamster cells in culture. Survival curve analysis revealed that in established cell lines (mouse L, Chinese hamster V79, HeLa S3 and SV40-transformed xeroderma pigmentosum (XP)), post-UV caffeine treatment potentiated cell killing by reducing the extrapolation number and mean lethal UV fluence (Do). In the Do reduction as the result of random inactivation by caffeine of sensitive repair there were marked clonal differences among such cell lines, V79 being most sensitive to caffeine potentiation. However, other diploid cell lines (normal human, excision-defective XP and Syrian hamster) exhibited no obvious reduction in Do by caffeine. In parallel, alkaline sucrose sedimentation results showed that the conversion of initially smaller segments of DNA synthetized after irradiation with 10 J/m2 to high-molecular-weight DNA was inhibited by caffeine in transformed XP cells, but not in the diploid human cell lines. Exceptionall, diploid XP variants had a retarded ability of bypass repair which was drastically prevented by caffeine, so that caffeine enhanced the lethal effect of UV. Neutral CsCl study on the bypass repair mechanism by use of bromodeoxyuridine for DNA synthesis on damaged template suggests that the pyrimidine dimer acts as a block to replication and subsequently it is circumvented presumably by a new process involving replicative bypassing following strand displacement, rather than by gap-filling de novo. This mechanism worked similarly in normal and XP cells, whether or not caffeine was present, indicating that excision of dimer is not always necessary. However, replicative became defective in XP variant and transformed XP cells when caffeine was present. It appears, therefore, that the replicative bypass repair process is either caffeine resistant or sensitive, depending on the cell type used, but not necessarily on the excision repair capability.  相似文献   

3.
The effects of UVC radiation (lambda = 254 nm, 85 J/m2) and/or 1-beta-D-arabino-furanosylcytosine (araC, 2 x 10(-3) M, 2 h) on two mouse lymphoma cell lines, UVC-sensitive and X-ray resistant L5178Y-R and UVC-resistant and X-ray sensitive L5178Y-S, were investigated. AraC treatment inhibited the semiconservative DNA replication to 1.4% and 3.8% in L5178Y-R and L5178Y-S cells, respectively, and decreased the sedimentation distance of nucleoids from the cells of both lines. The shortening of sedimentation distances induced by UVC and araC treatment was 8.1 mm for L5178Y-R cells and 11.8 mm for L5178Y-S, and indicated a higher number of DNA breaks in L5178Y-S cells. Assuming that such breaks are the result of the inhibition of DNA repair replication by araC, we conclude that L5178Y-S cells have a greater number of repaired sites than L5178Y-R cells.  相似文献   

4.
In cultures of primary murine fibroblasts the 10% serum stimulates the replicative synthesis of DNA inhibited by aphidicolin and araC (cytosine arabinoside). Using direct immunofluorescence analysis, it was shown that antibodies penetrate inside the cells and after 4 hours are pooled in the nuclei, where they remain for another 20 hours. The substitution of antibodies against chromatin DNAase by bovine serum albumin of normal serum gamma-globulins does not interfere with the DNA synthesis induction.  相似文献   

5.
Aphidicolin inhibits repair of DNA in UV-irradiated human fibroblasts   总被引:3,自引:0,他引:3  
Aphidicolin, a specific inhibitor of DNA polymerase α, is shown to inhibit DNA repair in human diploid fibroblasts. Although aphidicolin has no apparent effect on the DNA of unirradiated cells, it causes a large number of strand breaks to accumulate in UV-irradiated cellular DNA. The number of breaks is the same as the number observed following a similar dose of ultraviolet light when cells are treated with arabinofuranosyl cytosine (araC) and hydroxyurea (HU), known inhibitors of repair. Moreover, two-dimensional paper chromatography shows that aphidicolin completely blocks removal of pyrimidine dimers. These observations are discussed in light of the proposed roles of DNA polymerases α β in DNA replication and repair and the action of aphidicolin on polymerase α.  相似文献   

6.
HeLa cells in S phase induce DNA synthesis in cycling cells, serum-deprived quiescent cells, and non-replicative senescent cells following cell fusion. In contrast normal human diploid fibroblasts (HDF) do not induce DNA synthesis in either quiescent cells or senescent cells. Instead, the replicative HDF nuclei are inhibited from entering S phase in heterokaryons formed with these two types of non-replicative cells. These differences in the inducing capabilities of normal HDF and HeLa cells raise the question whether normal HDF in S phase can induce DNA synthesis in cycling cells. This paper demonstrates that young HDF in S phase can induce DNA synthesis in cycling HDF. Thus, the hypothesis that initiation of DNA synthesis in cycling cells is positively controlled by inducer molecules appears to be valid for normal HDF as well as for transformed cells such as HeLa.  相似文献   

