首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intramembrane charge movement was measured on skeletal muscle fibers of the frog in a single Vaseline-gap voltage clamp. Charge movements determined both under polarized conditions (holding potential, VH = -100 mV; Qmax = 30.4 +/- 4.7 nC/micro(F), V = -44.4 mV, k = 14.1 mV; charge 1) and in depolarized states (VH = 0 mV; Qmax = 50.0 +/- 6.7 nC/micro(F), V = -109.1 mV, k = 26.6 mV; charge 2) had properties as reported earlier. Linear capacitance (LC) of the polarized fibers was increased by 8.8 +/- 4.0% compared with that of the depolarized fibers. Using control pulses measured under depolarized conditions to calculate charge 1, a minor change in the voltage dependence (to V = -44.6 mV and k = 14.5 mV) and a small increase in the maximal charge (to Qmax = 31.4 +/- 5.5 nC/micro(F] were observed. While in most cases charge 1 transients seemed to decay with a single exponential time course, charge 2 currents showed a characteristic biexponential behavior at membrane potentials between -90 and -180 mV. The voltage dependence of the rate constant of the slower component was fitted with a simple constant field diffusion model (alpha m = 28.7 s-1, V = -124.0 mV, and k = 15.6 mV). The midpoint voltage (V) was similar to that obtained from the Q-V fit of charge 2, while the steepness factor (k) resembled that of charge 1. This slow component could also be isolated using a stepped OFF protocol; that is, by hyperpolarizing the membrane to -190 mV for 200 ms and then coming back to 0 mV in two steps. The faster component was identified as an ionic current insensitive to 20 mM Co2+ but blocked by large hyperpolarizing pulses. These findings are consistent with the model implying that charge 1 and the slower component of charge 2 interconvert when the holding potential is changed. They also explain the difference previously found when comparing the steepness factors of the voltage dependence of charge 1 and charge 2.  相似文献   