7.
The kinetics of repair of the ionizing radiation-induced DNA single- and double-strand breaks in the normal NIH 3T3 mouse cells and in those transformed with virus oncogenes v-myc has been investigated. The incubation of non-transformed cells for 18 hours in serum-free medium results in significant decrease in the rate of the single-strand DNA breaks repair during the first minutes of post-irradiation incubation. This effect is absent in transformed cells. The DNA double-strand breaks repair is more efficient in transformed NIH 3T3 cells as compared to that in the non-transformed ones both after their incubation in the medium with 10% fetal bovine serum or without serum. However, more significant differences in the rate of elimination of these DNA lesions was found in the serum-free medium. Hence, the presence of v-myc sequences in the transformed cells prevented from a decrease in the efficiency of DNA repair due to incubation of cell culture in serum-free medium. These results agree with the assumption that c-myc gene product may be a mediator in regulation of DNA repair by the epidermal growth factor. These data also show that the c-myc gene expression in an important condition providing a high efficiency of the constitutive DNA repair process.  相似文献   

8.
The induction of DNA-strand breaks and repair synthesis has been examined in cultured Yoshida sarcoma cell lines sensitive (YS) and resistant (YR) to methylene dimethanesulphonate (MDMS). Using an alkaline DNA unwinding-hydroxylapatite technique, we were able to detect breaks in DNA immediately after MDMS treatment and at similar levels in both YS and YR cells. MDMS treatment and post-treatment incubation in the presence of 1-β-D-arabino-furanosylcytosine (araC) lead to a large increase in the numbers of breaks when compared with MDMS treatment alone which indicated that many of the DNA-strand breaks seen after MDMS treatment were intermediates in excision repair. The magnitude of break incidence with the araC treatment was again equal in YS and YR cells indicating that these 2 lines made enzymic incision next to MDMS-induced lesions with equal capacities.During incubation following MDMS treatment, the levels of DNA-strand breaks in YR cells were found to decrease more rapidly than in YS cells. Parallel DNA-repair synthesis estimations, using BND-cellulose chromatography, revealed that the increased rate of decline in breaks in YR cells was accompanied by an increase in repair-synthesis activity compared to YS cells. This was interpreted as indicating that an intermediate step in an excision-repair pathway for MDMS-induced lesions was relatively deficient in YS compared to YR cells.A similar difference in the rates of decline of DNA-strand breaks between YS and YR cells was also observed following treatment with UV light to which MDMS-resistant YR cells also display cross-resistance. However, no such difference was detected following treatment with the monofunctional alkylating agent, methyl methanesulphonate, to which YS and YR cells are equally sensitive. These results suggest that resistance to MDMS in the YR cell line is achieved by an increased efficiency in the gap-sealing component of the excision-repair process.  相似文献   

9.
Ultraviolet light-induced excision repair, as measured by single-strand DNA-break accumulation in the presence of hydroxyurea and 1-beta-D-arabinofuranosylcytosine, undergoes an apparent decline concomitant with spontaneous transformation of mouse cells in vitro. This decline is seen in preneoplastic transformed cells as well as tumorigenic cells, suggesting that it is an early event in transformation. The difference between nontransformed and transformed mouse cells in apparent incision rates is greatest at short times after irradiation when nontransformed cells show a transient phase of rapid incision. No gross differences in the effects of UV on replicative DNA synthesis, bulk RNA synthesis, cell proliferation or clonal survival in nontransformed and transformed cells were seen, in spite of the reduced incision capacity of the latter. Taken together the results suggest that transformed cells are capable of growth in the presence of significantly increased amounts of DNA damage. A decreased ability of nontumorigenic cells to remove DNA lesions, coupled with unrestricted growth, may be responsible for genetic alterations which increase the probability of a cell becoming tumorigenic.  相似文献   

10.
Deoxyadenosine plus deoxycoformycin (dCf) causes increased DNA breaks in lymphoid cells. This study explored the possible inhibition of repair synthesis of DNA by dAdo plus dCf as a cause of DNA breakage. It was shown that DNA breaks accumulated in a human T-lymphoblast cell line, CCRF-CEM, following incubation with dAdo plus dCf and were not fully repaired 20 h after their removal. Analysis of the density distribution of radiolabeled DNA on alkaline CsCl gradient showed that incubation of CCRF-CEM cells with dAdo plus dCf caused inhibition of semiconservative, but not repair synthesis of DNA. Semiconservative synthesis of DNA was also inhibited in CCRF-CEM nuclei isolated from cells pretreated with dAdo and dCf, suggesting damage to DNA replicative machinery. However, no such inhibition was observed in the nuclei of a similarly treated CCRF-CEM mutant that was deficient in adenosine kinase and deoxycytidine kinase. This suggests that dAdo must be phosphorylated in intact cells to exert its effect. Using [3H]dTTP incorporation in isolated CCRF-CEM nuclei to measure DNA synthesis, it was found that a high concentration (greater than 100 microM) of dATP inhibits semiconservative but not repair synthesis of DNA. The present studies thus indicate that accumulation of DNA strand breaks induced by dAdo plus dCf is not the consequence of inhibition of repair DNA synthesis. This implies the mechanism may involve perturbation of DNA ligation or activation of a certain process which causes DNA strand breaks. In addition, dATP may interfere with some steps of semiconservative DNA synthesis, but not the repair synthesis of DNA.  相似文献   

11.
《Mutation Research Letters》1991,262(3):151-157
The extent of DNA-excision repair was determined in human fibroblast strains from clinically normal and xeroderma pigmentosum complementation group A (XP-A) donors after irradiation with 254-nm ultraviolet (UV) light. Repair was monitored by the use of 1-β-d-arabinofuranosylcytosine (araC), a potent inhibitor of DNA synthesis, and alkaline sucrose velocity sedimentation to quantitate DNA single-strand breaks. In this approach, the number of araC-accumulated breaks in post-UV incubated cultures becomes a measure of the efficiency of a particular strain to perform long-patch excision repair. The maximal rate of removal of araC-detectable DNA lesions equalled ∼ 1.8 sites/108 dalton/h in the normal strains (GM38, GM43), while it was more than 10-fold lower in both XP-A strains (XP4LO, XP12BE) examined. In normal fibroblasts the number of lesions removed during the first 4 h after irradiation saturated at ∼ 10 J/m2. In contrast, the residual amount of repair in the excision-deficient cells increased as a linear function of UV fluence over a range 5–120 J/m2. Thus we conclude that the repair of araC-detectable UV photoproducts in XP group A fibroblasts is limited by availability of damaged regions in the genome to repair complexes.  相似文献   

12.
The extent of DNA excision repair was determined in dermal fibroblast strains from clinically normal and xeroderma pigmentosum (XP; complementation group A) human donors after single or combined exposures to 254-nm ultraviolet light and 4-nitroquinoline 1-oxide (4NQO). The repair was monitored by incubation of the treated cultures in the presence of 1-beta-D-arabinofuranosylcytosine (araC), a potent inhibitor of long-patch excision repair, followed by quantitation of araC-accumulated DNA single-strand breaks (representing repair events) by velocity sedimentation analysis in alkaline sucrose gradients. The amount of repair in normal fibroblast strains increased as a function of UV fluence and reached a plateau at 15 J/m2; strand breaks were not detected when these same cultures were irradiated with as much as 60 J/m2 UV and incubated in the absence of araC, implying that an initial (incision) step is rate-limiting in the repair of UV damage. In normal fibroblasts (i) the incidence of araC-detectable lesions removed during fixed intervals following exposure to 4NQO (4 microM; 30 min) was approximately 2.5 times greater than that seen following irradiation with repair-saturating fluences (greater than or equal to 15 J/m2) of UV-rays; and (ii) the amount of repair in cultures treated simultaneously with 4NQO (0.5-6 microM; 30 min) and a repair-saturating fluence of UV (20 J/m2) was found to approach the sum of that arising from exposure to each separately. The XP cells (XP12BE) exhibited a deficiency in the removal of araC-detectable DNA lesions following exposure to either of the carcinogens. Since araC is known to inhibit the repair of alkali-stable 4NQO-DNA adducts (i.e., lesions assumed to be removed by the UV-like excision pathway) but not that of alkali-labile sites (i.e., DNA lesions operated on by the X-ray-like repair pathway), our results strongly imply that the multistep excision-repair pathway operative on UV photoproducts in human fibroblasts differs from that responsible for removing alkali-stable (araC-detectable) 4NQO adducts by at least one step, presumably the rate-limiting incision reaction mediated by a lesion-recognizing endonuclease.  相似文献   