2.
Slow charge movement in mammalian skeletal muscle   总被引:11,自引:5,他引:6       下载免费PDF全文
Voltage-dependent charge movements were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Contraction was abolished with hypertonic sucrose. The standard (ON-OFF) protocol for eliciting charge movements was to depolarize the fiber from -90 mV to a variable test potential (V) and then repolarize the fiber to -90 mV. The quantity of charge moved saturated at test potentials of approximately 0 mV. The steady state dependence of the amount of charge that moves as a function of test potential could be well fitted by the Boltzmann relation: Q = Qmax/(1 + exp[-(V - V)/k]), where Qmax is the maximum charge that can be moved, V is the potential at which half the charge moves, and k is a constant. At 15 degrees C, these values were Qmax = 28.5 nC/microF, V = -34.2 mV, and k = 8.7 mV. Qmax, k, and V exhibited little temperature dependence over the range 7-25 degrees C. "Stepped OFF" charge movements were elicited by depolarizing the fiber from -90 mV to a fixed conditioning level that moved nearly all the mobile charge (0 mV), and then repolarizing the fiber to varying test potentials. The sum of the charge that moved when the fiber was depolarized directly from -90 mV to a given test potential and the stepped OFF charge that moved when the fiber was repolarized to the same test potential had at all test potentials a value close to Qmax for that fiber. In nearly all cases, the decay phase of ON, OFF, and stepped OFF charge movements could be well fitted with a single exponential. The time constant, tau decay, for an ON charge movement at a given test potential was comparable to tau decay for a stepped OFF charge movement at the same test potential. Tau decay had a bell-shaped dependence on membrane potential: it was slowest at a potential near V (the midpoint of the steady state charge distribution) and became symmetrically faster on either side of this potential. Raising the temperature from 7 to 15 degrees C caused tau decay to become faster by about the same proportion at all potentials, with a Q10 averaging 2.16. Raising the temperature from 15 to 25 degrees C caused tau decay to become faster at potentials near V, but not at potentials farther away.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Intramembranous charge movement was measured in cut twitch fibers mounted in a double Vaseline-gap chamber with either a tetraethylammonium chloride (TEA.Cl) or a TEA2.SO4 solution (13-14 degrees C) in the central pool. Charge vs. voltage data were fitted by a single two-state Boltzmann distribution function. The average values of V (the voltage at which steady-state charge is equally distributed between the two Boltzmann states), k (the voltage dependence factor), and qmax/cm (the maximum charge divided by the linear capacitance, both per unit length of fiber) were V = -53.3 mV (SEM, 1.1 mV), k = 6.3 mV (SEM, 0.3 mV), qmax/cm = 18.0 nC/microF (SEM, 1.1 nC/microF) in the TEA.Cl solution; and V = -35.1 mV (SEM, 1.8 mV), k = 10.5 mV (SEM, 0.9 mV), qmax/cm = 36.3 nC/microF (SEM, 3.2 nC/microF) in the TEA2.SO4 solution. These values of k are smaller than those previously reported for cut twitch fibers and are as small as those reported for intact fibers. If a correction is made for the contributions of currents from under the Vaseline seals, V = -51.2 mV (SEM, 1.1 mV), k = 7.2 mV (SEM, 0.4 mV), qmax/cm = 22.9 nC/microF (SEM, 1.4 nC/microF) in the TEA.Cl solution; and V = -34.0 mV (SEM, 1.9 mV), k = 10.1 mV (SEM, 1.1 mV), qmax/cm = 38.8 nC/microF (SEM, 3.2 nC/microF) in the TEA2.SO4 solution. With this correction, however, the fit of the theoretical curve to the data is poor. A good fit with this correction can be obtained with a sum of two Boltzmann distribution functions. The first has average values V = -33.0 mV (SEM, 2.8 mV), k = 11.0 mV (SEM, 0.5 mV), qmax/cm = 10.6 nC/microF (SEM, 1.0 nC/microF) in the TEA.Cl solution; and V = -20.0 mV (SEM, 3.3 mV), k = 17.0 mV (SEM, 2.0 mV), qmax/cm = 36.4 nC/microF (SEM, 2.3 nC/microF) in the TEA2.SO4 solution. The second has average values V = -56.5 mV (SEM, 1.3 mV), k = 2.9 mV (SEM, 0.4 mV), qmax/cm = 13.2 nC/microF (SEM, 1.0 nC/microF) in the TEA.Cl solution; and V = -41.6 mV (SEM, 1.4 mV), k = 2.5 mV (SEM, 0.8 mV), qmax/cm = 11.8 nC/microF (SEM, 1.7 nC/microF) in the TEA2.SO4 solution. When a fiber is depolarized to near V of the second Boltzmann function, a slowly developing "hump" appears in the ON-segment of the current record.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Inactivation of currents carried by Ba2+ and Ca2+, as well as intramembrane charge movement from L-type Ca2+ channels were studied in guinea pig ventricular myocytes using the whole-cell patch clamp technique. Prolonged (2 s) conditioning depolarization caused substantial reduction of charge movement between -70 and 10 mV (charge 1, or charge from noninactivated channels). In parallel, the charge mobile between -70 and -150 mV (charge 2, or charge from inactivated channels) was increased. The availability of charge 2 depended on the conditioning pulse voltage as the sum of two Boltzmann components. One component had a central voltage of -75 mV and a magnitude of 1.7 nC/microF. It presumably is the charge movement (charge 2) from Na+ channels. The other component, with a central voltage of approximately - 30 mV and a magnitude of 3.5 nC/microF, is the charge 2 of L-type Ca2+ channels. The sum of charge 1 and charge 2 was conserved after different conditioning pulses. The difference between the voltage dependence of the activation of L-type Ca2+ channels (half-activation voltage, V, of approximately -20 mV) and that of charge 2 (V of -100 mV) made it possible to record the ionic currents through Ca2+ channels and charge 2 in the same solution. In an external solution with Ba2+ as sole metal the maximum available charge 2 of L-type Ca2+ channels was 10-15% greater than that in a Ca(2+)-containing solution. External Cd2+ caused 20-30% reduction of charge 2 both from Na+ and L-type Ca2+ channels. Voltage- and Ca(2+)-dependent inactivation phenomena were compared with a double pulse protocol in cells perfused with an internal solution of low calcium buffering capacity. As the conditioning pulse voltage increased, inactivation monitored with the second pulse went through a minimum at about 0 mV, the voltage at which conditioning current had its maximum. Charge 2, recorded in parallel, did not show any increase associated with calcium entry. Two alternative interpretations of these observations are: (a) that Ca(2+)- dependent inactivation does not alter the voltage sensor, and (b) that inactivation affects the voltage sensor, but only in the small fraction of channels that open, and the effect goes undetected. A model of channel gating that assumes the first possibility is shown to account fully for the experimental results. Thus, extracellular divalent cations modulate voltage-dependent inactivation of the Ca2+ channel. Intracellular Ca2+ instead, appears to cause inactivation of the channel without affecting its voltage sensor.  相似文献   

5.
The Ca2+ currents, charge movements, and intracellular Ca2+ transients of mouse dihydropyridine receptor (DHPR) beta 1-null myotubes expressing a mouse DHPR beta 1 cDNA have been characterized. In beta 1-null myotubes maintained in culture for 10-15 days, the density of the L-type current was approximately 7-fold lower than in normal cells of the same age (Imax was 0.65 +/- 0.05 pA/pF in mutant versus 4.5 +/- 0.8 pA/pF in normal), activation of the L-type current was significantly faster (tau activation at +40 mV was 28 +/- 7 ms in mutant versus 57 +/- 8 ms in normal), charge movements were approximately 2.5-fold lower (Qmax was 2.5 +/- 0.2 nC/microF in mutant versus 6.3 +/- 0.7 nC/microF in normal), Ca2+ transients were not elicited by depolarization, and spontaneous or evoked contractions were absent. Transfection of beta 1-null cells by lipofection with beta 1 cDNA reestablished spontaneous or evoked contractions in approximately 10% of cells after 6 days and approximately 30% of cells after 13 days. In contracting beta 1-transfected myotubes there was a complete recovery of the L-type current density (Imax was 4 +/- 0.9 pA/pF), the kinetics of activation (tau activation at +40 mV was 64 +/- 5 ms), the magnitude of charge movements (Qmax was 6.7 +/- 0.4 nC/microF), and the amplitude and voltage dependence of Ca2+ transients evoked by depolarizations. Ca2+ transients of transfected cells were unaltered by the removal of external Ca2+ or by the block of the L-type Ca2+ current, demonstrating that a skeletal-type excitation-contraction coupling was restored. The recovery of the normal skeletal muscle phenotype in beta 1-transfected beta-null myotubes shows that the beta 1 subunit is essential for the functional expression of the DHPR complex.  相似文献   

6.
Intramembrane charge movement has been measured in frog cut skeletal muscle fibers using the triple vaseline gap voltage-clamp technique. Ionic currents were reduced using an external solution prepared with tetraethylammonium to block potassium currents, and O sodium + tetrodotoxin to abolish sodium currents. The internal solution contained 10 mM EGTA to prevent contractions. Both the internal and external solutions were prepared with impermeant anions. Linear capacitive currents were subtracted using the P-P/4 procedure, with the control pulses being subtracted either at very negative potentials, for the case of polarized fibers, or at positive potentials, for the case of depolarized fibers. In 63 polarized fibers dissected from Rana pipiens or Leptodactylus insularis frogs the following values were obtained for charge movement parameters: Qmax = 39 nC/microF, V = 36 mV, k = 18.5 mV. After depolarization we found that the total amount of movable charge was not appreciably reduced, while the voltage sensitivity was much changed. For 10 fibers, in which charge movement was measured at -100 and at 0 mV, Qmax changed from 46 to 41 nC/microF, while V changed from -41 to -103 mV and k changed from 20.5 to 30 mV. Thus membrane depolarization to 0 mV produces a shift of greater than 50 mV in the Q-V relationship and a decrease of the slope. Membrane depolarization to -20 and -30 mV, caused a smaller shift of the Q-V relationship. In normally polarized fibers addition of D-600 at concentrations of 50-100 microM, does not cause important changes in charge movement parameters. However, the drug appears to have a use-dependent effect after depolarization. Thus in depolarized fibers, total charge is reduced by approximately 20%. D-600 causes no further changes in the voltage sensitivity of charge movement in fibers depolarized to 0 mV, while in fibers depolarized to -20 and -30 mV it causes the same effects as that obtained with depolarization to 0 mV. These results are compatible with the idea that after depolarization charge 1 is transformed into charge 2. D-600 appears to favor the conversion of charge 1 into charge 2. Since D-600 also favors contractile inactivation, charge 2 could represent the state of the voltage sensor for excitation-contraction coupling in the inactivated state.  相似文献   

7.
Charge movement was measured in frog cut twitch fibers with the double Vaseline-gap technique. 25 microM tetracaine had very little effect on the maximum amounts of Q beta and Q gamma but slowed the kinetics of the I gamma humps in the ON segments of TEST-minus-CONTROL current traces, giving rise to biphasic transients in the difference traces. This concentration of tetracaine also shifted V gamma 3.7 (SEM 0.7) mV in the depolarizing direction, resulting in a difference Q-V plot that was bell-shaped with a peak at approximately -50 mV. 0.5-1.0 mM tetracaine suppressed the total amount of charge. The suppressed component had a sigmoidal voltage distribution with V = -56.6 (SEM 1.1) mV, k = 2.5 (SEM 0.5) mV, and qmax/cm = 9.2 (SEM 1.5) nC/microF, suggesting that the tetracaine-sensitive charge had a steep voltage dependence, a characteristic of the Q gamma component. An intermediate concentration (0.1-0.5 mM) of tetracaine shifted V gamma and partially suppressed the tetracaine-sensitive charge, resulting in a difference Q-V plot that rose to a peak and then decayed to a plateau level. Following a TEST pulse to greater than -60 mV, the slow inward current component during a post-pulse to approximately -60 mV was also tetracaine sensitive. The voltage distribution of the charge separated by tetracaine (method 1) was compared with those separated by three other existing methods: (a) the charge associated with the hump component separated by a sum of two kinetic functions from the ON segment of a TEST-minus-CONTROL current trace (method 2), (b) the steeply voltage-dependent component separated from a Q-V plot of the total charge by fitting with a sum of two Boltzmann distribution functions (method 3), and (c) the sigmoidal component separated from the Q-V plot of the final OFF charge obtained with a two-pulse protocol (method 4). The steeply voltage-dependent components separated by all four methods are consistent with each other, and are therefore concluded to be equivalent to the same Q gamma component. The shortcomings of each separation method are critically discussed. Since each method has its own advantages and disadvantages, it is recommended that, as much as possible, Q gamma should be separated by more than one method to obtain more reliable results.  相似文献   