13.
It has been suggested that genomic alterations involving DNA damage and the ability to repair such damage play an important role in cellular senescence. In this study, endogenous DNA single-strand breaks, the susceptibility of DNA to induced strand breakage and the capacity to repair these breaks were compared in postmitotic cells from young (3-day-old) and old (23-day-old) houseflies. DNA single-strand breaks did not accumulate during normal aging in the housefly. However, cells of the old flies exhibited a greater sensitivity to single-strand breakage induced by gamma-radiation and UV light. The capacity to repair these exogenously induced single-strand breaks declined with age. Results do not support the view that DNA single-strand breaks are a causal factor in aging in the housefly. An age-related increase in the susceptibility to undergo single-strand breakage suggests alterations in chromatin during the aging process.  相似文献   

14.
Twelve cigarette smoke condensate fractions were tested for their ability to inhibit replicative DNA synthesis and DNA excision repair synthesis in cultures of human fibroblasts and Swiss mouse embryo cells. None of the fractions showed any specificity for the inhibition of DNA repair and, in general, repair synthesis was less sensitive to inhibition than was replicative synthesis. There was some correlation between the inhibitory action of the various fractions and their activity in bioassays performed in other laboratories, including in vitro cell transformation and bacterial mutagenicity. In most cases, DNA synthesis in the human cells was more sensitive to inhibition than it was in the mouse cells. The specific compounds in the condensate fractions which are responsible for their activity have not been identified.  相似文献   

15.
The frequency of X-ray-induced chromosome aberrations in G1 ML-1 mouse myeloid leukemia cells and normal mouse bone marrow cells increased with post-irradiation incubation with the DNA-repair resynthesis inhibitor 1-beta-D-arabinofuranosylcytosine (araC), but the frequency of aberrations in the leukemic cells increased with quite a different time response compared to the normal cells. Irradiated normal mouse bone marrow cells had a rapid increase in the frequency of chromosome exchanges and deletions with increasing araC incubation time, for example, an increase was observed with 0.5 h araC incubation. In contrast, the ML-1 cells did not have a significant increase in aberrations until 1-2 h post-irradiation incubation with araC. These results suggest that the ML-1 cells, per unit time, initially undergo less repair of the X-ray-induced DNA damage that can be converted into chromosome aberrations. We previously showed that the ML-1 cells have a higher frequency of X-ray-induced chromosome aberrations compared to normal cells and the results presented here indicate that a slower rate of repair resynthesis is contributing to the increased sensitivity of the ML-1 cells.  相似文献   

16.
The extent of DNA-excision repair was determined in human fibroblast strains from clinically normal and xeroderma pigmentosum complementation group A (XP-A) donors after irradiation with 254-nm ultraviolet (UV) light. Repair was monitored by the use of 1-beta-D-arabinofuranosylcytosine (araC), a potent inhibitor of DNA synthesis, and alkaline sucrose velocity sedimentation to quantitate DNA single-strand breaks. In this approach, the number of araC-accumulated breaks in post-UV incubated cultures becomes a measure of the efficiency of a particular strain to perform long-patch excision repair. The maximal rate of removal of araC-detectable DNA lesions equalled approximately 1.8 sites/10(8) dalton/h in the normal strains (GM38, GM43), while it was more than 10-fold lower in both XP-A strains (XP4LO, XP12BE) examined. In normal fibroblasts the number of lesions removed during the first 4 h after irradiation saturated at approximately 10 J/m2. In contrast, the residual amount of repair in the excision-deficient cells increased as a linear function of UV fluence over a range 5-120 J/m2. Thus we conclude that the repair of araC-detectable UV photoproducts in XP group A fibroblasts is limited by availability of damaged regions in the genome to repair complexes.  相似文献   

17.
DNA polymerase activities from HeLa cells and from cultured diploid human fibroblasts in various growth states were compared. alpha-Polymerase activities from log phase fibroblasts treated with sodium butyrate and from stationary phase HeLa cells had DEAE-cellulose elution patterns that differed from those of polymerases from dividing cells. Moreover, alpha- and beta-polymerases from nondividing cells replicated synthetic polymers less faithfully. Although similar changes were observed previously for polymerases from late-passage and postconfluent early passage fibroblasts, amounts of alpha-polymerase activity recovered from nondividing cells in this study did not dramatically decline as they had in the former cases. The alpha-polymerase activities from HeLa cells and fibroblasts in various growth states sedimented near 7.5S in 0.4 M KCI and could be inhibited by a monoclonal IgG fraction prepared against KB cell alpha-polymerase. By several criteria, there was no significant differences in levels of UV-stimulated repair synthesis observed in early or late-passage postconfluent fibroblasts or in log phase fibroblasts treated with sodium butyrate. In summary, levels of alpha-polymerase do not necessarily correlate either with replicative activity or with apparent levels of repair synthesis. However, cells with decreased replicative activity always yielded enzyme with decreased fidelity in vitro and altered chromatographic behavior. It appears, therefore, that the alterations observed for alpha-polymerase from late-passage cells may be attributed more generally to the nondividing nature of these cells.  相似文献   