8.
Asymmetric membrane currents and calcium transients were recorded simultaneously from cut segments of frog skeletal muscle fibers voltage clamped in a double Vaseline-gap chamber in the presence of high concentration of EGTA intracellularly. An inward phase of asymmetric currents following the hump component was observed in all fibers during the depolarization pulse to selected voltages (congruent to -45 mV). The average value of the peak inward current was 0.1 A/F (SEM = 0.01, n = 18), and the time at which it occurred was 34 ms (SEM = 1.8, n = 18). A second delayed outward phase of asymmetric current was observed after the inward phase, in those experiments in which hump component and inward phase were large. It peaked at more variable time (between 60 and 130 ms) with amplitude 0.02 A/F (SEM = 0.003, n = 11). The transmembrane voltage during a pulse, measured with a glass microelectrode, reached its steady value in less than 10 ms and showed no oscillations. The potential was steady at the time when the delayed component of asymmetric current occurred. ON and OFF charge transfers were equal for all pulse durations. The inward phase moved 1.4 nC/microF charge (SEM = 0.8, n = 6), or about one third of the final value of charge mobilized by these small pulses, and the second outward phase moved 0.7 nC/microF (SEM = 0.8, n = 6), bringing back about half of the charge moved during the inward phase. When repolarization intersected the peak of the inward phase, the OFF charge transfer was independent of the repolarization voltage in the range -60 to -90 mV. When both pre- and post-pulse voltages were changed between -120 mV and -60 mV, the equality of ON and OFF transfers of charge persisted, although they changed from 113 to 81% of their value at -90 mV. The three delayed phases in asymmetric current were also observed in experiments in which the extracellular solution contained Cd2+, La3+ and no Ca2+. Large increases in intracellular [Cl-] were imposed, and had no major effect on the delayed components of the asymmetric current. The Ca2+ transients measured optically and the calculated Ca2+ release fluxes had three phases whenever a visible outward phase followed the inward phase in the asymmetric current. Several interventions intended to interfere with Ca release, reduced or eliminated the three delayed phases of the asymmetric current.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The effects of the agonist enantiomer S(-)Bay K 8644 on gating charge of L-type Ca channels were studied in single ventricular myocytes. From a holding potential (Vh) of -40 mV, saturating (250 nm) S(-)Bay K shifted the half-distribution voltage of the activation charge (Q1) vs. V curve -7.5 +/- 0.8 mV, almost identical to the shift produced in the Ba conductance vs. V curve (-7.7 +/- 2 mV). The maximum Q1 was reduced by 1.7 +/- 0.2 nC/microF, whereas Q2 (charge moved in inactivated channels) was increased in a similar amount (1.4 +/- 0.4 nC/microF). The steady-state availability curves for Q1, Q2, and Ba current showed almost identical negative shifts of -14.8 +/- 1.7 mV, -18.6 +/- 5.8 mV, and -15.2 +/- 2.7 mV, respectively. The effects of the antagonist enantiomer R(+)BayK 8644 were also studied, the Q1 vs. V curve was not significantly shifted, but Q1max (Vh = -40 mV) was reduced and the Q1 availability curve shifted by -24.6 +/- 1.2 mV. We concluded that: a) the left shift in the Q1 vs. V activation curve produced by S(-)BayK is a purely agonistic effect; b) S(-)BayK induced a significantly larger negative shift in the availability curve than in the Q1 vs. V relation, consistent with a direct promotion of inactivation; c) as expected for a more potent antagonist, R(+)Bay K induced a significantly larger negative shift in the availability curve than did S(-)Bay K.  相似文献   

10.
Changes in holding potential (Vh), affect both gating charge (the Q(Vh) curve) and peak ionic current (the F(Vh) curve) seen at positive test potentials. Careful comparison of the Q(Vh) and F(Vh) distributions indicates that these curves are similar, having two slopes (approximately 2.5e for Vh from -115 to -90 mV and approximately 4e for Vh from -90 to -65 mV) and very negative midpoints (approximately -86 mV). Thus, gating charge movement and channel availability appear closely coupled under fully-equilibrated conditions. The time course by which channels approach equilibration was explored using depolarizing prepulses of increasing duration. The high slope component seen in the F(Vh) and Q(Vh) curves is not evident following short depolarizing prepulses in which the prepulse duration approximately corresponds to the settling time for fast inactivation. Increasing the prepulse duration to 10 ms or longer reveals the high slope, and left-shifts the midpoint to more negative voltages, towards the F(Vh) and Q(Vh) distributions. These results indicate that a separate slow-moving voltage sensor affects the channels at prepulse durations greater than 10 ms. Charge movement and channel availability remain closely coupled as equilibrium is approached using depolarizing pulses of increasing durations. Both measures are 50% complete by 50 ms at a prepulse potential of -70 mV, with proportionately faster onset rates when the prepulse potential is more depolarized. By contrast, charge movement and channel availability dissociate during recovery from prolonged depolarizations. Recovery of gating charge is considerably faster than recovery of sodium ionic current after equilibration at depolarized potentials. Recovery of gating charge at -140 mV, is 65% complete within approximately 100 ms, whereas less than 30% of ionic current has recovered by this time. Thus, charge movement and channel availability appear to be uncoupled during recovery, although both rates remain voltage sensitive. These data suggest that channels remain inactivated due to a separate process operating in parallel with the fast gating charge. We demonstrate that this behavior can be simulated by a model in which the fast charge movement associated with channel activation is electrostatically-coupled to a separate slow voltage sensor responsible for the slow inactivation of channel conductance.  相似文献   

11.
In Shaker K(+) channel, the amino terminus deletion Delta6-46 removes fast inactivation (N-type) unmasking a slow inactivation process. In Shaker Delta6-46 (Sh-IR) background, two additional mutations (T449V-I470C) remove slow inactivation, producing a noninactivating channel. However, despite the fact that Sh-IR-T449V-I470C mutant channels remain conductive, prolonged depolarizations (1 min, 0 mV) produce a shift of the QV curve by about -30 mV, suggesting that the channels still undergo the conformational changes typical of slow inactivation. For depolarizations longer than 50 ms, the tail currents measured during repolarization to -90 mV display a slow component that increases in amplitude as the duration of the depolarizing pulse increases. We found that the slow development of the QV shift had a counterpart in the amplitude of the slow component of the ionic tail current that is not present in Sh-IR. During long depolarizations, the time course of both the increase in the slow component of the tail current and the change in voltage dependence of the charge movement could be well fitted by exponential functions with identical time constant of 459 ms. Single channel recordings revealed that after prolonged depolarizations, the channels remain conductive for long periods after membrane repolarization. Nonstationary autocovariance analysis performed on macroscopic current in the T449V-I470C mutant confirmed that a novel open state appears with increasing prepulse depolarization time. These observations suggest that in the mutant studied, a new open state becomes progressively populated during long depolarizations (>50 ms). An appealing interpretation of these results is that the new open state of the mutant channel corresponds to a slow inactivated state of Sh-IR that became conductive.  相似文献   

12.
Intramembrane charge movement was recorded in rat and rabbit ventricular cells using the whole-cell voltage clamp technique. Na and K currents were eliminated by using tetraethylammonium as the main cation internally and externally, and Ca channel current was blocked by Cd and La. With steps in the range of -110 to -150 used to define linear capacitance, extra charge moves during steps positive to approximately -70 mV. With holding potentials near -100 mV, the extra charge moving outward on depolarization (ON charge) is roughly equal to the extra charge moving inward on repolarization (OFF charge) after 50-100 ms. Both ON and OFF charge saturate above approximately +20 mV; saturating charge movement is approximately 1,100 fC (approximately 11 nC/muF of linear capacitance). When the holding potential is depolarized to -50 mV, ON charge is reduced by approximately 40%, with little change in OFF charge. The reduction of ON charge by holding potential in this range matches inactivation of Na current measured in the same cells, suggesting that this component might arise from Na channel gating. The ON charge remaining at a holding potential of -50 mV has properties expected of Ca channel gating current: it is greatly reduced by application of 10 muM D600 when accompanied by long depolarizations and it is reduced at more positive holding potentials with a voltage dependence similar to that of Ca channel inactivation. However, the D600-sensitive charge movement is much larger than the Ca channel gating current that would be expected if the movement of channel gating charge were always accompanied by complete opening of the channel.  相似文献   