18.
A simple and sensitive technique for detection of strand breaks in DNA has been further developed. The method has been used to follow UV-induced excision-repair in human fibroblasts. It has been possible to study the kinetics of enzymic reactions in intact cells, in which strand breaks in DNA are produced and sealed again. Hydroxyurea, 5-fluorodeoxyuridine and 1-beta-D-arabinofuranosylcytosine, potent inhibitors of DNA synthesis, drastically increased the number of breaks observed during the repair process. This was probably due to a decreased polymerase activity, which will cause the strand breaks formed by endonuclease to remain open longer. The initial rate of strand-break formation did not seem to be influenced by hydroxyurea or araC, and was about 4000 breaks per minute in a diploid genome, at a dose of 20 J/m2. After 5--30 min, depending on the dose of UV, the number of breaks reached a maximum and started to decrease again. Hydroxyurea decreased the rate of polymerization in the sites under repair. However, there was no concomitant reduction of repair-induced incorporation of [3H]thymidine and no reduction of the excision of pyrimidine dimers. It therefore seems that the action of the polymerase was not a rate-limiting event, but rather an earlier step. It is likely that the endonucleolytic activity determined the rate of repair. As a consequence, the endonuclease and polymerase cannot be bound in a permanent complex. Under certain assumptions, the time for repair of a site, i.e. the time from incision to final ligase sealing, can be estimated as between 3 and 10 min. Essentially no breaks were produced in Xeroderma pigmentosum cells belonging to complementation group A, and there was no enhancement by hydroxyurea. Cells from the variant type of Xeroderma pigmentosum behaved like normal cells in this respect.  相似文献   

19.
We investigated the cloning efficiency, DNA repair, and the rate of DNA replication in the skin fibroblasts from patients with Werner's syndrome (WS) of an autosomal recessive premature aging disease. Five WS strains exhibited normal levels of sensitivity toward X-ray and UV killings and repair of X-ray induced single strand breaks of DNA (rejoining) and UV damage to DNA (unscheduled DNA synthesis). The sedimentation of newly synthesizing DNA in alkaline sucrose gradients demonstrated a characteristic feature that only the elongation rate of DNA chains, estimated by the molecular weight increase, was significantly slower during early passages in WS cells than in normal Hayflick Phase II fibroblasts. In addition, plating efficiencies as well as the replicative potentials of five WS strains were more limited than those of normal cells under the identical culture conditions. It seems therefore that at least in the WS cells tested, the slow rate of DNA replication may be more related to the shortened lifespan and enhanced cell death, as manifestation of premature senescence at the cellular level, than be the DNA repair ability.  相似文献   

20.
After a 10 min- or more prolonged incubation of transformed mouse fibroblasts (L.-cells) with [3H]-thymidine or [3H-methyl]-methionine and a subsequent centrifugation of cell lysates in an alkaline sucrose gradient the DNA radioactivity is detected in long (28, 33 and 45S) and short (5, 13 and 18S) fragments. An increase in cell concentration in the cultural layer results in inhibition of 5S fragments linkage rather than in inhibition of their synthesis. The blocking of the Okazaki fragment linkage may be regarded as one of the inhibitory molecular mechanisms of cell depletion. Both in the case of normal and suppressed (by 99%) replication by arabofuranosylcytosine [3H]-thymidine and [3H-5-methyl] cytosine are detected in the Okazaki fragments (5S) as well as in some discrete lower molecular weight fractions (lesser than 5S) of newly synthesized DNA. Thus, replicative methylation of DNA in the fibroblasts occurs in the replicative fork during DNA synthesis and the functioning DNA methylase is an indispensable component of the replicative complex. The methylation of Okazaki fragments is non-chaotic and has a specificity other than that of total DNA. This may be due to the multiplicity and different specificity of nuclear DNA-methylases. Thus, there exist in animal cells replicative and post-replicative methylation of DNA, which may differ in the nature of substrates and enzymes, in specificity of recognizable sequences and in their functional significanse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号