13.
Intramembranous charge movement was measured in frog cut twitch fibers mounted in a double Vaseline-gap chamber with a TEA.Cl solution at 13-14 degrees C in the central pool. When a fiber was depolarized from a holding potential of -90 mV to a potential near -60 mV, the current from intramembranous charge movement was outward in direction and had an early, rapid component and a late, more slowly developing component, referred to as I beta and I gamma, respectively (1979. J. Physiol. [Lond.]. 289:83-97). When the pulse to -60 mV was preceded by a 100-600-ms pulse to -40 mV, early I beta and late I gamma components were also observed, but in the inward direction. The shape of the Q gamma vs. voltage curve can be estimated with this two-pulse protocol. The first pulse to voltage V allows the amounts of Q beta and Q gamma charge in the active state to change from their respective resting levels, Q beta (-90) and Q gamma (-90), to new steady levels, Q beta (V) and Q gamma (V). A second 100-120-ms pulse, usually to -60 mV, allows the amount of Q beta charge in the active state to change from Q beta (V) to Q beta (-60) but is not sufficiently long for the amount of Q gamma charge to change completely from Q gamma (V) to Q gamma (-60). The difference between the amount of Q gamma charge at the end of the second pulse and Q gamma (-60) is estimated from the OFF charge that is observed on repolarization to -90 mV. The OFF charge vs. voltage data were fitted, with gap corrections, with a Boltzmann distribution function plus a constant. The mean values of V (the potential at which, in the steady state, charge is distributed equally between the resting and active states) and k (the voltage dependence factor) were -59.2 mV (SEM, 1.1 mV) and 1.2 mV (SEM, 0.6 mV), respectively. The one-pulse charge vs. voltage data from the same fibers were fitted with a sum of two Boltzmann functions (1990. J. Gen. Physiol. 96:257-297). The mean values of V and k for the steeply voltage-dependent Boltzmann function, which is likely to be associated with the Q gamma component of charge, were -55.3 mV (SEM, 1.3 mV) and 3.3 mV (SEM, 0.6 mV), respectively, similar to the corresponding values obtained with the two-pulse protocol.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Cut muscle fibers from Rana temporaria were mounted in a double Vaseline-gap chamber and equilibrated with an end-pool solution that contained 20 mM EGTA and 1.76 mM Ca (sarcomere length, 3.3-3.8 microns; temperature, 14-16 degrees C). Sarcoplasmic reticulum (SR) Ca release, delta[CaT], was estimated from changes in myoplasmic pH (Pape, P.C., D.- S. Jong, and W.K. Chandler. 1995. J. Gen. Physiol. 106:259-336). The maximal value of delta[CaT] obtained during a depleting depolarization was assumed to equal the SR Ca content before stimulation, [CaSR]R (expressed as myoplasmic concentration). After a depolarization to -55 to -40 mV in fibers with [CaSR]R = 1,000-3,000 microM, currents from intramembranous charge movement, Icm, showed an early I beta component. This was followed by an I gamma hump, which decayed within 50 ms to a small current that was maintained for as long as 500 ms. This slow current was probably a component of Icm because the amount of OFF charge, measured after depolarizations of different durations, increased according to the amount of ON charge. Icm was also measured after the SR had been depleted of most of its Ca, either by a depleting conditioning depolarization or by Ca removal from the end pools followed by a series of depleting depolarizations. The early I beta component was essentially unchanged by Ca depletion, the I gamma hump was increased (for [CaSR]R > 200 microM), the slow component was eliminated, and the total amount of OFF charge was essentially unchanged. These results suggest that the slow component of ON Icm is not movement of a new species of charge but is probably movement of Q gamma that is slowed by SR Ca release or some associated event such as the accompanying increase in myoplasmic free [Ca] that is expected to occur near the Ca release sites. The peak value of the apparent rate constant associated with this current, 2-4%/ms at pulse potentials between -48 and -40 mV, is decreased by half when [CaSR]R approximately equal to 500-1,000 microM, which gives a peak rate of SR Ca release of approximately 5-10 microM/ms.  相似文献   

15.
KV11.1 voltage-gated K+ channels are noted for unusually slow activation, fast inactivation, and slow deactivation kinetics, which tune channel activity to provide vital repolarizing current during later stages of the cardiac action potential. The bulk of charge movement in human ether-a-go-go-related gene (hERG) is slow, as is return of charge upon repolarization, suggesting that the rates of hERG channel opening and, critically, that of deactivation might be determined by slow voltage sensor movement, and also by a mode-shift after activation. To test these ideas, we compared the kinetics and voltage dependence of ionic activation and deactivation with gating charge movement. At 0 mV, gating charge moved ∼threefold faster than ionic current, which suggests the presence of additional slow transitions downstream of charge movement in the physiological activation pathway. A significant voltage sensor mode-shift was apparent by 24 ms at +60 mV in gating currents, and return of charge closely tracked pore closure after pulses of 100 and 300 ms duration. A deletion of the N-terminus PAS domain, mutation R4AR5A or the LQT2-causing mutation R56Q gave faster-deactivating channels that displayed an attenuated mode-shift of charge. This indicates that charge movement is perturbed by N- and C-terminus interactions, and that these domain interactions stabilize the open state and limit the rate of charge return. We conclude that slow on-gating charge movement can only partly account for slow hERG ionic activation, and that the rate of pore closure has a limiting role in the slow return of gating charges.  相似文献   

16.
Single- (whole-cell patch) and two-electrode voltage-clamp techniques were used to measure transient (Ifast) and sustained (Islow) calcium currents, linear capacitance, and slow, voltage-dependent charge movements in freshly dissociated fibers of the flexor digitorum brevis (FDB) muscle of rats of various postnatal ages. Peak Ifast was largest in FDB fibers of neonatal (1-5 d) rats, having a magnitude in 10 mM external Ca of 1.4 +/- 0.9 pA/pF (mean +/- SD; current normalized by linear fiber capacitance). Peak Ifast was smaller in FDB fibers of older animals, and by approximately 3 wk postnatal, it was so small as to be unmeasurable. By contrast, the magnitudes of Islow and charge movement increased substantially during postnatal development. Peak Islow was 3.6 +/- 2.5 pA/pF in FDB fibers of 1-5-d rats and increased to 16.4 +/- 6.5 pA/pF in 45-50-d-old rats; for these same two age groups, Qmax, the total mobile charge measurable as charge movement, was 6.0 +/- 1.7 and 23.8 +/- 4.0 nC/microF, respectively. As both Islow and charge movement are thought to arise in the transverse-tubular system, linear capacitance normalized by the area of fiber surface was determined as an indirect measure of the membrane area of the t-system relative to that of the fiber surface. This parameter increased from 1.5 +/- 0.2 microF/cm2 in 2-d fibers to 2.9 +/- 0.4 microF/cm2 in 44-d fibers. The increases in peak Islow, Qmax, and normalized linear capacitance all had similar time courses. Although the function of Islow is unknown, the substantial postnatal increase in its magnitude suggests that it plays an important role in the physiology of skeletal muscle.  相似文献   

17.
Intramembrane charge movement and Ca2+ release from sarcoplasmic reticulum was studied in foetal skeletal muscle cells from normal and mutant mice with 'muscular dysgenesis' (mdg/mdg). It was shown that: 1) unlike normal myotubes, in dysgenic myotubes membrane depolarization did not evoke calcium release from the sarcoplasmic reticulum; 2) when all ionic currents are pharmacologically suppressed, membrane depolarization produced an asymmetric intramembrane charge movement in both normal and dysgenic myotubes. The relationship between the membrane potential and the amount of charge movement in these muscles could be expressed by a two-state Boltzmann equation; 3) the maximum amount of charge movement associated with depolarization (Qon max) in normal and in dysgenic myotubes was 6.3 +/- 1.4 nC/microF (n = 6) and 1.7 +/- 0.3 nC/microF (n = 6) respectively; 4) nifedipine (1-20 microM) applied to the bath reduced Qon max by about 40% in normal muscle cells. In contrast, the drug had no significant effect on the charge movement of dysgenic myotubes; and 5) the amount of nifedipine-resistant charge movement in normal and in dysgenic myotubes was 3.5 nC/microF (n = 3) and 1.7 nC/microF 1 maximum (n = 3), respectively.  相似文献   

18.
Cut muscle fibers from Rana temporaria (sarcomere length, 3.3-3.5 microns; temperature, 13-16 degrees C) were mounted in a double Vaseline-gap chamber and equilibrated for at least an hour with an internal solution that contained 20 mM EGTA and phenol red and an external solution that contained predominantly TEA-gluconate; both solutions were nominally Ca-free. The increase in total myoplasmic concentration of Ca (delta[CaT]) produced by sarcoplasmic reticulum (SR) Ca release was estimated from the change in pH produced when the released Ca was complexed by EGTA (Pape, P.C., D.-S. Jong, and W.K. Chandler. 1995. Journal of General Physiology. 106:259-336). The resting value of SR Ca content, [CaSR]R (expressed as myoplasmic concentration), was taken to be equal to the value of delta[CaT] obtained during a step depolarization (usually to -50 to -40 mV) that was sufficiently long (200-750 ms) to release all of the readily releasable Ca from the SR. In ten fibers, the first depolarization gave [CaSR]R = 839-1,698 microM. Progressively smaller values were obtained with subsequent depolarizations until, after 30-40 depolarizations, the value of [CaSR]R had usually been reduced to < 10 microM. Measurements of intramembranous charge movement, Icm, showed that, as the value of [CaSR]R decreased, ON-OFF charge equality held and the amount of charge moved remained constant. ON Icm showed brief initial I beta components and prominent I gamma "humps", even after the value of [CaSR]R was < 10 microM. Although the amplitude of the hump component decreased during depletion, its duration increased in a manner that preserved the constancy of ON charge. In the depleted state, charge movement was steeply voltage dependent, with a mean value of 7.2 mV for the Boltzmann factor k. These and other results are not consistent with the idea that there is one type of charge, Q beta, and that I gamma is a movement of Q beta caused by SR Ca release, as proposed by Pizarro, Csernoch, Uribe, Rodriguez, and Rios (1991. Journal of General Physiology. 97:913-947). Rather, our results imply that Q beta and Q gamma represent either two distinct species of charge or two transitions with different properties of a single species of charge, and that SR Ca content or release or some related event alters the kinetics, but not the amount of Q gamma. Many of the properties of Q gamma, as well as the voltage dependence of the rate of SR Ca release for small depolarizations, are consistent with predictions from a simple model in which the voltage sensor for SR Ca release consists of four interacting charge movement particles.  相似文献   

19.
Nonlinear or asymmetric charge movement was recorded from single ventricular myocytes cultured from 17-d-old embryonic chick hearts using the whole-cell patch clamp method. The myocytes were exposed to the appropriate intracellular and extracellular solutions designed to block Na+, Ca2+, and K+ ionic currents. The linear components of the capacity and leakage currents during test voltage steps were eliminated by adding summed, hyperpolarizing control step currents. Upon depolarization from negative holding potentials the nonlinear charge movement was composed of two distinct and separable kinetic components. An early rapidly decaying component (decay time constant range: 0.12-0.50 ms) was significant at test potentials positive to -70 mV and displayed saturation above 0 mV (midpoint -35 mV; apparent valence 1.6 e-). The early ON charge was partially immobilized during brief (5 ms) depolarizing test steps and was more completely immobilized by the application of less negative holding potentials. A second slower-decaying component (decay time constant range: 0.88-3.7 ms) was activated at test potentials positive to -60 mV and showed saturation above +20 mV (midpoint -13 mV, apparent valence 1.9 e-). The second component of charge movement was immobilized by long duration (5 s) holding potentials, applied over a more positive voltage range than those that reduced the early component. The voltage dependencies for activation and inactivation of the Na+ and Ca2+ ionic currents were determined for myocytes in which these currents were not blocked. There was a positive correlation between the voltage dependence of activation and inactivation of the Na+ and Ca2+ ionic currents and the activation and immobilization of the fast and slow components of charge movement. These complementary kinetic and steady-state properties lead to the conclusion that the two components of charge movement are associated with the voltage-sensitive conformational changes that precede Na+ and Ca2+ channel openings.  相似文献   

20.
We have examined the ability of BI (class A) Ca2+ channels, cloned from rabbit brain, to mediate excitation-contraction (E-C) coupling in skeletal muscle. Expression plasmids carrying cDNA encoding BI channels were microinjected into the nuclei of dysgenic mouse myotubes grown in primary culture. Ionic currents and intramembrane charge movements produced by the BI channels were recorded using the whole-cell patch- clamp technique. Injected myotubes expressed high densities of ionic BI Ca2+ channel current (average 31 pA/pF) but did not display spontaneous contractions, and only very rarely displayed evoked contractions. The expressed ionic current was pharmacologically distinguished from the endogenous L-type current of dysgenic skeletal muscle (Idys) by its insensitivity to the dihydropyridine antagonist (+)-PN 200-110. Peak BI Ca2+ currents activated with a time constant (tau a) of approximately 2 ms and inactivated with a time constant (tau h) of approximately 260 ms (20-23 degrees C). The time constant of inactivation (tau h) was not increased by substituting Ba2+ for Ca2+ as charge carrier, demonstrating that BI channels expressed in dysgenic myotubes do not undergo Ca(2+)-dependent inactivation. The average maximal Ca2+ conductance (Gmax) produced by the BI channels was quite large (approximately 534 S/F). In contrast, the average maximal charge movement (Qmax) produced in the same myotubes (approximately 2.7 nC/microF) was quite small, being barely larger than Qmax in control dysgenic myotubes (approximately 2.3 nC/microF). Thus, the ratio Gmax/Qmax for the BI channels was considerably higher than previously found for cardiac or skeletal muscle L-type Ca2+ channels expressed in the same system, indicating that neuronal BI Ca2+ channels exhibit a much higher open probability than these L-type Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号